Vol. 8 Issue 06, June-2019

Structural and Electron Spin Resonance analysis of Eu³⁺ doped Borotellurite Glass containing Manganese Oxide Nanoparticles

¹Siti Maisarah Aziz (corresponding author)

²Roslan Umar

¹Nurulhuda Mohammad Yusoff

¹Salmiah Jamal Mat Rosid

¹Siti Noor Syuhada Mohd @ Muhammad Amin

³M.R. Sahar

 ³S.N.S. Yaacob
 ¹UniSZA Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia

²East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia

³Advanced Optical Material Research Group, Department of Physics, Faculty Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia

Abstract:-Structural properties 30B₂O₃-(59-x)TeO₂-10MgO-xEu₂O₃-1Mn₃O₄ glass are prepared via melt quenching method. The glass samples are characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy. The glass nature is confirmed by XRD pattern. FTIR spectra display a shift in vibrational modes of TeO4 and TeO3 units thus indicate an alteration in the glass network structure due to an incorporation of Eu₂O₃. Influence which varies Eu₂O₃ concentrations on the structural due to the nature of spin-spin interaction are determined. Both g value and resonance magnetic field (H_r) are found to be in the range of (189-198) and (211-226) Oe respectively. The obtained g value of glass samples will modify the structural of europium doped magnesium borotellurite glass due to this presence of manganese oxide nanoparticles NPs) which may be useful for developing efficient photonic devices.

Keywords—Borotellurite glass, structural properties, nanoparticles, ESR analysis (key words)

I. INTRODUCTION

Glasses are unique materials that have been benefitted years ago. Glass has been extensively investigated due to its high temperature resistance, high dielectric constant and good mechanical strength [1-3]. Furthermore, glass is not only known because of its excellent thermal and mechanical properties [4] but also of its potential in becoming a good medium for luminescence due to its enhancement of absorption efficiency of rare earth ions [5,6]. This excellent property has motivated researcher to further the study in optimizing luminescent thus develop to a more suitable material specifically in the development of laser and solid state device. To this day, rare earth ions (REIs) doped glass materials turn out to be an interesting topic in luminescence material.

Dehelean et al. [7] acknowledged that REIs doped glasses exhibit high brightness and improved efficiency thus are very prospective for broad array of technological applications [8]. Trivalent Eu³⁺ ion is a well-known activator with simple electronic transitions [9]. The Eu³⁺ ions possess prominent laser emissions in the orange or red region [10] and narrow band emission [11] with longer lifetime. Both synthesis and characterizations of REIs doped binary and ternary glasses are intensively performed due to its advantages in [12]. Combination of TeO₂ and B₂O₃ is an intrinsically interesting subject of study due to the stability of borotellurite (BT) compound [13]. BT glasses have promising optical materials due to its high refractive index, low phonon energy and higher transparency in the infrared spectrum [14,15]. Further, BT glass needs another element known as glass modifier such as alkaline earth metal oxide and transition metal oxide [16] to improve the network connectivity then produce a stable BT glass with increasing non-bridging oxygen (NBO)[17]. The substitution of network modifier such as MgO would produce stable BT glass [18]. The addition of such modifiers would modify and increase the NBO, consequently open up the glass structure [19]. BT glass is emerged as a favorable host for accommodating large amount of REIs. Maheshvaran et al. [20] reported that Eu3+ doped BT glass has potential for red-emitting glass due to excellent luminescent properties and can be used as optical materials. Hence, Eu³⁺ doped glass has drawn much interest in technological applications especially for optoelectronic materials [21-23]. Luminescence properties of BT glass is one of the important characteristic which can be used as a strong indicator to hunt for a new functional material. Incorporation of nanoparticles in BT glass shows remarkable changes in optical properties of lanthanides [24]. Synthesis and characterization of magnetic Mn₃O₄ NPs have ever-growing interest. The incorporation of Mn₃O₄ in glass has paramount importance due to its excellent physical and structural properties [25]. However, not many efforts are dedicated

are performed and reported.

towards the incorporation of europium in this glass system. This motivated an investigation of the REIs doped glasses containing Mn₃O₄ NPs. In this paper, a new series of Mn₃O₄ NPs embedded BT glass doped with different concentrations of

