# STRONGLY UNIQUE BEST COAPPROXIMATION IN LINEAR 2-NORMED SPACES 

R.Vijayaragavan<br>School of Advanced Sciences<br>V I T University<br>Vellore-632014, Tamilnadu, India.


#### Abstract

This paper deals with some fundamental properties of the set of strongly unique best coapproximation in a linear 2-normed space.


AMS Subject classification: 41A50,41A52, 41A99.
Keywords: Linear 2-normed space, best coapproximation and strongly unique best coapproximation.

## 1. INTRODUCTION

The problem of best coapproximation was first introduced by Franchetti and Furi [2] to study some characteristic properties of real Hilbert spaces and was followed up by Papini and Singer [12]. Subsequently, Geetha S.Rao and coworkers have developed this theory to a considerable extent $[4,5,6,7,8,9]$. This theory is largely concerned with the questions of existence, uniqueness and characterization of best coapproximation. Newman and Shapiro [11] studied the problems of strongly unique best approximation in the space of continuous functions under supremum norm. Geetha S.Rao, et al. [3,10] established many significant results in strongly unique best coapproximation in normed linear spaces. The notion of strongly unique best coapproximation in the context of linear 2-normed spaces is introduced in this paper. Section 2 provides some important definitions and results that are required. Sections 3 delineates some fundamental properties of the set of strongly unique best coapproximation with respect to 2 -norm.

## 2. PRELIMINARIES

Definition 2.1. [ 1 ] Let $X$ be a linear space over real numbers with dimension greater than one and let $\|.,$.$\| be a real-valued function on X \times X$ satisfying the following properties for every $x, y, z$ in $X$.
(i) $\|x, y\|=0$ if and only if $x$ and $y$ are linearly dependent,
(ii) $\|x, y\|=\|y, x\|$,
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|$, where $\alpha$ is a real number,
(iv) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.

Then $\|.,$.$\| is called a 2$-norm and the linear space $X$ equipped with the 2 -norm is called a linear 2-normed space. It is clear that 2-norm is non negative.

The following important property of 2-norm was established by Cho [1].
Theorem 2.2. [1] For any points $a, b \in X$ and any $\alpha \in \mathbb{R}$,

$$
\|a, b\|=\|a, b+\alpha a\|
$$

Definition 2.3. Let $G$ be a non-empty subset of a linear 2-normed space $X$. An element $g_{0} \in G$ is called a best coapproximation to $x \in X$ from $G$ if for every $g \in G$,

$$
\left\|g-g_{0}, k\right\| \leq\|x-g, k\|, \text { for every } k \in X \backslash[G, x]
$$

where $[G, x]$ represents a linear space spanned by elements of $G$ and $x$.
The definition of strongly unique best coapproximation in the context of linear 2normed space is introduced here for the first time as follows.

Definition 2.4. Let $G$ be a non-empty subset of a linear 2-normed space $X$. An element $g_{0} \in G$ is called a strongly unique best coapproximation to $x \in X$ from $G$, if there exists a constant $t>0$ such that for every $g \in G$,

$$
\left\|g-g_{0}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{0}, k\right\|, \text { for every } k \in X \backslash[G, x] .
$$

The set of all elements of strongly unique best coapproximations to $x \in X$ from $G$ is denoted by $T_{G}(x)$.

The subset $G$ is called an existence set if $T_{G}(x)$ contains at least one element for every $x \in X . G$ is called a uniqueness set if $T_{G}(x)$ contains at most one element for every $x \in X . G$ is called an existence and uniqueness set if $T_{G}(x)$ contains exactly one element for every $x \in X$.

For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces and all subsets and subspaces considered in this paper are existence subsets and existence subspaces with respect to strongly unique best coapproximation.

## 3. SOME FUNDAMENTAL PROPERTIES OF $T_{G}(x)$

Some basic properties of strongly unique best coapproximation are obtained in the following Theorems.

