Strongly C*G- Continuous Maps In Topological Space

A. Pushpalatha
Professor
Department of Mathematics,
Government Arts College,
Udumalpet-642 126, Tirupur District,
Tamil Nadu, India.

K. Kavithamani
Research Scholar
Karpagam University
Coimbatore District
Tamil Nadu, India

Abstract

In this paper, we have introduced the concept of strongly c*g-continuous, perfectly c*g -continuous, c*g – locally closed, c*g –locally continuous in Topological space.

Key words: Strongly c*g-continuous, perfectly c*g -continuous, c*g-locally closed, c*g – locally continuous.
1. INTRODUCTION
Levine [3] introduced and investigated the concept of strong continuity in topological spaces. Sundaram [12] introduced strongly g – continuous maps and perfectly g – continuous maps in topological spaces. Pushpalatha [8] introduced strongly g*-continuous and perfectly g*-continuous maps in topological spaces. In this section we have introduced two strong forms of continuous maps in topological spaces, namely strongly c*g- continuous maps, perfectly c*g- continuous maps and study some of their properties.

Pushpalatha [8] introduced strongly generalized locally continuous functions & some of their properties in topological spaces. In the chapter, we have introduced the concept of c*g- locally continuous functions and study some of their properties.

2. PRELIMINARIES

DEFINITION: 2.1
A map f: X→Y from a topological space X into a topological space Y is called
i) Strongly continuous if f⁻¹(V) is both open and closed in X for each subset V in Y [3].
ii) Perfectly continuous if f⁻¹(V) is both open and closed in X for each open subset V in Y [10].
iii) generalized continuous(g-continuous) if f⁻¹(V) is g-open in X for each open set V in Y [12].
iv) Strongly g- continuous if f⁻¹(V) is both open in X for each g-open set V in Y [12].
v) Perfectly g- continuous if f⁻¹(V) is both open and closed in X for each g-open set V in Y [12].
iv) Strongly g*- continuous if \(f^{-1}(V) \) is both open in X for each g*-open set V in Y [8].

v) Perfectly g*- continuous if \(f^{-1}(V) \) is both open and closed in X for each g*-open set V in Y [8].

3. STRONGLY c*g- CONTINUOUS MAPS IN TOPOLOGICAL SPACE

Definition: 3.1

A map \(f : X \rightarrow Y \) from a topological space X into a topological space Y is said to be strongly c*g- continuous if the inverse image of every c*g- open set in Y is open in X.

Theorem 3.2

If a map \(f : X \rightarrow Y \) from a topological space X into a topological space Y in strongly c*g- continuous, then it is continuous but not conversely.

Proof: Assume that \(f \) is strongly c*g- continuous. Let G be any c*g open set in Y. Since \(f \) is strongly continuous, \(f^{-1}(G) \) is open in X by the definition of strongly continuous. Therefore \(f \) is strongly c*g- continuous.

The converse need not be true as seen from the following example.

Example 3.3: Let \(X = Y = \{a, b, c\} \) with the topologies \(\tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\} \) & \(\tau_2 = \{\emptyset, Y, \{a, b\}\} \). Define a map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) be the identity. Then \(f \) is continuous. But \(f \) is not strongly c*g continuous since, for the c*g open set \(G = \{b\} \) in Y, \(f^{-1}(G) = \{G\} \) is not open in X.

Theorem 3.4: If \(f : X \rightarrow Y \) from a topological space X into a topological space Y is strongly continuous then it is strongly c*g- continuous but not conversely.

Proof: Assume that \(f \) is strongly continuous. Let G be any c*g open set in Y. Since \(f \) is strongly continuous, \(f^{-1}(G) \) open in X by the definition of strongly continuous. Therefore \(f \) is strongly c*g- continuous.

The converse need not be true as seen from the following example.