II. EXPRIMENTAL

trivalent europium have been prepared and its structural studies

Raw materials for the glass preparation of magnesium BT glasses embedded Mn₃O₄ NPs are commercially obtained in powder form. Analytical grade glass constituents of B₂O₃ (purity 98.94%), Te₂O (purity 99%), MgO (purity 99%), Eu₂O₃ (purity 99%) and Mn₃O₄ (purity 99.7%) in powder form are well-mixed with nominal glass compositions (59-x)TeO₂-30B₂O₃-10MgO-xEu₂O₃-1Mn₃O₄ (where x = 0.5, 1.0, 1.5 and 2.0 mol %). Required proportion of B₂O₃, Te₂O, MgO, Eu₂O₃ and Mn₃O₄ powders are weighed using an electronic balance (Precisa 205 A SCS). Then the total of batched mixture is placed in a platinum crucible before being melted at 900 °C for 1 hrs in an electric furnace. The melt is then transferred to an annealing furnace and poured into the brass mould before being annealed at 350 °C for 3 hrs to reduce the mechanical and thermal stress that causes embrittlement [26]. The melt is then cooled down to room temperature. Synthesized glasses are characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Electron Spin Resonance (ESR) measurements.

III. RESULT AND DISCUSSION

Fig. 1 shows XRD patterns of the synthesized glass sample. The XRD pattern of the glass recorded in the range of $10^{\circ} \le \theta \le$ 90° as shown in Fig. 1.

A broad hump is exhibits in the range of 15°-40°, which confirms the characteristic of amorphous nature of the glass [27, 28]. Conversely, peaks that indicate the existence of Mn₃O₄ NPs were hardly detected by XRD due to its fairly low concentration compared with host and modifier.

FTIR spectra of prepared glasses in the range of 400 cm⁻¹ -4000 cm⁻¹ are shown in Fig. 2 and the corresponding peak positions with the assignments of vibrational modes are listed in Table 1.

The FTIR spectra in Fig. 2 clearly comprise of main sharp distinctive and characteristic absorption bands. These bands are due to main BT network group vibration. From Fig. 2, it is noticed that the peak at 665-682 cm⁻¹ is referred to the TeO₄ tbp group in the present glass [29]. It is observed that, as the amount of Eu₂O₃ is increased, the peak of TeO₄ tbp is displaced from 665 cm⁻¹ toward a higher wavenumber and reaches 682 cm⁻¹ at 1.0 mol % of Eu₂O₃. This is attributed to the formation of more TeO₃ units at the expense of TeO₄ units [30]. Formation of large number of Te-O bonds in TeO3 units has strengthened the glass network. However, as the amount of Eu₂O₃ is beyond 1.0 mol %, the vibration peaks slightly shifted toward a lower wavenumber. This shift might indicate structural alteration.

Electron Spin Resonance (ESR) studies of Eu³⁺ doped BT glasses embedded with various concentrations of Eu₂O₃ have been investigated and represented in Fig. 3 at room temperature. ESR is used to detect paramagnetic behaviour and to provide information on the coordination of isolated sites [35]. The calculated values of magnetic parameters such as resonance magnetic field (H_r) , peak-to-peak line width (ΔH_{pp}) and g value which can be obtained from ESR spectra are presented in Table 2.

For various concentrations of Eu₂O₃, it is observed that the intensity of the signal g value at 4.3 is more intense compared to g value that close to 2. It pointed out that Mn^{2+} center is present dominantly in a rhombic environment. Additionally, a positive shift in the g value as concentration of Eu₂O₃ increase would indicate that the Mn²⁺ is in a covalent environment [36]. The value of g = 1.89 is the minimum amount where the bond is in covalence environment as shown by BTME1.0Mn sample. Meanwhile, variations of line width (ΔH_{pp} = peak to peak distance) with concentration of Eu₂O₃ is another sensitive indicator of changes in the environment of Mn ions [37]. Overall, the ESR strongly indicates that Mn²⁺ centers are in asymmetric sites and the nature of the bonding is dominantly covalent bond.

