STRONGLY UNIQUE BEST COAPPROXIMATION IN LINEAR 2-NORMED SPACES

R.Vijayaragavan

School of Advanced Sciences V I T University Vellore-632014, Tamilnadu, India.

Abstract

This paper deals with some fundamental properties of the set of strongly unique best coapproximation in a linear 2-normed space.

AMS Subject classification: 41A50,41A52, 41A99.

Keywords: Linear 2-normed space, best coapproximation and strongly unique best coapproximation.

1. INTRODUCTION

The problem of best coapproximation was first introduced by Franchetti and Furi [2] to study some characteristic properties of real Hilbert spaces and was followed up by Papini and Singer [12]. Subsequently, Geetha S.Rao and coworkers have developed this theory to a considerable extent [4,5,6,7,8,9]. This theory is largely concerned with the questions of existence, uniqueness and characterization of best coapproximation. Newman and Shapiro [11] studied the problems of strongly unique best approximation in the space of continuous functions under supremum norm. Geetha S.Rao, et al. [3,10] established many significant results in strongly unique best coapproximation in normed linear spaces. The notion of strongly unique best coapproximation in the context of linear 2-normed spaces is introduced in this paper. Section 2 provides some important definitions and results that are required. Sections 3 delineates some fundamental properties of the set of strongly unique best coapproximation with respect to 2-norm.

2. PRELIMINARIES

Definition 2.1. [1] Let X be a linear space over real numbers with dimension greater than one and let $\| ..., \|$ be a real-valued function on $X \times X$ satisfying the following properties for every x, y, z in X.

- (i) ||x, y|| = 0 if and only if x and y are linearly dependent,
- (ii) || x, y || = || y, x ||,
- (iii) $\| \alpha x, y \| = |\alpha| \| x, y \|$, where α is a real number,
- (iv) $||x, y + z|| \le ||x, y|| + ||x, z||$.

Then $\| ., . \|$ is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2-normed space. It is clear that 2-norm is non negative.

The following important property of 2-norm was established by Cho [1].

Theorem 2.2. [1] For any points $a, b \in X$ and any $\alpha \in \mathbb{R}$,

$$\parallel a,b \parallel = \parallel a,b + \alpha a \parallel.$$

Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X. An element $g_0 \in G$ is called a best coapproximation to $x \in X$ from G if for every $g \in G$,

$$\parallel g - g_0, k \parallel \leq \parallel x - g, k \parallel$$
, for every $k \in X \setminus [G, x]$,

where [G, x] represents a linear space spanned by elements of G and x.

The definition of strongly unique best coapproximation in the context of linear 2normed space is introduced here for the first time as follows.

Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X. An element $g_0 \in G$ is called a strongly unique best coapproximation to $x \in X$ from G, if there exists a constant t > 0 such that for every $g \in G$,

$$|| g - g_0, k || \le || x - g, k || - t || x - g_0, k ||$$
, for every $k \in X \setminus [G, x]$.

The set of all elements of strongly unique best coapproximations to $x \in X$ from G is denoted by $T_G(x)$.

The subset G is called an existence set if $T_G(x)$ contains at least one element for every $x \in X$. G is called a uniqueness set if $T_G(x)$ contains at most one element for every $x \in X$. G is called an existence and uniqueness set if $T_G(x)$ contains exactly one element for every $x \in X$.

For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces and all subsets and subspaces considered in this paper are existence subsets and existence subspaces with respect to strongly unique best coapproximation.

3. SOME FUNDAMENTAL PROPERTIES OF $T_G(x)$

Some basic properties of strongly unique best coapproximation are obtained in the following Theorems.

Theorem 3.1. Let G be a subset of a linear 2-normed space X and $x \in X$. Then the following statements hold.

- (i) $T_G(x)$ is closed if G is closed.
- (ii) $T_G(x)$ is convex if G is convex.
- (iii) $T_G(x)$ is bounded.

Proof. (i). Let G be closed.

Let $\{g_m\}$ be a sequence in $T_G(x)$ such that $g_m \to \tilde{g}$. To prove that $T_G(x)$ is closed, it is enough to prove that $\tilde{g} \in T_G(x)$. Since G is closed, $\{g_m\} \in G$ and $g_m \to \tilde{g}$, we have $\tilde{g} \in G$. Since $\{g_m\} \in T_G(x)$, we have

$$\|g - g_m, k\| \le \|x - g, k\| - t\| x - g_m, k\|, \text{ for every } k \in X \setminus [G, x]$$

and for some $t > 0$

$$\Rightarrow \| g - g_m + \tilde{g} - \tilde{g}, k \| \le \| x - g, k \| - t \| x - g_m, k \|$$

$$\Rightarrow \| g - \tilde{g}, k \| - \| g_m - \tilde{g}, k \| \le \| x - g, k \| - t \| x - g_m, k \|, \text{ for every } g \in G$$
(3.1)

Since $g_m \to \tilde{g}$, $g_m - \tilde{g} \to 0$. So $|| g_m - \tilde{g}, k || \to 0$, as 0 and k are linearly dependent.