Theorem 3.1. Let $G$ be a subset of a linear 2-normed space $X$ and $x \in X$. Then the following statements hold.
(i) $T_{G}(x)$ is closed if $G$ is closed.
(ii) $T_{G}(x)$ is convex if $G$ is convex.
(iii) $T_{G}(x)$ is bounded.

Proof. (i). Let $G$ be closed.

Let $\left\{g_{m}\right\}$ be a sequence in $T_{G}(x)$ such that $g_{m} \rightarrow \tilde{g}$.
To prove that $T_{G}(x)$ is closed, it is enough to prove that $\tilde{g} \in T_{G}(x)$.
Since $G$ is closed, $\left\{g_{m}\right\} \in G$ and $g_{m} \rightarrow \tilde{g}$, we have $\tilde{g} \in G$. Since $\left\{g_{m}\right\} \in T_{G}(x)$, we have

$$
\begin{align*}
& \left\|g-g_{m}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{m}, k\right\|, \text { for every } k \in X \backslash[G, x] \\
& \text { and for some } t>0 \\
\Rightarrow & \left\|g-g_{m}+\tilde{g}-\tilde{g}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{m}, k\right\| \\
\Rightarrow & \|g-\tilde{g}, k\|-\left\|g_{m}-\tilde{g}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{m}, k\right\|, \text { for every } g \in G \tag{3.1}
\end{align*}
$$

Since $g_{m} \rightarrow \tilde{g}, g_{m}-\tilde{g} \rightarrow 0$. So $\left\|g_{m}-\tilde{g}, k\right\| \rightarrow 0$, as 0 and $k$ are linearly dependent.

Therefore, it follows from (3.1) that

$$
\|g-\tilde{g}, k\| \leq\|x-g, k\|-t\|x-\tilde{g}, k\|,
$$

for every $g \in G$ and for some $t>0$.
Thus $\tilde{g} \in T_{G}(x)$. Hence $T_{G}(x)$ is closed.
(ii). Let $G$ be convex, $g_{1}, g_{2} \in T_{G}(x)$ and $\alpha \in(0,1)$. To prove that $\alpha g_{1}+(1-\alpha) g_{2} \in$ $T_{G}(x)$,
let $k \in X \backslash[G, x]$.
Then

$$
\begin{aligned}
\| g-\left(\alpha g_{1}+\right. & (1-\alpha) g_{2}, k \| \\
= & \left\|\alpha\left(g-g_{1}\right)+(1-\alpha)\left(g-g_{2}\right), k\right\| \\
\leq & \alpha\left\|g-g_{1}, k\right\|+(1-\alpha)\left\|g-g_{2}, k\right\| \\
\leq & \alpha\|x-g, k\|-\alpha t\left\|x-g_{1}, k\right\| \\
& +(1-\alpha)\|x-g, k\|-(1-\alpha) t\left\|x-g_{2}, k\right\|,
\end{aligned}
$$

for every $g \in G$ and for some $t>0$.

$$
\begin{aligned}
& =\|x-g, k\|-t\left(\left\|\alpha x-\alpha g_{1}, k\right\|+\left\|(1-\alpha) x-(1-\alpha) g_{2}, k\right\|\right) \\
& \leq\|x-g, k\|-t\left\|\alpha x-\alpha g_{1}+(1-\alpha) x-(1-\alpha) g_{2}, k\right\| \\
& =\|x-g, k\|-t\left\|x-\left(\alpha g_{1}+(1-\alpha) g_{2}\right), k\right\| .
\end{aligned}
$$

Thus $\alpha g_{1}+(1-\alpha) g_{2} \in T_{G}(x)$. Hence $T_{G}(x)$ is convex.
(iii). To prove that $T_{G}(x)$ is bounded, it is enough to prove for arbitrary $g_{0}, \tilde{g}_{0} \in T_{G}(x)$ that $\left\|g_{0}-\tilde{g}_{0}, k\right\|<c$ for some $c>0$, since $\left\|g_{0}-\tilde{g}_{0}, k\right\|<c$ implies that $\sup _{g_{0}, \tilde{g}_{0} \in T_{G}(x)}\left\|g_{0}, \tilde{g}_{0}, k\right\|$ is finite and hence the diameter of $T_{G}(x)$ is finite.
Let $g_{0}, \tilde{g}_{0} \in T_{G}(x)$. Then there exists a constant $t>0$ such that for every $g \in G$ and $k \in X \backslash[G, x]$,
$\left\|g-g_{0}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{0}, k\right\|$
and

$$
\left\|g-\tilde{g}_{0}, k\right\| \leq\|x-g, k\|-t\left\|x-\tilde{g}_{0}, k\right\|
$$