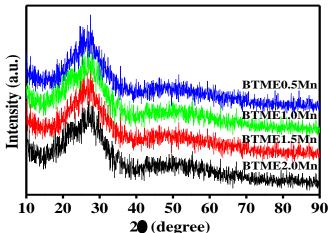


Fig. 1 X-Ray Diffraction (XRD) patterns of glass system

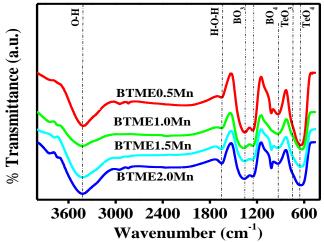
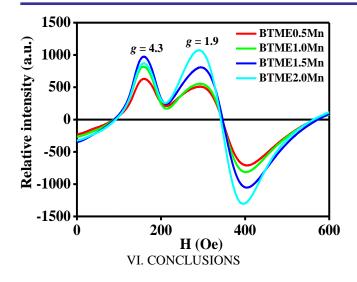



Fig.2. Fourier Transform Infrared (FTIR) spectra of the prepared glass system

The structural and magnetic properties of Eu³⁺:Mn doped BT glass has successfully been studied and prepared by melt Fig.3. Electron Spin Resonance (ESR) spectra of prepared glass samples

quenching technique. The amorphous nature of glasses is confirmed by XRD. The FTIR spectra are strongly influenced by the variations of Eu_2O_3 concentration. For the ESR spectra, manganese ions exhibit two resonance signals at g values 1.9 and 4.3. ESR spectra strongly indicated that Mn^{2+} centers were in asymmetric sites (octahedral) and the nature of the bonding is dominantly covalent type.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support from RMC, UTM through the research grant (VOTE: 4F752, 4L657, 16H41 and 13J81) and thank Faculty of Science UTM for providing the measurement facilities are gratefully acknowledged.

Glass code	Assignments IR Band (cm ⁻¹)						Ref.
	TeO ₄ (tbp)	TeO ₃ (tp)	BO ₄ unit	BO ₃ unit	Н-О-Н	ОН	
B ₂ O ₃ -TeO ₂ -ZnO	643	725	921	1355	-	-	[31]
B ₂ O ₃ -TeO ₂ -MgO-K ₂ O	678	1082	1382	1745	3432	-	[32]
B ₂ O ₃ -TeO ₂ -Al ₂ O ₃	643	664	930	1360	-	-	[33]
TeO_2 - B_2O_3 - ZnO - V_2O_5	643	660	940	1355	-	-	[34]
BTME0.5Mn	648	685	933	1259	1734	3422	
BTME1.0Mn	651	681	936	1259	1738	3425	
BTME1.5Mn	639	678	936	1259	1741	3428	
BTME2.0Mn	638	676	936	1259	1742	3420	

TABLE 1. The IR peak positions and band assignments of the present glass systems

TABLE 2. Magnetic properties of prepared BT glasses at various concentration of Eu₂O₃

Glass code	Magnetic parameters					
	g value	H _r (Oe)	$\Delta H_{\rm pp}$ (Oe)			
BTME0.5Mn	1.91	218	137			
BTME1.0Mn	1.89	226	136			
BTME1.5Mn	1.90	225	138			
BTME2.0Mn	1.98	211	138			

REFERENCES

- Sahar, M.R, Fizik Bahan Amorfus, (1st ed.),UTM Skudai:DBP, 2000
- [2] Meyer, K, Characterization of the Structure of Binary Zinc Ultraphosphate Glasses by Infrared and Raman Spectroscopy, Journal of Non-Crystalline Solids, vol. 209, pp. 227-239,1997.
- [3] Gandhi, Y., Kityk, I. V., Brik, M.G., Rao, P.R., Veeraiah, N, Influence of tungsten on the emission features of Nd³⁺, Sm³⁺ and Eu³⁺ ions in ZnF₂-WO₃-TeO₂ glasses, Journal Alloys Compound, vol. 508, pp.278-291, 2010.
- [4] Stambouli, W., Elhouichet, H., Gelloz, B., Fe, M, Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics, Journal Luminescence, vol. 138, pp. 201-208, 2013.
- [5] Khafagy, A.H., El-Adawy, A.A., Higazy, A.A., El-Rabaie, S., Eid, A.S, The glass transition temperature and infrared absorption spectra of: (70-x)TeO₂+15B₂O₃+15P₂O₅ +xLi₂O glasses, Journal Non-Crystalline Solids, vol. 354, pp.1460-1466, 2008.
- [6] Neov, S., Kozhukharov, V., Gerasimova, I., Krezhov, K., Sidzhimov, B, A model for structural recombination in tellurite glasses, Journal Physics C: Solid State Physics, vol. 12, pp.715-718, 1979.
- [7] Dehelean, A., Culea, E. Magnetic behaviour of europium ions in some tellurite glasses obtained by the sol-gel method. Journal Physics Conference Series 182, pp.12064, 2009.
- [8] Sazali, E.S., Sahar, M.R., Ghoshal, S.K, Influence of Europium Ion on Structural, Mechanical and Luminescence Behavior of Tellurite Nanoglass. Journal Physics Conference Series 431, pp. 12008, 2013.