Example 3.5: Let \(X = Y = \{a, b, c\} \) with topologies \(\tau = \{\emptyset, x, \{a\}, \{b\}, \{a, b\}\} \) and \(\sigma = \{\emptyset, y, \{a\}\} \). Consider a map \(f : (x, \tau) \rightarrow (y, \sigma) \) is defined by \(f(a) = f(c) = c \) & \(f(b) = b \). Then \(f \) is strongly c*g- continuous. But not strongly continuous. For the subset \(\{a\} \) of Y \(f^{-1}(\{a\}) = \{a\} \) is open in X, but is not closed in X.
Theorem 3.6: If \(f: X \to Y \) is strongly \(c^*g \)-continuous, then it is strongly \(g^* \)-continuous but not conversely.

Proof: Assume that \(f \) is strongly \(c^*g \)-continuous. Let \(G \) be any strongly \(g \)-open set in \(Y \). Since every strongly \(g \)-open set is \(c^*g \)-open, \(G \) is \(c^*g \)-open in \(Y \). Since \(f \) is strongly \(c^*g \)-continuous, \(f^{-1}(G) \) is open in \(X \). Therefore \(f \) is strongly \(g^* \)-continuous.

The converse need not be true as seen from the following example.

Example 3.7: Let \(X = Y = \{a, b, c\} \) be topological spaces with the topologies \(\tau = \{\varnothing, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\sigma = \{\varnothing, y, \{a, c\}\} \). Let \(f: (X, \tau) \to (y, \sigma) \) be the identity map. Then \(f \) is strongly \(g^* \)-continuous, but not strongly \(c^*g \)-continuous. For, \(\{b\} \) is a \(c^*g \)-open in \(Y \), but \(f(\{b\}) = \{b\} \) is not open in \(X \).

Theorem 3.8: A map \(f: (X \to Y) \) from a topological spaces \(X \) into a topological space \(Y \) is strongly \(c^*g \)-continuous if and only if the inverse image of every \(c^*g \)-closed set in \(Y \) is closed in \(X \).

Proof: Assume that \(f \) is strongly \(c^*g \)-continuous. Let \(G \) be any \(c^*g \)-closed set in \(Y \). Then \(G^c \) is \(c^*g \)-open in \(Y \). Since \(f \) is strongly \(c^*g \)-continuous, \(f^{-1}(G^c) \) open in \(X \). But \(f^{-1}(G^c) = X - f^{-1}(G) \) and so \(f^{-1}(G) \) is closed in \(X \).

Conversely assume that the inverse image of every \(c^*g \)-closed set in \(Y \) is closed in \(X \). Let \(G \) be any \(c^*g \)-open set in \(Y \). Then \(G^c \) is \(c^*g \)-closed in \(Y \). By assumption, \(f^{-1}(G^c) \) is closed in \(X \). But \(f^{-1}(G^c) = X - f^{-1}(G) \) and so \(f^{-1}(G) \) is open in \(X \). Therefore \(f \) is strongly \(c^*g \)-continuous.

Remarks 3.9: From the above observation we get the following diagram.

\[
\begin{array}{ccc}
\text{Strongly continuity} & \downarrow & \text{Strongly } c^*g \text{ continuous} \\
& \downarrow & \\
& \text{Continuity.} & \\
\end{array}
\]

In the above diagram none of the implications can be reversed.

Theorem 3.10: If a map \(f: X \to Y \) is strongly \(c^*g \)-continuous and a map \(g: Y \to Z \) is \(c^*g \)-continuous, then the composition \(g \circ f: X \to Z \) is continuous.

Proof: Let \(G \) be any open set in \(Z \). Since \(g \) is \(c^*g \)-continuous, \(g^{-1}(G) \) is \(c^*g \)-open in \(Y \). Since \(f \) is strongly \(c^*g \)-continuous, \(f^{-1}(G) \) is open in \(X \). But \(f^{-1}(G^c) = X - f^{-1}(G) \) and so \(f^{-1}(G) \) is closed in \(X \).
\[(g^{-1}(G)) \] is open in \(X \). But \((g \circ f)^{-1}(G) = f^{-1}[g^{-1}(G)] \). Therefore \(g \circ f \) is continuous.