Therefore, it follows from (3.1) that

$$|| g - \tilde{g}, k || \le || x - g, k || -t || x - \tilde{g}, k ||,$$

for every $g \in G$ and for some t > 0.

Thus $\tilde{g} \in T_G(x)$. Hence $T_G(x)$ is closed.

(ii). Let G be convex, $g_1,g_2\in T_G(x)$ and $\alpha\in(0,1)$. To prove that $\alpha g_1+(1-\alpha)g_2\in T_G(x)$,

let $k \in X \setminus [G, x]$. Then

$$\| g - (\alpha g_1 + (1 - \alpha)g_2, k \|$$

$$= \| \alpha (g - g_1) + (1 - \alpha)(g - g_2), k \|$$

$$\leq \alpha \| g - g_1, k \| + (1 - \alpha) \| g - g_2, k \|$$

$$\leq \alpha \| x - g, k \| - \alpha t \| x - g_1, k \|$$

$$+ (1 - \alpha) \| x - g, k \| - (1 - \alpha)t \| x - g_2, k \|,$$
for every $g \in G$ and for some $t > 0$.
$$= \| x - g, k \| - t(\| \alpha x - \alpha g_1, k \| + \| (1 - \alpha)x - (1 - \alpha)g_2, k \|)$$

$$\leq \| x - g, k \| - t \| \alpha x - \alpha g_1 + (1 - \alpha)x - (1 - \alpha)g_2, k \|$$

$$= \| x - g, k \| - t \| x - (\alpha g_1 + (1 - \alpha)g_2), k \|.$$

Thus $\alpha g_1 + (1 - \alpha)g_2 \in T_G(x)$. Hence $T_G(x)$ is convex.

(iii). To prove that $T_G(x)$ is bounded, it is enough to prove for arbitrary $g_0, \tilde{g}_0 \in T_G(x)$ that $|| g_0 - \tilde{g}_0, k || < c$ for some c > 0, since $|| g_0 - \tilde{g}_0, k || < c$ implies that $\sup_{g_0, \tilde{g}_0 \in T_G(x)} || g_0, \tilde{g}_0, k ||$ is finite and hence the diameter of $T_G(x)$ is finite. Let $g_0, \tilde{g}_0 \in T_G(x)$. Then there exists a constant t > 0 such that for every $g \in G$ and $k \in X \setminus [G, x]$,

$$\| g - g_0, k \| \le \| x - g, k \| - t \| x - g_0, k \|$$

and

$$|| g - \tilde{g}_0, k || \le || x - g, k || - t || x - \tilde{g}_0, k ||$$

Now,

$$\| x - g_0, k \| \leq \| x - g, k \| + \| g - g_0, k \|$$

$$\leq 2 \| x - g, k \| - t \| x - g_0, k \| .$$

Thus $||x - g_0, k|| \leq \frac{2}{1+t} ||x - g, k||$, for every $g \in G$. Hence $||x - g_0, k|| \leq \frac{2}{1+t}d$, where $d = \inf_{g \in G} ||x - g, k||$. Similarly, $||x - \tilde{g}_0, k|| \leq \frac{2}{1+t}d$. Therefore, it follows that

$$\| g_0 - \tilde{g}_0, k \| \leq \| g_0 - x, k \| + \| x - \tilde{g}_0, k \| \\ \leq \frac{4}{1+t} d \\ = C.$$

Whence $T_G(x)$ is bounded.

Let X be a linear 2-normed space, $x \in X$ and [x] denote the set of all scalar multiplications of x

i.e., $[x] = \{\alpha x : \alpha \in \mathbb{R}\}.$

Theorem 3.2. Let G be a subset of a linear 2-normed space $X, x \in X$ and $k \in X \setminus [G, x]$. Then the following statements are equivalent for every $y \in [k]$.

- (i) $g_0 \in T_G(x)$.
- (ii) $g_0 \in T_G(x+y)$.
- (iii) $g_0 \in T_G(x-y)$.
- (iv) $g_0 + y \in T_G(x + y)$.
- (v) $g_0 + y \in T_G(x y)$.
- (vi) $g_0 y \in T_G(x + y)$.

(vii)
$$g_0 - y \in T_G(x - y)$$
.

(viii)
$$g_0 + y \in T_G(x)$$
.

(ix)
$$g_0 - y \in T_G(x)$$
.