ISSN: 2278-0181

- [9] Akamatsu, H., Fujita, K., Nakatsuka, Y., Murai, S., Tanaka, K. Magneto-optical properties of Eu²⁺ -containing aluminoborosilicate glasses with ferromagnetic interactions, Optical Mater. vol. 35, pp. 1997-2000, 2013.
- [10] Bo., P., Teturo, I., The Fluorescence Properties of Eu³⁺ in Various Glasses and the Energy Transfer Between Eu³⁺ and Sm³⁺ in Borosilico-phosphate Glass, Review of Laser Engineering. vol. 22, pp.16-27,1994.
- [11] Rehana, P., Ravi, O., Ramesh, B., Dillip, G.R, Photoluminescence studies of Eu³⁺ ions doped calcium zinc niobium borotellurite glasses, Advance Mater. Letter, vol. 7, pp.170-174, 2016.
- [12] Arunkumar, S., Marimuthu, K, Structural and luminescence studies on Eu³⁺: B₂O₃-Li₂O-MO-LiF (M=Ba, Bi2, Cd, Pb, Sr₂ and Zn) glasses, Journal Luminescence, vol.139, pp.6-15, 2013.
- [13] Elkhoshkhany, N., El-Mallawany, R, Optical and kinetics parameters of lithium boro-tellurite glasses, Ceramic International. vol. 41, pp. 3561-3567, 2015.
- [14] Sudhakar Reddy, B., Hwang, H.-Y., Jho, Y.-D., Seung Ham, B. Optical properties of Nd³⁺-doped and Er ³⁺-Yb³⁺ codoped borotellurite glass for use in NIR lasers and fiber amplifiers, Ceramic International. vol. 41, pp.3684-3692, 2015.
- [15] Lakshminarayana, G., Kaky, K.M., Baki, S.O., Lira, A, Physical,structural, thermal, and optical spectroscopy studies of TeO₂-B₂O₃-MoO₃-ZnO-R₂O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses, Journal Alloys Compound, vol. 690, pp. 799-816, 2017.
- [16] Said Mahraz, Z.A., Sahar, M.R., Ghoshal, S.K, Band gap and polarizability of boro-tellurite glass: Influence of erbium ions, Journal Molecule Structure, vol. 1072, pp.238-241, 2014.
- [17] Gaafar, M.S., Marzouk, S.Y., Zayed, H.A., Soliman, L.I., Serag El-Deen, A.H, Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides, Current Applied Physics, vol. 13, pp.152-158, 2013.
- [18] K. Doweidar, H., El-Damrawi, G., Mansour, E., Fetouh, R.E, Structural role of MgO and PbO in MgO-PbO-B2 O3 glasses as revealed by FTIR; A new approach, J. Non-Crystalline Solids, vol. 358, pp 941-946, 2012.
- [19] Smith, C.E., Brow, R.K. The properties and structure of zinc magnesium phosphate glasses. Journal Non-Crystalline Solids, vol. 390, pp 51-58, 2014.
- [20] Maheshvaran, K., Marimuthu, K, Concentration dependent Eu³⁺ doped boro-tellurite glasses-Structural and optical investigations, Journal Luminescence,vol. 132, pp. 2259-2267, 2012.
- [21] Babu, A.M., Jamalaiah, B.C., Suhasini, T., Rao, T.S., Moorthy, L.R. Optical properties of Eu³⁺ ions in lead tungstate tellurite glasses. Solid State Science, vol. 13, pp. 574-578, 2011.
- [22] Maheshvaran, K., Veeran, P.K., Marimuthu, K., Structural and optical studies on Eu³⁺ doped boro-tellurite glasses. Solid State Sci. 2013, 17, 54–62.
- [23] Rehana, P., Ravi, O., Ramesh, B., Dillip, G.R. Photoluminescence studies of Eu³⁺ ions doped calcium zinc niobium borotellurite glasses. Advance Material Letter, vol. 7, 170-174, 2016.
- [24] Ashur Said Mahraz, Z., Sahar, M.R., Ghoshal, S.K., Dousti, M.R., Amjad, R.J, Silver nanoparticles enhanced luminescence of Er³⁺ ions in boro-tellurite glasses, Mater Letter, vol. 112, pp.136-138, 2013
- [25] Manzan, R.S., Donoso, J.P., Magon, C.J., Silva, I. d'Anciães A, Optical and Structural Studies of Mn²⁺ Doped SbPO₄ -ZnO-PbO Glasses, Journal of the Brazilian Chemical Society vol. 26, pp. 2607-2614, 2015
- [26] N.M. Yusoff, M.R. Sahar, The incorporation of silver nanoparticles in samarium doped magnesium tellurite glass: Effect on the characteristic of bonding and local structure, Physica B,vol. 470-471,pp. 6-14, 2015.
- [27] S.Y. Moustafa, M.R. Sahar, S.K. Ghoshal, Comprehensive thermal and structural characterization of antimony-phosphate glass Results in Physics vol.7 pp.1396–1411, 2017.
- [28] Widanarto, W., Sahar, M.R., Ghoshal, S.K., Arifin, R., Rohani, M.S. Hamzah, K, Effect of Natural Fe₃O₄ Nanoparticles on Structural and Optical Properties of Er³⁺ doped tellurite Glass, Journal of Magnetism and Magnetic Materials, vol. 326, pp. 123-128, 2013.

