“Studies of Smart Photonic Antennas for a Wireless Communication System using RF/photic device”

1. Giriraj Prajapati* and 2. Dr.K.C Mahajan
Email- girirajp@yahoo.com,mahajan_KC@rediffmail.com
*Research Scholar, Mewar University Chittorgarh, (R.J.)

Abstract—This paper presents a novel, integrated a photonic antenna with a power control scheme. The controller regulates the levels of radiated power by adjusting the biasing voltage of a side-illuminated waveguide photo detector (WGPD). The WGPD converts the RF-modulated optical power into a microwave signal, which is then fed to an antenna The controller uses as input the noise level measurements of a different receiving antenna, and periodically calculates the necessary amount of power that must be radiated. The performance of the RF/photic device has been studied theoretically and experimentally. The addition of power control capabilities, the device realizes an early attempt to design “smart” photonic antennas.

I. INTRODUCTION
We present a framework for developing faster, adaptive wireless communication using arrays of “smart antennas”. The primary contribution of this paper is on integration of a RF antenna with an optical fiber and a transmission power control system. The antenna and the optical fiber are interfaced through an detector, which is built on the same chip as the antenna, increasing bandwidth and communication capacity. On top of this, a simple control system(implemented in software) uses RF noise power measurements to adaptively regulate the bias voltage of the photo detector. Through the bias voltage, the transmission power of the antenna can be adjusted. In this way we can achieve the required signal-to-noise ratio despite of slowly varying noise levels, and control the capacity of the channel at the same time. The need for more bandwidth and capacity in wireless systems fuels the development of wireless communications systems operating at millimeter wave frequencies and higher. The future needs of broadband interactive services(1Gb/s)demand the application of optical fiber feed networks for distribution of the radio signals to and from the antennas at the various base stations. Today, there are three main steps in the evolution of RF/Photonic systems for wireless communications. The first step has been in the direction of using photonics to replace conventionalRF components,such as, the coax that is used to connect the antenna to the electronics. Optical fibers, in contrast to coaxial cable, provide a more ideal medium for broadband RF communication systems. The light weight property of fibers, and its immunity to other signal interference make them very important of future RF distribution systems. The second, and more challenging step, is in the seamless integration of photonics and RF wireless circuits. fiber-optic technologies have reached the stage where insertions into various commercial RF systems are being considered. In this step the aim is to eliminate the need of local oscillators, mixers, amplifiers and a host of other parts by directly feeding an antenna through a fiber at millimeter wave frequencies. An array of RF modulator/photo detectors can be integrated directly to an array of antennas, combining the advantages of both fiber optics and wireless channels. It is possible that a large number of such RF/Photonic antenna elements could be networked together into a star configuration, feeding in and out of a radio hub. Despite the fact that the integration of photonics with antennas has recently gained momentum the issue of controlling the output power in photonic antennas has not yet been considered.

Given that in a communication channel of a wireless network each other node introduces noise, it becomes clear that all nodes have to transmit at the minimum possible energy level. This work presents a simple way to automatically regulate the transmission power of each antenna so that, despite noise, the capacity of the channel is adjusted, propagation of information is guaranteed and signal interference is kept at minimum. An array of RF modulator/photo detectors is integrated directly to an array of antennas, combining the advantages of both fiber optics and wireless channels. When combined with an transmission power automatic control system, this new RF/photonic antenna array system, with the appropriate space-time processing and coding, can form a “smart antenna” that can enhance network coverage, capacity, and quality. It is possible that a large number of such RF/Photonic antenna elements could be networked together into a star configuration, feeding in and out of a radio hub. Section II describes the interface of the optical fiber with the antenna on the same chip and the use of an additional antenna to take environment noise measurements.

In Section III, these measurements are used to close the power control loop, through which RF transmission power is regulated so that it is always above a threshold over environment noise. Two simulation cases are provided to demonstrate the ability of the control system to track time varying noise levels. Section IV summarizes our results and states the contributions of this paper.

