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1. INTRODUCTION

The problem of best coapproximation was first introduced by Franchetti and Furi [2]
to study some characteristic properties of real Hilbert spaces and was followed up by
Papini and Singer [12]. Subsequently, Geetha S.Rao and coworkers have developed this
theory to a considerable extent [4,5,6,7,8,9]. This theory is largely concerned with the
questions of existence, uniqueness and characterization of best coapproximation. Newman
and Shapiro [11] studied the problems of strongly unique best approximation in the space of
continuous functions under supremum norm. Geetha S.Rao, et al. [3,10] established many
significant results in strongly unique best coapproximation in normed linear spaces. The
notion of strongly unique best coapproximation in the context of linear 2-normed spaces is
introduced in this paper. Section 2 provides some important definitions and results that are
required. Sections 3 delineates some fundamental properties of the set of strongly unique

best coapproximation with respect to 2-norm.

2. PRELIMINARIES

Definition 2.1. [ 1 ] Let X be a linear space over real numbers with dimension greater
than one and let || .,. | be a real-valued function on X x X satisfying the following

properties for every z,y,z in X .
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(i) |l z,y]|=0 if and only if x and y are linearly dependent,

(i) lzyl=ly=zl,

(i) || az,y||=|a| || =,y | , where « is a real number,

(V) [y +z <l zyll+I[zz].
Then || .,. || is called a 2-norm and the linear space X equipped with the 2-norm is called
a linear 2-normed space. It is clear that 2-norm is non negative.

The following important property of 2-norm was established by Cho [1].
Theorem 2.2. [ 1] For any points a,b € X and any a € R,
la,b =] ab+aall.

Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X . An element

go € G is called a best coapproximation to z € X from G if for every g € G,
19— g0,k <[z =g,k ||, forevery k € X \ [G,z],
where [G,x] represents a linear space spanned by elements of G and x .

The definition of strongly unique best coapproximation in the context of linear 2-

normed space is introduced here for the first time as follows.

Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X . An element
go € G is called a strongly unique best coapproximation to x € X from G, if there exists

a constant ¢ > 0 such that for every g € G,
l9—go0,klI<llz—g. k| —t|z—gokl, forevery k€ X \ [G,x].

The set of all elements of strongly unique best coapproximations to = € X from G is

denoted by Tg(x) .

The subset G is called an existence set if Tg(z) contains at least one element for
every © € X . G is called a uniqueness set if Tg(x) contains at most one element for
every * € X . G is called an existence and uniqueness set if T (z) contains exactly one

element for every =z € X .

For the sake of brevity, the terminology subspace is used instead of a linear 2-normed
subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real
linear 2-normed spaces and all subsets and subspaces considered in this paper are existence

subsets and existence subspaces with respect to strongly unique best coapproximation.
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3. SOME FUNDAMENTAL PROPERTIES OF T (x)

Some basic properties of strongly unique best coapproximation are obtained in the

following Theorems.

Theorem 3.1. Let G be a subset of a linear 2-normed space X and x € X . Then the

following statements hold.

(i) Te(x) is closed if G is closed.
(ii) Tg(x) is convex if G is convex.

(iii) Te(z) is bounded.

Proof. (i). Let G be closed.

Let {gm} be asequence in Tg(z) such that g, — g .
To prove that Tg(z) is closed, it is enough to prove that § € Tg(x) .

Since G is closed, {gn} € G and g,y — g, we have g € G . Since {gn} € Tg(x),

we have

| 9= gm,k[I<|x—g,k]l —t|| z — gm,k ||, for every k € X\[G, ]
and for some ¢t > 0
= lg—9gm+ti-gkl<lz—gkll—t]z—gmkl|
= lg=g.kl=llgm—gkl<lz—gk| —t|z—gmkl, foreveryge G (3.1)
Since gm — J, Gmn—G — 0. So || gm — g,k ||— 0, as 0 and k are linearly
dependent.