Definition 3.10 A map \(f : X \rightarrow Y \) is said to be perfectly \(c^g \)-continuous if the inverse image of every \(c^g \)-open set in \(Y \) is both open and closed in \(X \).

Theorem 3.11: A map \(f : X \rightarrow Y \) from a topological space \(X \) into a topological space \(Y \) is perfectly \(c^g \)-continuous, then it is strongly \(c^g \)-continuous but not conversely.

Proof: Assume that \(f \) is perfectly \(c^g \)-continuous. Let \(G \) be any \(c^g \)-open set in \(Y \). Since \(f \) is perfectly \(c^g \)-continuous, \(f^{-1}(G) \) is open in \(X \). Therefore \(f \) is strongly \(c^g \)-continuous.

The converse need not be true as seen from the following example.

Example 3.12: Let \(X = Y = \{a, b, c\} \), with topologies \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}\} \). Define a map \(f : (X, \tau) \rightarrow (Y, \sigma) \) as the identity function. Then \(f \) is perfectly \(g^* \)-continuous, but not perfectly \(c^g \)-continuous, since for the \(c^g \) open set \(\{b\} \) in \(Y \), \(f^{-1}(\{b\}) = \{b\} \) is not both open and closed in \(X \).

Theorem 3.13: If a map \(f : X \rightarrow Y \) is perfectly \(c^g \)-continuous then it is perfectly \(g^* \)-continuous but not conversely.

Proof: Assume that \(f \) is perfectly \(c^g \)-continuous. Let \(G \) be a \(c^g \)-open set in \(Y \). Then \(G \) is \(c^g \)-open in \(Y \). Since \(f \) is perfectly \(c^g \)-continuous, \(f^{-1}(G) \) is both open and closed in \(X \). Therefore \(f \) is perfectly \(g^* \)-continuous.

The converse need not be true as seen from the following example.

Example 3.14: Let \(X = Y = \{a, b, c\} \) with topologies \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}\} \). Define a map \(f : (X, \tau) \rightarrow (Y, \sigma) \) as the identity function. Then \(f \) is perfectly \(g^* \)-continuous, but not perfectly \(c^g \)-continuous, since for the \(c^g \) open set \(\{b\} \) in \(Y \), \(f^{-1}(\{b\}) = \{b\} \) is not both open and closed in \(X \).

Theorem 3.15: If a map \(f : X \rightarrow Y \) from a topological space \(X \) into a topological space \(Y \) is perfectly \(c^g \)-continuous if and only if \(f^{-1}(G) \) is both open and closed set in \(X \) for every \(c^g \)-closed set \(G \) in \(Y \).

Proof: Assume that \(f \) is perfectly \(c^g \)-continuous. Let \(F \) be any \(c^g \)-closed set in \(Y \). Then \(F^c \) is \(c^g \)-open set in \(Y \). Since \(f \) is perfectly \(c^g \)-continuous, \(f^{-1}(F^c) \) is...
both open & closed in X. But $f^{-1}(F^c) = X - f^{-1}(F)$ and also $f^{-1}(F)$ is both open and closed in X.

Conversely assume that the inverse image of every c^g-closed set in Y is both open and closed in X. Let G be any c^g-open set in Y. Then G^c is c^g-closed in Y. By assumption $f^{-1}(G^c)$ is both open and closed in Y. But $f^{-1}(G^c) = X - f^{-1}(G)$ and so $f^{-1}(G)$ is both open and closed in Y. Therefore f is perfectly c^g-continuous.

Remark 3.16: From the above observations we have the following implications and none of them are reversible.

Perfectly c^g-continuity
↓
Strongly c^g-continuity
↓
Strongly g^*-continuous
↓
Continuity.