II. The Photo detector–Antenna System The flexibility in the design of Waveguide Photo detector(WGPD) — provided by optical coupling, optical ab2sorption, transit...
time and capacitance – offers the ability to optimize it for the given application [4, 5]. The Waveguide Photo detector converts the RF-modulated optical power into a microwave signal, subsequently fed to an antenna (Figure 1.) The WGPD is a standard p-i-n device grown on a semi-insulated InP substrate. It eliminates the bandwidth-efficiency trade-off that is fundamental to normal, surface illuminated photo detectors, Fig. 1. Schematic representation of the antenna-photo detector system. The photo detector is fed via an optical fiber that is terminated at the facet of the optical waveguide layer. Bias across the photo detector determines the output power, as well as the frequency of operation. The effects of biasing can be seen in Figure 2.

\[J_{\text{cont}} = J_n + J_p \]

The biasing of the photo detector is provided through the antenna design. The antenna is a CPW-fed three element folded dipole slot. The transmitting antenna is a transformation of the basic folded dipole design in a patch/slot version [7]. It is operating around 18.5 GHz with a bandwidth of 1 GHz and a gain of 6.5 dBs. Due to magnetic currents generated in the slots, each folded slot antenna radiates like a half wavelength folded dipole with linear polarization.

The main advantages of this particular design are low cross polarization (\(\leq -23 \) dB’s), and low coupling between its elements [8]. The photo detector is fed via an optical fiber that is terminated at the facet of the optical waveguide layer. Biasing across the photo detector determines the output power, as well as the frequency of operation. The effects of biasing can be seen in Figure 2.

The biasing of the photo detector is provided through the antenna design. The antenna is a CPW-fed three element folded dipole slot. The transmitting antenna is a transformation of the basic folded dipole design in a patch/slot version [7]. It is operating around 18.5 GHz with a bandwidth of 1 GHz and a gain of 6.5 dBs. Due to magnetic currents generated in the slots, each folded slot antenna radiates like a half wavelength folded dipole with linear polarization. The main advantages of this particular design are low cross polarization (\(\leq -23 \) dB’s), and low coupling between its elements.

For the output power increases linearly with the bias voltage (Figure 9). From Figure 9 the rate of increase of the output power with the bias voltage can be estimated to be around \(E = 75.5 \) mW/V.

The antenna transmits in an environment with noise, \(w \), due to the transmission of other antennas and reflections of its own signal. Without loss of generality, the noise signal, \(w \) can be considered as white Gaussian. In an indoor environment, the noise signal is slowly varying, in which case the bandwidth of the power control system is usually adequate for tracking noise levels. Noise levels are picked up by a second antenna, perpendicularly polarized, in a distance sufficient to exclude coupling effects. This second antenna works as a sensor, measuring only the environment noise.

\[P' = w \]

where \(uk \) is the control input for power regulation, which is to be determined.

\[P_k = Ev_k \]

Fig. 10. Block diagram of the control system design. The control system’s output signal (Figure 10) is defined as:

\[y_k = P - w = Ev_k - w \]

and expresses the difference between the power of the transmission signal and the noise level. For successful transmission it is necessary that this difference is always above a threshold, namely, the desired signal-to-noise ratio:

\[y \text{ desired} = SNR \]

where \(rk \) is the (light) reference signal. Bearing in mind that the system directly measures noise \(w \), rather than output signal \(y_k \), the controller structure depicted in Figure 10 has to be implemented as shown in Figure 11. The control system described above allows the Photo detector/Antenna system to track the noise levels and maintain a constant power level above them (Figure 12, 13). In Figure 12, the high frequency pulse sequence is the response of the Photo detector/Antenna system to the light input signal. The low frequency pulse frequency corresponds to piecewise constant, white Gaussian noise. It is evident that regardless of the variation of the noise levels, the output is always regulated to a precise level above that of noise. To test the tracking performance of the control scheme further, we also simulated a sinusoidal noise waveform. The simulation results are given in Figure 13. From the response, it is clear that tracking ability is not restricted to the particular class of piecewise constant inputs but it extends to more general dynamic signals.

