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1. INTRODUCTION

The problem of best coapproximation was first introduced by Franchetti and Furi [2]

to study some characteristic properties of real Hilbert spaces and was followed up by

Papini and Singer [12]. Subsequently, Geetha S.Rao and coworkers have developed this

theory to a considerable extent [4,5,6,7,8,9]. This theory is largely concerned with the

questions of existence, uniqueness and characterization of best coapproximation. Newman

and Shapiro [11] studied the problems of strongly unique best approximation in the space of

continuous functions under supremum norm. Geetha S.Rao, et al. [3,10] established many

significant results in strongly unique best coapproximation in normed linear spaces. The

notion of strongly unique best coapproximation in the context of linear 2-normed spaces is

introduced in this paper. Section 2 provides some important definitions and results that are

required. Sections 3 delineates some fundamental properties of the set of strongly unique

best coapproximation with respect to 2-norm.

2. PRELIMINARIES

Definition 2.1. [ 1 ] Let X be a linear space over real numbers with dimension greater

than one and let ‖ ., . ‖ be a real-valued function on X × X satisfying the following

properties for every x, y, z in X .
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(i) ‖ x, y ‖= 0 if and only if x and y are linearly dependent,

(ii) ‖ x, y ‖=‖ y, x ‖,

(iii) ‖ αx, y ‖= |α| ‖ x, y ‖ , where α is a real number,

(iv) ‖ x, y + z ‖≤‖ x, y ‖ + ‖ x, z ‖ .

Then ‖ ., . ‖ is called a 2-norm and the linear space X equipped with the 2-norm is called

a linear 2-normed space. It is clear that 2-norm is non negative.

The following important property of 2-norm was established by Cho [1].

Theorem 2.2. [ 1 ] For any points a, b ∈ X and any α ∈ R ,

‖ a, b ‖=‖ a, b + αa ‖ .

Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X . An element

g0 ∈ G is called a best coapproximation to x ∈ X from G if for every g ∈ G ,

‖ g − g0, k ‖≤‖ x− g, k ‖, for every k ∈ X \ [G, x],

where [G, x] represents a linear space spanned by elements of G and x .

The definition of strongly unique best coapproximation in the context of linear 2-

normed space is introduced here for the first time as follows.

Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X . An element

g0 ∈ G is called a strongly unique best coapproximation to x ∈ X from G, if there exists

a constant t > 0 such that for every g ∈ G ,

‖ g − g0, k ‖≤‖ x− g, k ‖ −t ‖ x− g0, k ‖, for every k ∈ X \ [G, x].

The set of all elements of strongly unique best coapproximations to x ∈ X from G is

denoted by TG(x) .

The subset G is called an existence set if TG(x) contains at least one element for

every x ∈ X . G is called a uniqueness set if TG(x) contains at most one element for

every x ∈ X . G is called an existence and uniqueness set if TG(x) contains exactly one

element for every x ∈ X .

For the sake of brevity, the terminology subspace is used instead of a linear 2-normed

subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real

linear 2-normed spaces and all subsets and subspaces considered in this paper are existence

subsets and existence subspaces with respect to strongly unique best coapproximation.
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3. SOME FUNDAMENTAL PROPERTIES OF TG(x)

Some basic properties of strongly unique best coapproximation are obtained in the

following Theorems.

Theorem 3.1. Let G be a subset of a linear 2-normed space X and x ∈ X . Then the

following statements hold.

(i) TG(x) is closed if G is closed.

(ii) TG(x) is convex if G is convex.

(iii) TG(x) is bounded.

Proof. (i). Let G be closed.

Let {gm} be a sequence in TG(x) such that gm → g̃ .

To prove that TG(x) is closed, it is enough to prove that g̃ ∈ TG(x) .

Since G is closed, {gm} ∈ G and gm → g̃ , we have g̃ ∈ G . Since {gm} ∈ TG(x) ,

we have

‖ g − gm, k ‖≤‖ x− g, k ‖ −t ‖ x− gm, k ‖, for every k ∈ X\[G, x]

and for some t > 0

⇒ ‖ g − gm + g̃ − g̃, k ‖≤‖ x− g, k ‖ −t ‖ x− gm, k ‖

⇒ ‖ g − g̃, k ‖ − ‖ gm − g̃, k ‖≤‖ x− g, k ‖ −t ‖ x− gm, k ‖, for every g ∈ G (3.1)

Since gm → g̃ , gm − g̃ → 0 . So ‖ gm − g̃, k ‖→ 0 , as 0 and k are linearly

dependent.