Therefore, it follows from (3.1) that

|| gfgak ”SH :L'fg7k H —t || mfgak ”7
for every g € G and for some ¢ >0 .
Thus g € Tg(z) . Hence Tg(x) is closed.

(ii). Let G be convex, ¢1,92 € Tg(xz) and « € (0,1) . To prove that ag; + (1 — a)gs €
Te(z) ,

let ke X\ [G,z].
Then
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g = (agr+ (1 —a)ga, k|

| alg—g1)+ (1 —a)(g—g2) k|

< allg—guk[[+(0—a) |l g— g2,k ||
< afz—gk|-at]z—gk|
Tl -a)z—g k| -1 —-a)t|z—g2kl|,
for every g € G and for some ¢t > 0.
— Ja—gk |t az —agk | + | (1 - a)a— (1 - a)gk )
< gk | —t] oz —ag +(1—a)z — (1 - a)gn,k |

[z =gk | =t]z—(agi+(1—-a)g)kl.
Thus ag; + (1 — a)g2 € Te(z) . Hence Tg(x) is convex.

To prove that Tg(x) is bounded, it is enough to prove for arbitrary go,go € Ta(x)
that || go — go, %k ||< ¢ for some ¢ > 0, since || go — Jo,k |[|< ¢ implies that

sup || 9o, Go, k || is finite and hence the diameter of T (x) is finite.
90,90€Tc (x)

Let go,G0 € Te(x) . Then there exists a‘constant t > 0 such that for every g € G
and k€ X \ [G,z],

l9—g0.klI<lz—g,kl —t|z—gokl|
and

lg—go, k<l z—g.kll —t|z=gokll .

Now,
[z=gokll < [lz=gkl+19-g0Fk]l
< 2z—g k| —t]z—gokl.
Thus ||J:—go,lc||§%rtﬂx—g,k‘”7 for every g € G .
H — g0,k ||< -2-d, where d= inf ||z —g,k | .
ence || 2~ go,k 1< r2yd, where d=nf ||z~ g,k |
Similar] — o,k ||< ——d.
milarly, || &~ 3o,k 1< 1o
Therefore, it follows that
90 —Go. kIl < [lgo—akl+Ilz—gokl
S -

14+¢
C.

Whence Tg(z) is bounded.
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Let X be a linear2-normed space, z € X and [z] denote the set of all scalar
multiplications of =z

ie., [z] = {ax: a € R}.

Theorem 3.2. Let G be a subset of a linear 2-normed space X,z € X and k €
X \ [G,z] . Then the following statements are equivalent for every y € [k] .

(i) g0 € Ta(z) .

(ii) g0 € Ta(z+y) .

(iil) go € Ta(x —y) .

(iv) go+yeTaz+y).

(v) got+y€eTalz—y).

(vi) go—y€Ta(z+y).
(vi)) go—y€Ta(z—y).
(viii) go+y € Tea() .

(ix) go—y € Ta(x) .

Proof. The proof follows immediately by using Theorem 2.2.

Theorem 3.3. Let G be a subspace of a linear 2-normed space X, x € X and
ke X\ [G,z]. Then gy € Ta(z) & go € Ta(a™z + (1 — a™)gg), for all a € R
and m=0,1,2,--- .

Proof. Claim: gg € Tg(x) < go € Ta(ax+ (1 —a)go) , for every a € R. Let go € Ta(z) .
Then

lg—g0,k|I<||x—g,k]| —t] z—go, k| ,foral g€ G and for some ¢t >0.

= || ag — ago, k ||<|| ax — ag,k || =t || ax — ago,k ||, for all g € G.
-1 -1
N ||a<(o‘)90+g>_ago7k|§ ax_a<W),k|

«
~1
—t || ax — ago, k||, for all g € G and a # 0, since w cq.
«
= o —go.k 1<l + (1~ a)go g,k || =t || oz + (1~ a)ao — go.k |

= go € Tg(az + (1 — a)go, when a # 0.