WIRELESS COMMUNICATION WITH “SMART” PHOTONIC ANTENNAS USING TRANSMISSION POWER CONTROL 5
Fig. 13. Tracking sinusoidal reference noise signals.

IV. CONCLUSIONS

We present a novel “smart antenna” design, in which we integrate photodetectors and antennas on the same chip, and we regulate the power level of radio transmission through a software-implemented control system. Firstly, linking the optical fiber directly with the antenna through a photodetector increases bandwidth without the need for signal amplification. Secondly, the control system adjusts the transmission power so that the desired signal-to-noise ratio is achieved and maintained, regardless of (low frequency) fluctuations of noise levels, ensuring reliable communication and allowing regulation of the channel capacity. The contribution of this work lays on the integration of photonics, RF radio and control towards faster, more reliable and adaptive wireless communications.

V. REFERENCES

Wireless Communication with “Smart” Photonic Antennas using Transmission Power Control Georgios Tzeremes, Herbert Tanner, Tsai Liao and Christos Christodoulou

Fig. 3. S11 parameters of the transmitting antenna.

Fig. 4. The radiation pattern of the transmitting antenna.

Fig. 5. Layout of the transmitting antenna and the perpendicular polarized antenna monitoring noise.

Authors Profile

Giriraj PRAJAPATI
Associate Professor (PhD*)
Wireless Communication Lab, Mewar University, Chittorgarh, Rajasthan, India
Email: girirajp@yahoo.com
Phone: +91-08103529389

G.R Prajapati graduated in E & T/C from R.G.P.V University of Bhopal in 2004 and received his Masters in E & T/C (Spl: Microwave) from R.G.P.V University of Bhopal. Presently he is working as H.O.D. of E&TC Engineering Department of Alpine Institute of Technology, Ujjain (M.P), having over 9 years experience in teaching and administrative. His fields of interests are Radar, Microwaves, Antennas. He is a Fellow Member of IETE and Member of ISTE/IEEE. In his credit, he has about twenty papers published in International/National repute Conferences/ Journals. Insightful experience in teaching undergraduate and post-graduate classes subjects like Computer Networks, Computer organization, Control Systems, Communication Engineering, Electronics Devises and Circuits and Devises, TV Engg, Programming languages, Digital signal and image processing, Digital system design, Microprocessors, etc. to B.E. and M.E. students. Have successfully guided and implemented projects for B.E. and M.E. students

Prof. K.C. MAHAJAN
Principal,
LNCT,College of Engineering & Research Center, Jabalpur (M.P)
Email: kc_mahajan@rediffmail.com
Phone: +91-9425927915

Vast experience of 26 years in the development of Hi-tech Technical Colleges. I got the privilege of establishing Hi-tech Technical Institutions I was responsible to develop a team to achieve/establish the technical institutions independently. Teaching as a Expert Electronics Faculty. Controlling of RGPV Examination for 3 years. Curriculum Development Work in Electronics Programmer under Indo German Project as a Coordinator Recognized as Highly skilled
personality in UK under migration programmed (HSMP) approval letter from home office SHEFFIELD UK, Vide HSMP reference no. 057149 dated 16 Dec 2005 UK Naric recognized and certified Technical/Research Qualifications.

26+ years of experience in the following fields Ph D in Electronics and Communication at Barkatullah University, Bhopal 2007 Foreign Fellowship Programme for Indian Graduates from Northern Institute of TAFE Melbourne (Australia) under World Bank Technical Education Project of India (1996) M.Tech (Hons) in Digital Communication of Engineering from MACT Bhopal Recognized as British Master Degree By UK NARIC (1993) B.E in Electronics Engineering from SGSITS Indore (M.P.) Recognized as British Bachelor Hons Degree By UK NARIC (1983).