Proof. The proof follows immediately by using Theorem 2.2.

Theorem 3.3. Let G be a subspace of a linear 2-normed space X, $x \in X$ and $k \in X \setminus [G, x]$. Then $g_0 \in T_G(x) \Leftrightarrow g_0 \in T_G(\alpha^m x + (1 - \alpha^m)g_0)$, for all $\alpha \in \mathbb{R}$ and $m = 0, 1, 2, \cdots$.

Proof. Claim: $g_0 \in T_G(x) \Leftrightarrow g_0 \in T_G(\alpha x + (1 - \alpha)g_0)$, for every $\alpha \in \mathbb{R}$. Let $g_0 \in T_G(x)$. Then

$$|| g - g_0, k || \le || x - g, k || - t || x - g_0, k ||$$
, for all $g \in G$ and for some $t > 0$.

$$\Rightarrow \| \alpha g - \alpha g_0, k \| \le \| \alpha x - \alpha g, k \| - t \| \alpha x - \alpha g_0, k \|, \text{ for all } g \in G.$$

$$\Rightarrow \| \alpha \left(\frac{(\alpha - 1)g_0 + g}{\alpha} \right) - \alpha g_0, k \| \le \| \alpha x - \alpha \left(\frac{(\alpha - 1)g_0 + g}{\alpha} \right), k \|$$

$$- t \| \alpha x - \alpha g_0, k \|, \text{ for all } g \in G \text{ and } \alpha \neq 0, \text{ since } \frac{(\alpha - 1)g_0 + g}{\alpha} \in G.$$

$$\Rightarrow \| g - g_0, k \| \le \| \alpha x + (1 - \alpha)g_0 - g, k \| - t \| \alpha x + (1 - \alpha)g_0 - g_0, k \|$$

$$\Rightarrow g_0 \in T_G(\alpha x + (1 - \alpha)g_0, \text{ when } \alpha \neq 0.$$

If $\alpha = 0$, then it is clear that $g_0 \in T_G(\alpha x + (1 - \alpha)g_0)$.

The converse is obvious by taking $\alpha = 1$. Hence the claim is true. By repeated application of the claim the result follows.

Corollary 3.4. Let G be a subspace of a linear 2-normed space X, $x \in X$ and $k \in X \setminus [G, x]$. Then the following statements are equivalent for every $y \in [k], \alpha \in \mathbb{R}$ and $m = 0, 1, 2, \cdots$

- (i) $g_0 \in T_G(x)$.
- (ii) $g_0 \in T_G(\alpha^m x + (1 \alpha^m)g_0 + y).$
- (iii) $g_0 \in T_G(\alpha^m x + (1 \alpha^m)g_0 y).$
- (iv) $g_0 + y \in T_G(\alpha^m x + (1 \alpha^m)g_0 + y).$
- (v) $g_0 + y \in T_G(\alpha^m x + (1 \alpha^m)g_0 y).$
- (vi) $g_0 y \in T_G(\alpha^m x + (1 \alpha^m)g_0 + y).$
- (vii) $g_0 y \in T_G(\alpha^m x + (1 \alpha^m)g_0 y).$
- (viii) $g_0 + y \in T_G(\alpha^m x + (1 \alpha^m)g_0).$
- (ix) $g_0 y \in T_G(\alpha^m x + (1 \alpha^m)g_0).$

Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.

Theorem 3.5. Let G be a subset of a linear 2-normed space X, $x \in X$ and $k \in X \setminus [G, x]$. Then $g_0 \in T_G(x) \Leftrightarrow g_0 \in T_{G+[k]}(x)$.

Proof. The proof follows from simple application of Theorem 3.2.

A corollary similar to that of Corollary 3.4 is established next as follows:

Corollary 3.6. Let G be a subspace of a linear 2-normed space X, $x \in X$ and $k \in X \setminus [G, x]$. Then the following statements are equivalent for every $y \in [k], \alpha \in \mathbb{R}$ and $m = 0, 1, 2, \cdots$

- (i) $g_0 \in T_{G+[k]}(x)$.
- (ii) $g_0 \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0 + y).$
- (iii) $g_0 \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0 y)$.
- (iv) $g_0 + y \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0 + y)$.

- (v) $g_0 + y \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0 y)$.
- (vi) $g_0 y \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0 + y)$.
- (vii) $g_0 y \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0 y)$.
- (viii) $g_0 + y \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0)$.
- (ix) $g_0 y \in T_{G+[k]}(\alpha^m x + (1 \alpha^m)g_0)$.

Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.

Proposition 3.7. Let G be a subset of a linear 2-normed space X, $x \in X$, $k \in X \setminus [G, x]$ and $0 \in G$. If $g_0 \in T_G(x)$, then there exists a constant t > 0 such that $||g_0, k|| \le ||x, k|| - t ||x - g_0, k||$.