If a =0, then it is clear that gy € Tg(az + (1 — a)go).
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The converse is obvious by taking « = 1. Hence the claim is true.

By repeated application of the claim the result follows.

Corollary 3.4. Let G be a subspace of a linear 2-normed space X, z € X and
k € X \ [G,z]. Then the following statements are equivalent for every y € [k],a € R
and m=20,1,2,---

(i) 9o € Ta(x) .

(i) go € Te(a™z + (1 —a™)go + y).

(iil) go € Ta(a™x + (1 —a™)go — y).

(iv) go+y€eTa(amx+ (1 —a™)go+y).

(v) go+yeTg@z+(1—a™)go—y).

(vi) go—y € Tg(a™z+ (1 —a™)go + y).

(vil) go—y € Tg(a™x + (1 —a™)go — y).
(viil) go +y € Te(a™z + (1 —a™)go).

(ix) go—y € Te(a™x+ (1 —a™)go)-

Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.

Theorem 3.5. Let G be a subset of a linear 2-normed space X, =z € X and
ke X\ [G,z]. Then gy € Ta(x) < go € Taqm ().

Proof. The proof follows from simple application of Theorem 3.2.
A corollary similar to that of Corollary 3.4 is established next as follows:

Corollary 3.6. Let G be a subspace of a linear 2-normed space X, z € X and
k € X \ [G,z]. Then the following statements are equivalent for every y € [k],a € R
and m=0,1,2,---

(i) 90 € Tom () -

(ii) go € Toym (@™ + (1 —a™)go +y).

(iii) go € T (@™ + (1 —a™)go —y) -

(iv) go+y € Tarm(@™z+ (1 —a™)go+y) -
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(V) go+y€Tgiplame+(1—a™)g—vy) .

(vi) g0 —y € Taym(a™z + (1 —a™)go +y) .
(vii) go —y € Tgyp @™z + (1 —a™)go —y) -
(viil) go +y € Tayw (™2 + (1 —a™)go) -

(ix) go —y € Taqp (@™ + (1 —a™)go) -

Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.

Proposition 3.7. Let G be a subset of a linear 2-normed space X, z € X, k €
X\ [G,z] and 0 € G. If g9 € Tg(x), then there exists a constant ¢ > 0 such that
I g0,k [|<|l 2 k|| =t || 2 —go, k|| -

Proof. The proof is obvious.

Proposition 3.8. Let G be a subset of a linear 2-normed space X, z € X and
ke X\ |[Gx]. If go € Tg(x), then there exists a constant ¢ > 0 such that for all
g€@G,
|z — g0, k| < 2||a= g5kl — t|lx — go, kl|-

Proof. The proof is trivial.
Theorem 3.9. Let G be a subspace of a linear 2-normed space X and x € X . Then
the following statements hold.

(i) Ta(x+g9) =Ta(x)+ g, for every g € G .

(il) Tg(az) = aTg(x), for every a € R .
Proof. (i). Let § be an arbitrary but fixed element of G .
Let go € Tg(x) . It is clear that go+ g € Ta(z) + g -

To prove that Tg(z) +§ C Ta(x+ g) , it is enough to prove that go+g € Ta(z+9) -

Now,

lg+g—90—gkl<|z—gk| —t]z—gok], forallge G

and for some t > 0.

=lg+g—(0+a)kl<lze+g—(g+9).kll —tlz+g—(90+3) kI
for all g € G.
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= go+g€Ta(x+g), since g—ge€QG.
Conversely, let go + g € Ta(z + g) .
To prove that Tg(x + §) C Te(x) + g, it is enough to prove that go € Tg(z) .

Now,

lg=g0kll = llg+3—1(g90+3)k]|
< le+tg—(g+9)kll—tlz+g—(90+9) kI,
for all g € G and for some t > 0.
= go € Tg(x). Thus the result follows.

(ii). The proof is similar to that of (i).
Remark 3.10. Theorem 3.9 can be restated as

To(ax + g) = oTg(z) + g, for every g € G.
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