Now,

$$
\begin{aligned}
\left\|x-g_{0}, k\right\| & \leq\|x-g, k\|+\left\|g-g_{0}, k\right\| \\
& \leq 2\|x-g, k\|-t\left\|x-g_{0}, k\right\|
\end{aligned}
$$

Thus $\left\|x-g_{0}, k\right\| \leq \frac{2}{1+t}\|x-g, k\|$, for every $g \in G$.
Hence $\left\|x-g_{0}, k\right\| \leq \frac{2}{1+t} d$, where $d=\inf _{g \in G}\|x-g, k\|$.
Similarly, $\left\|x-\tilde{g}_{0}, k\right\| \leq \frac{2}{1+t} d$.
Therefore, it follows that

$$
\begin{aligned}
\left\|g_{0}-\tilde{g}_{0}, k\right\| & \leq\left\|g_{0}-x, k\right\|+\left\|x-\tilde{g}_{0}, k\right\| \\
& \leq \frac{4}{1+t} d \\
& =C
\end{aligned}
$$

Whence $T_{G}(x)$ is bounded.

Let $X$ be a linear2-normed space, $x \in X$ and $[x]$ denote the set of all scalar multiplications of $x$

$$
\text { i.e., } \quad[x]=\{\alpha x: \alpha \in \mathbb{R}\} .
$$

Theorem 3.2. Let $G$ be a subset of a linear 2-normed space $X, x \in X$ and $k \in$ $X \backslash[G, x]$. Then the following statements are equivalent for every $y \in[k]$.
(i) $g_{0} \in T_{G}(x)$.
(ii) $g_{0} \in T_{G}(x+y)$.
(iii) $g_{0} \in T_{G}(x-y)$.
(iv) $g_{0}+y \in T_{G}(x+y)$.
(v) $g_{0}+y \in T_{G}(x-y)$.
(vi) $g_{0}-y \in T_{G}(x+y)$.
(vii) $g_{0}-y \in T_{G}(x-y)$.
(viii) $g_{0}+y \in T_{G}(x)$.
(ix) $g_{0}-y \in T_{G}(x)$.

Proof. The proof follows immediately by using Theorem 2.2.
Theorem 3.3. Let $G$ be a subspace of a linear 2-normed space $X, \quad x \in X$ and $k \in X \backslash[G, x]$. Then $g_{0} \in T_{G}(x) \Leftrightarrow g_{0} \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}\right)$, for all $\alpha \in \mathbb{R}$ and $m=0,1,2, \cdots$.

Proof. Claim: $g_{0} \in T_{G}(x) \Leftrightarrow g_{0} \in T_{G}\left(\alpha x+(1-\alpha) g_{0}\right)$, for every $\alpha \in \mathbb{R}$. Let $g_{0} \in T_{G}(x)$. Then
$\left\|g-g_{0}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{0}, k\right\|$, for all $g \in G$ and for some $t>0$.

$$
\Rightarrow \quad\left\|\alpha g-\alpha g_{0}, k\right\| \leq\|\alpha x-\alpha g, k\|-t\left\|\alpha x-\alpha g_{0}, k\right\|, \text { for all } g \in G .
$$

$$
\Rightarrow \quad\left\|\alpha\left(\frac{(\alpha-1) g_{0}+g}{\alpha}\right)-\alpha g_{0}, k\right\| \leq\left\|\alpha x-\alpha\left(\frac{(\alpha-1) g_{0}+g}{\alpha}\right), k\right\|
$$

$-t\left\|\alpha x-\alpha g_{0}, k\right\|$, for all $g \in G$ and $\alpha \neq 0$, since $\frac{(\alpha-1) g_{0}+g}{\alpha} \in G$.
$\Rightarrow \quad\left\|g-g_{0}, k\right\| \leq\left\|\alpha x+(1-\alpha) g_{0}-g, k\right\|-t\left\|\alpha x+(1-\alpha) g_{0}-g_{0}, k\right\|$
$\Rightarrow \quad g_{0} \in T_{G}\left(\alpha x+(1-\alpha) g_{0}\right.$, when $\alpha \neq 0$.