Therefore, it follows from (3.1) that

‖ g − g̃, k ‖≤‖ x− g, k ‖ −t ‖ x− g̃, k ‖,

for every g ∈ G and for some t > 0 .

Thus g̃ ∈ TG(x) . Hence TG(x) is closed.

(ii). Let G be convex, g1, g2 ∈ TG(x) and α ∈ (0, 1) . To prove that αg1 + (1− α)g2 ∈
TG(x) ,

let k ∈ X \ [G, x] .

Then
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‖ g − (αg1 + (1− α)g2, k ‖

= ‖ α(g − g1) + (1− α)(g − g2), k ‖

≤ α ‖ g − g1, k ‖ +(1− α) ‖ g − g2, k ‖

≤ α ‖ x− g, k ‖ −αt ‖ x− g1, k ‖

+(1− α) ‖ x− g, k ‖ −(1− α)t ‖ x− g2, k ‖,

for every g ∈ G and for some t > 0.

= ‖ x− g, k ‖ −t(‖ αx− αg1, k ‖ + ‖ (1− α)x− (1− α)g2, k ‖)

≤ ‖ x− g, k ‖ −t ‖ αx− αg1 + (1− α)x− (1− α)g2, k ‖

= ‖ x− g, k ‖ −t ‖ x− (αg1 + (1− α)g2), k ‖ .

Thus αg1 + (1− α)g2 ∈ TG(x) . Hence TG(x) is convex.

(iii). To prove that TG(x) is bounded, it is enough to prove for arbitrary g0, g̃0 ∈ TG(x)

that ‖ g0 − g̃0, k ‖< c for some c > 0 , since ‖ g0 − g̃0, k ‖< c implies that

sup
g0,g̃0∈TG(x)

‖ g0, g̃0, k ‖ is finite and hence the diameter of TG(x) is finite.

Let g0, g̃0 ∈ TG(x) . Then there exists a constant t > 0 such that for every g ∈ G

and k ∈ X \ [G, x],

‖ g − g0, k ‖≤‖ x− g, k ‖ −t ‖ x− g0, k ‖

and

‖ g − g̃0, k ‖≤‖ x− g, k ‖ −t ‖ x− g̃0, k ‖ .

Now,

‖ x− g0, k ‖ ≤ ‖ x− g, k ‖ + ‖ g − g0, k ‖

≤ 2 ‖ x− g, k ‖ −t ‖ x− g0, k ‖ .

Thus ‖ x− g0, k ‖≤ 2
1+t ‖ x− g, k ‖, for every g ∈ G .

Hence ‖ x− g0, k ‖≤ 2
1+td, where d = inf

g∈G
‖ x− g, k ‖ .

Similarly, ‖ x− g̃0, k ‖≤
2

1 + t
d.

Therefore, it follows that

‖ g0 − g̃0, k ‖ ≤ ‖ g0 − x, k ‖ + ‖ x− g̃0, k ‖

≤ 4
1 + t

d

= C.

Whence TG(x) is bounded.
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Let X be a linear2-normed space, x ∈ X and [x] denote the set of all scalar

multiplications of x

i.e., [x] = {αx : α ∈ R} .

Theorem 3.2. Let G be a subset of a linear 2-normed space X, x ∈ X and k ∈
X \ [G, x] . Then the following statements are equivalent for every y ∈ [k] .

(i) g0 ∈ TG(x) .

(ii) g0 ∈ TG(x + y) .

(iii) g0 ∈ TG(x− y) .

(iv) g0 + y ∈ TG(x + y) .

(v) g0 + y ∈ TG(x− y) .

(vi) g0 − y ∈ TG(x + y) .

(vii) g0 − y ∈ TG(x− y) .

(viii) g0 + y ∈ TG(x) .

(ix) g0 − y ∈ TG(x) .

Proof. The proof follows immediately by using Theorem 2.2.