- [29] R.S. Kundu Sunil Dhankhar, R. Punia Kirti Nanda N. Kishore, Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses, Journal of Alloys and Compounds, vol. 587, pp. 66-73, 2014.
- [30] Swapna, G. Upender & M. Prasad, Raman, FTIR, thermal and optical properties of TeO₂-Nb₂O₅-B₂O₃-V₂O₅ quaternary glass system journal of Taibah, University for Science, vol. 11, pp. 583-592, 2017.
- [31] P.Gayathri Pavani, K.Sadhana, V.Chandra Mouli, Optical, physical and structural studies of boro-zinc tellurite glasses Physica B: Condensed Matter, vol. 406, pp. 1242-1247, 2011.
- [32] K.Selvaraju, K.Marimuthu ,Structural and spectroscopic studies on concentration dependent Er³⁺ doped boro-tellurite glasses, Journal of Luminescence, vol. 132, pp.1171-1178, 2012.
- [33] Nirmal Kaur Atul Khanna, Structural characterization of borotellurite and alumino-borotellurite glasses, Journal of Non-Crystalline Solids, vol. 404, pp.116-123, 2014
- [34] M. Anand Pandarinath, G. Upender, K. Narasimha Rao, D. Suresh Babu, Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO Journal of Non-Crystalline Solids, vol. 433, pp. 60-67, 2016.
- [35] Naseri, M.G., Saion, E.B., Hashim, M., Shaari, A.H., Ahangar, H.A, Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Communication, vol. 151, pp. 1031-1035, 2011.
- [36] Nicolae, E., Pascuta, P., Pustan, M., Tamas-gavrea, D.R, Effects of Eu:Ag codoping on structural, magnetic and mechanical properties of lead tellurite glass ceramics, J. Non-Crystalline Solids, vol. 408, pp. 18-25, 2015.
- [37] Wang, M.-C., Cheng, H.-Z., Lin, H.-J., Wang, C.-F., Hsi, C.-S, Crystallization and magnetic properties of a 10Li₂O-9MnO₂-16Fe₂O₃-25CaO-5P₂O₅-35SiO₂ glass, Material Chemistry Physics, vol. 140, pp.16-23, 2013.