Proof. The proof is obvious.

Proposition 3.8. Let G be a subset of a linear 2-normed space X, $x \in X$ and $k \in X \setminus [G, x]$. If $g_0 \in T_G(x)$, then there exists a constant t > 0 such that for all $g \in G$,

$$||x - g_0, k|| \le 2||x - g, k|| - t||x - g_0, k||$$

Proof. The proof is trivial.

Theorem 3.9. Let G be a subspace of a linear 2-normed space X and $x \in X$. Then the following statements hold.

- (i) $T_G(x+g) = T_G(x) + g$, for every $g \in G$.
- (ii) $T_G(\alpha x) = \alpha T_G(x)$, for every $\alpha \in \mathbb{R}$.

Proof. (i). Let \tilde{g} be an arbitrary but fixed element of G. Let $g_0 \in T_G(x)$. It is clear that $g_0 + \tilde{g} \in T_G(x) + \tilde{g}$.

To prove that $T_G(x) + \tilde{g} \subseteq T_G(x + \tilde{g})$, it is enough to prove that $g_0 + \tilde{g} \in T_G(x + \tilde{g})$.

Now,

 $|| g + \tilde{g} - g_0 - \tilde{g}, k || \le || x - g, k || - t || x - g_0, k ||$, for all $g \in G$ and for some t > 0.

$$\Rightarrow || g + \tilde{g} - (g_0 + \tilde{g}), k || \le || x + \tilde{g} - (g + \tilde{g}), k || - t || x + \tilde{g} - (g_0 + \tilde{g}), k ||,$$

for all $g \in G$.

 $\Rightarrow g_0 + \tilde{g} \in T_G(x + \tilde{g}), \text{ since } g - \tilde{g} \in G.$

Conversely, let $g_0 + \tilde{g} \in T_G(x + \tilde{g})$.

To prove that $T_G(x + \tilde{g}) \subseteq T_G(x) + \tilde{g}$, it is enough to prove that $g_0 \in T_G(x)$.

Now,

$$\begin{split} \parallel g - g_0, k \parallel &= \quad \parallel g + \tilde{g} - (g_0 + \tilde{g}), k \parallel \\ &\leq \quad \parallel x + \tilde{g} - (g + \tilde{g}), k \parallel -t \parallel x + \tilde{g} - (g_0 + \tilde{g}), k \parallel, \\ &\quad \text{for all } g \in G \text{ and for some } t > 0. \\ &\Rightarrow \qquad g_0 \in T_G(x). \text{ Thus the result follows.} \end{split}$$

(ii). The proof is similar to that of (i).

Remark 3.10. Theorem 3.9 can be restated as

$$T_G(\alpha x + g) = \alpha T_G(x) + g$$
, for every $g \in G$.

REFERENCES

- Y.J.Cho, "Theory of 2-inner product spaces", Nova Science Publications, New York, 1994.
- [2] C.Franchetti and M.Furi, Some characteristic properties of real Hilbert spaces, *Rev. Roumaine Math. Pures. Appl.*, 17 (1972), 1045-1048.
- [3] Geetha S.Rao and S.Elumalai, Semicontinuity properties of operators of strong best approximation and strong best coapproximation, "Proc. Int. Conf. on Constructive Function Theory", Varna, Bulgaria (1981), 495-498.
- [4] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ), Math. Today, 2 (1984), 33-40.
- [5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui, L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, (1986), 535-538.
- [6] Geetha S.Rao and S.Muthukumar, Semicontinuity properties of the best coapproximation operator, *Math. Today*, 5 (1987), 37-48.
- [7] Geetha S.Rao and K.R.Chandrasekaran, Characterization of elements of best coapproximation in normed linear spaces, *Pure Appl. Math. Sci.*, 26 (1987), 139-147.
- [8] Geetha S.Rao and M.Swaminathan, Best coapproximation and Schauder bases in Banach Spaces, Acta Scient. Math. Szeged, 54 (1990), 339-354.
- [9] Geetha S.Rao and K.R.Chandrasekaran, Hahn-Banach extensions, best coapproximation and related results, in Approximation Theory and its Applications, Geetha S.Rao (ed.), New Age International Publishers, New Delhi, 1996, 51-58.
- [10] Geetha S.Rao and R.Saravanan, Strongly unique best coapproxi-mation, kyungpook Math. J., 43 (2003), 000-000.
- [11] D.J.Newman and H.S.Shapiro, Some theorems on Chebyshev approximation, Duke Math. J., 30 (1963), 673-684.
- [12] P.L.Papini and I.Singer, Best coapproximation in normed linear spaces, Mh. Math., 88 (1979), 27-44.