If $\alpha=0$, then it is clear that $g_{0} \in T_{G}\left(\alpha x+(1-\alpha) g_{0}\right)$.

The converse is obvious by taking $\alpha=1$. Hence the claim is true.
By repeated application of the claim the result follows.

Corollary 3.4. Let $G$ be a subspace of a linear 2-normed space $X, x \in X$ and $k \in X \backslash[G, x]$. Then the following statements are equivalent for every $y \in[k], \alpha \in \mathbb{R}$ and $m=0,1,2, \cdots$
(i) $g_{0} \in T_{G}(x)$.
(ii) $g_{0} \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}+y\right)$.
(iii) $g_{0} \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}-y\right)$.
(iv) $g_{0}+y \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}+y\right)$.
(v) $g_{0}+y \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}-y\right)$.
(vi) $g_{0}-y \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}+y\right)$.
(vii) $\quad g_{0}-y \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}-y\right)$.
(viii) $g_{0}+y \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}\right)$.
(ix) $g_{0}-y \in T_{G}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}\right)$.

Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.
Theorem 3.5. Let $G$ be a subset of a linear 2-normed space $X, x \in X$ and $k \in X \backslash[G, x]$. Then $g_{0} \in T_{G}(x) \Leftrightarrow g_{0} \in T_{G+[k]}(x)$.

Proof. The proof follows from simple application of Theorem 3.2.
A corollary similar to that of Corollary 3.4 is established next as follows:
Corollary 3.6. Let $G$ be a subspace of a linear 2-normed space $X, x \in X$ and $k \in X \backslash[G, x]$. Then the following statements are equivalent for every $y \in[k], \alpha \in \mathbb{R}$ and $m=0,1,2, \cdots$
(i) $g_{0} \in T_{G+[k]}(x)$.
(ii) $g_{0} \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}+y\right)$.
(iii) $g_{0} \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}-y\right)$.
(iv) $g_{0}+y \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}+y\right)$.
(v) $g_{0}+y \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}-y\right)$.
(vi) $g_{0}-y \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}+y\right)$.
(vii) $g_{0}-y \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}-y\right)$.
(viii) $g_{0}+y \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}\right)$.
(ix) $g_{0}-y \in T_{G+[k]}\left(\alpha^{m} x+\left(1-\alpha^{m}\right) g_{0}\right)$.

Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.
Proposition 3.7. Let $G$ be a subset of a linear 2-normed space $X, \quad x \in X, k \in$ $X \backslash[G, x]$ and $0 \in G$. If $g_{0} \in T_{G}(x)$, then there exists a constant $t>0$ such that $\left\|g_{0}, k\right\| \leq\|x, k\|-t\left\|x-g_{0}, k\right\|$.

Proof. The proof is obvious.
Proposition 3.8. Let $G$ be a subset of a linear 2-normed space $X, \quad x \in X$ and $k \in X \backslash[G, x]$. If $g_{0} \in T_{G}(x)$, then there exists a constant $t>0$ such that for all $g \in G$,

$$
\left\|x-g_{0}, k\right\| \leq 2\|x-g, k\|-t\left\|x-g_{0}, k\right\| .
$$

Proof. The proof is trivial.
Theorem 3.9. Let $G$ be a subspace of a linear 2-normed space $X$ and $x \in X$. Then the following statements hold.
(i) $T_{G}(x+g)=T_{G}(x)+g$, for every $g \in G$.
(ii) $T_{G}(\alpha x)=\alpha T_{G}(x)$, for every $\alpha \in \mathbb{R}$.