Theorem 3.3. Let G be a subspace of a linear 2-normed space X, x ∈ X and

k ∈ X \ [G, x] . Then g0 ∈ TG(x) ⇔ g0 ∈ TG(αmx + (1 − αm)g0), for all α ∈ R

and m = 0, 1, 2, · · · .

Proof. Claim: g0 ∈ TG(x) ⇔ g0 ∈ TG(αx+(1−α)g0) , for every α ∈ R. Let g0 ∈ TG(x) .

Then

‖ g − g0, k ‖≤‖ x− g, k ‖ −t ‖ x− g0, k ‖ , for all g ∈ G and for some t > 0 .

⇒ ‖ αg − αg0, k ‖≤‖ αx− αg, k ‖ −t ‖ αx− αg0, k ‖, for all g ∈ G.

⇒ ‖ α

(
(α− 1)g0 + g

α

)
− αg0, k ‖≤‖ αx− α

(
(α− 1)g0 + g

α

)
, k ‖

−t ‖ αx− αg0, k ‖, for all g ∈ G and α 6= 0, since
(α− 1)g0 + g

α
∈ G.

⇒ ‖ g − g0, k ‖≤‖ αx + (1− α)g0 − g, k ‖ −t ‖ αx + (1− α)g0 − g0, k ‖

⇒ g0 ∈ TG(αx + (1− α)g0, when α 6= 0.

If α = 0 , then it is clear that g0 ∈ TG(αx + (1− α)g0).
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The converse is obvious by taking α = 1 . Hence the claim is true.

By repeated application of the claim the result follows.

Corollary 3.4. Let G be a subspace of a linear 2-normed space X, x ∈ X and

k ∈ X \ [G, x] . Then the following statements are equivalent for every y ∈ [k], α ∈ R

and m = 0, 1, 2, · · ·

(i) g0 ∈ TG(x) .

(ii) g0 ∈ TG(αmx + (1− αm)g0 + y).

(iii) g0 ∈ TG(αmx + (1− αm)g0 − y).

(iv) g0 + y ∈ TG(αmx + (1− αm)g0 + y).

(v) g0 + y ∈ TG(αmx + (1− αm)g0 − y).

(vi) g0 − y ∈ TG(αmx + (1− αm)g0 + y).

(vii) g0 − y ∈ TG(αmx + (1− αm)g0 − y).

(viii) g0 + y ∈ TG(αmx + (1− αm)g0).

(ix) g0 − y ∈ TG(αmx + (1− αm)g0).

Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.

Theorem 3.5. Let G be a subset of a linear 2-normed space X, x ∈ X and

k ∈ X \ [G, x] . Then g0 ∈ TG(x) ⇔ g0 ∈ TG+[k](x).

Proof. The proof follows from simple application of Theorem 3.2.

A corollary similar to that of Corollary 3.4 is established next as follows:

Corollary 3.6. Let G be a subspace of a linear 2-normed space X, x ∈ X and

k ∈ X \ [G, x] . Then the following statements are equivalent for every y ∈ [k], α ∈ R

and m = 0, 1, 2, · · ·

(i) g0 ∈ TG+[k](x) .

(ii) g0 ∈ TG+[k](αmx + (1− αm)g0 + y).

(iii) g0 ∈ TG+[k](αmx + (1− αm)g0 − y) .

(iv) g0 + y ∈ TG+[k](αmx + (1− αm)g0 + y) .
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(v) g0 + y ∈ TG+[k](αmx + (1− αm)g0 − y) .

(vi) g0 − y ∈ TG+[k](αmx + (1− αm)g0 + y) .

(vii) g0 − y ∈ TG+[k](αmx + (1− αm)g0 − y) .

(viii) g0 + y ∈ TG+[k](αmx + (1− αm)g0) .

(ix) g0 − y ∈ TG+[k](αmx + (1− αm)g0) .

Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.

Proposition 3.7. Let G be a subset of a linear 2-normed space X, x ∈ X, k ∈
X \ [G, x] and 0 ∈ G . If g0 ∈ TG(x), then there exists a constant t > 0 such that

‖ g0, k ‖≤‖ x, k ‖ −t ‖ x− g0, k ‖ .

Proof. The proof is obvious.

Proposition 3.8. Let G be a subset of a linear 2-normed space X, x ∈ X and

k ∈ X \ [G, x] . If g0 ∈ TG(x) , then there exists a constant t > 0 such that for all

g ∈ G,

||x− g0, k|| ≤ 2||x− g, k|| − t||x− g0, k||.

Proof. The proof is trivial.

Theorem 3.9. Let G be a subspace of a linear 2-normed space X and x ∈ X . Then

the following statements hold.

(i) TG(x + g) = TG(x) + g, for every g ∈ G .

(ii) TG(αx) = αTG(x), for every α ∈ R .

Proof. (i). Let g̃ be an arbitrary but fixed element of G .

Let g0 ∈ TG(x) . It is clear that g0 + g̃ ∈ TG(x) + g̃ .

To prove that TG(x)+ g̃ ⊆ TG(x+ g̃) , it is enough to prove that g0 + g̃ ∈ TG(x+ g̃) .

Now,

‖ g + g̃ − g0 − g̃, k ‖≤‖ x− g, k ‖ −t ‖ x− g0, k ‖, for all g ∈ G

and for some t > 0.

⇒ ‖ g + g̃ − (g0 + g̃), k ‖≤‖ x + g̃ − (g + g̃), k ‖ −t ‖ x + g̃ − (g0 + g̃), k ‖,
for all g ∈ G.
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⇒ g0 + g̃ ∈ TG(x + g̃), since g − g̃ ∈ G.

Conversely, let g0 + g̃ ∈ TG(x + g̃) .

To prove that TG(x + g̃) ⊆ TG(x) + g̃ , it is enough to prove that g0 ∈ TG(x) .

Now,

‖ g − g0, k ‖ = ‖ g + g̃ − (g0 + g̃), k ‖

≤ ‖ x + g̃ − (g + g̃), k ‖ −t ‖ x + g̃ − (g0 + g̃), k ‖,

for all g ∈ G and for some t > 0.

⇒ g0 ∈ TG(x). Thus the result follows.

(ii). The proof is similar to that of (i).

Remark 3.10. Theorem 3.9 can be restated as

TG(αx + g) = αTG(x) + g, for every g ∈ G.

121

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60047



REFERENCES

[1] Y.J.Cho, “Theory of 2-inner product spaces”, Nova Science Publications, New York,

1994.

[2] C.Franchetti and M.Furi, Some characteristic properties of real Hilbert spaces, Rev.

Roumaine Math. Pures. Appl., 17 (1972), 1045-1048.

[3] Geetha S.Rao and S.Elumalai, Semicontinuity properties of operators of strong best

approximation and strong best coapproximation, “Proc. Int. Conf. on Constructive

Function Theory”, Varna, Bulgaria (1981), 495-498.

[4] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear

spaces with property (Λ), Math. Today, 2 (1984), 33-40.

[5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation

Theory, V.C.K.Chui, L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York,

(1986), 535-538.

[6] Geetha S.Rao and S.Muthukumar, Semicontinuity properties of the best

coapproximation operator, Math. Today, 5 (1987), 37-48.

[7] Geetha S.Rao and K.R.Chandrasekaran, Characterization of elements of best

coapproximation in normed linear spaces, Pure Appl. Math. Sci., 26 (1987), 139-147.

[8] Geetha S.Rao and M.Swaminathan, Best coapproximation and Schauder bases in

Banach Spaces, Acta Scient. Math. Szeged, 54 (1990), 339-354.

[9] Geetha S.Rao and K.R.Chandrasekaran, Hahn-Banach extensions, best

coapproximation and related results, in Approximation Theory and its Applications,

Geetha S.Rao (ed.), New Age International Publishers, New Delhi, 1996, 51-58.

[10] Geetha S.Rao and R.Saravanan, Strongly unique best coapproxi-mation,

kyungpook Math. J., 43 (2003), 000-000.

[11] D.J.Newman and H.S.Shapiro, Some theorems on Chebyshev approximation, Duke

Math. J., 30 (1963), 673-684.

[12] P.L.Papini and I.Singer, Best coapproximation in normed linear spaces, Mh. Math.,

88 (1979), 27-44.

122

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60047