Proof. (i). Let $\tilde{g}$ be an arbitrary but fixed element of $G$. Let $g_{0} \in T_{G}(x)$. It is clear that $g_{0}+\tilde{g} \in T_{G}(x)+\tilde{g}$.

To prove that $T_{G}(x)+\tilde{g} \subseteq T_{G}(x+\tilde{g})$, it is enough to prove that $g_{0}+\tilde{g} \in T_{G}(x+\tilde{g})$. Now,
$\left\|g+\tilde{g}-g_{0}-\tilde{g}, k\right\| \leq\|x-g, k\|-t\left\|x-g_{0}, k\right\|$, for all $g \in G$
and for some $t>0$.

$$
\Rightarrow\left\|g+\tilde{g}-\left(g_{0}+\tilde{g}\right), k\right\| \leq\|x+\tilde{g}-(g+\tilde{g}), k\|-t\left\|x+\tilde{g}-\left(g_{0}+\tilde{g}\right), k\right\|,
$$

for all $g \in G$.
$\Rightarrow g_{0}+\tilde{g} \in T_{G}(x+\tilde{g})$, since $g-\tilde{g} \in G$.
Conversely, let $g_{0}+\tilde{g} \in T_{G}(x+\tilde{g})$.
To prove that $T_{G}(x+\tilde{g}) \subseteq T_{G}(x)+\tilde{g}$, it is enough to prove that $g_{0} \in T_{G}(x)$.
Now,

$$
\begin{aligned}
\left\|g-g_{0}, k\right\|= & \left\|g+\tilde{g}-\left(g_{0}+\tilde{g}\right), k\right\| \\
\leq & \|x+\tilde{g}-(g+\tilde{g}), k\|-t\left\|x+\tilde{g}-\left(g_{0}+\tilde{g}\right), k\right\|, \\
& \quad \text { for all } g \in G \text { and for some } t>0 . \\
\Rightarrow \quad & g_{0} \in T_{G}(x) . \text { Thus the result follows. }
\end{aligned}
$$

(ii). The proof is similar to that of (i).

Remark 3.10. Theorem 3.9 can be restated as

$$
T_{G}(\alpha x+g)=\alpha T_{G}(x)+g, \text { for every } g \in G
$$

## REFERENCES

[1] Y.J.Cho, "Theory of 2-inner product spaces", Nova Science Publications, New York, 1994.
[2] C.Franchetti and M.Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures. Appl., 17 (1972), 1045-1048.
[3] Geetha S.Rao and S.Elumalai, Semicontinuity properties of operators of strong best approximation and strong best coapproximation, "Proc. Int. Conf. on Constructive Function Theory", Varna, Bulgaria (1981), 495-498.
[4] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property ( $\Lambda$ ), Math. Today, 2 (1984), 33-40.
[5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui, L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, (1986), 535-538.
[6] Geetha S.Rao and S.Muthukumar, Semicontinuity properties of the best coapproximation operator, Math. Today, 5 (1987), 37-48.
[7] Geetha S.Rao and K.R.Chandrasekaran, Characterization of elements of best coapproximation in normed linear spaces, Pure Appl. Math. Sci., 26 (1987), 139-147.
[8] Geetha S.Rao and M.Swaminathan, Best coapproximation and Schauder bases in Banach Spaces, Acta Scient. Math. Szeged, 54 (1990), 339-354.
[9] Geetha S.Rao and K.R.Chandrasekaran, Hahn-Banach extensions, best coapproximation and related results, in Approximation Theory and its Applications, Geetha S.Rao (ed.), New Age International Publishers, New Delhi, 1996, 51-58.
[10] Geetha S.Rao and R.Saravanan, Strongly unique best coapproxi-mation, kyungpook Math. J., 43 (2003), 000-000.
[11] D.J.Newman and H.S.Shapiro, Some theorems on Chebyshev approximation, Duke Math. J., 30 (1963), 673-684.
[12] P.L.Papini and I.Singer, Best coapproximation in normed linear spaces, Mh. Math., 88 (1979), 27-44.