4. c^g – locally continuous function in topological spaces

Definition 4.1:
A subset S of X is called c^g-locally closed set if $S = A \cap B$, where A is c^g-open in X and B is c^g-closed in X. $C^gGLC(X)$ denotes the class of all c^g-sets in X.

Theorem 4.2: If a subset S of X is locally closed then it is c^g-locally closed but not conversely.

Proof: Let $S = P \cap Q$, where P is open in X and Q is closed in X. Since every open set is c^g-open and every closed, S is c^g-locally closed in X.

The converse need not be true as seen from the following examples.

Example 4.3: Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{ \emptyset, X, \{a\}\}$. Then the set $\{a, c\}$ is c^g-locally closed but is not locally closed.

Theorem 4.4: If a subset S of X is strongly generalized locally closed in X then S is c^g-locally closed but not conversely.

Proof: Let $S = P \cap Q$, where P is strongly g-open and Q is strongly g-closed in X. Since strongly g-open implies c^g-open and strongly g-closed implies c^g-closed, S is c^g-locally closed in X.

www.ijert.org
Example 4.4: Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{b\}\}$. Then the set \{a,b\} c*g - locally closed but is not strongly generalized locally closed.

Theorem 4.5: If a subset S of X is c*g-locally closed in X, then S is regular generalized locally closed but not conversely.

Proof: Let $S = P \cap Q$, Where P is c*g-locally closed and Q is c*g-locally closed in X. Since c*g-locally closed implies rg-closed and c*g-locally open implies rg-open. Therefore S is regular generalized locally closed.

Example 4.6: Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then \{d\} is rg-locally closed but is not c*g-locally closed set in X.

Theorem 4.7: If A is c*g-locally closed in X and B is c*g-open (respectively closed) in X, then $A \cap B$ is c*g-locally closed in X.

Proof: There exist a c*g-open set P and a c*g-closed set Q such that $A = P \cap Q$. Now, $A \cap B = (P \cap Q) \cap B = (P \cap B) \cap Q$. Since $P \cap Q$ is c*g-open and Q is closed, $A \cap B$ is c*g-locally closed.

Definition 4.8: A subset S of a topological space X is called c*gclc*- set if $S = P \cap Q$ where P is c*g-open in X and Q is closed in X.

Definition 4.9: A subset S of a topological space X is called c*gclc**- set if $S = P \cap Q$ where P is open in X and Q is c*g-closed in X.

Theorem 4.10:

i) If A is c*gclc* --set in X and B is c*g-open (or closed), then $A \cap B$ is c*gclc* - set in X.

ii) If A is c*gclc**- set in X and B is closed then $A \cap B$ is c*gclc**.

Proof:

i) Since A is c*gclc*- set, there exist a c*g-open set P and a closed set Q. Such that $A = P \cap Q$. Now $A \cap B = (P \cap Q) \cap B = (P \cap B) \cap Q$. Since $P \cap Q$ is c*g-open and Q is closed, $A \cap B$ is c*gclc*- set. In the case of B being a closed set, we have $A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B)$. Since P is c*g-open and $Q \cap B$ is closed, $A \cap B$ is c*gclc*- set.

ii) Since A is c*gclc**, there exist an open set P and a c*g-closed set Q such that $A = (P \cap Q)$. Now $A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B)$. Since Q is c*g-closed and B is closed, $Q \cap B$ is c*g-closed. Therefore, $A \cap B$ is c*gclc**- set.
Theorem 4.11: A subset A of a topological space X is c*glc*-set if and only if there exists a c*g-open set P such that A = P ∩ cl(A).

Proof : Assume that A is c*glc*-set. There exists a c*g-open set P and a closed set Q such that A = P ∩ Q. Since A ⊆ Q and Q is closed, A ⊆ cl(A) ⊆ Q. Then A ⊆ P and A ⊆ cl(A), and hence A ⊆ P ∩ cl(A). To prove the reverse inclusion let X ∈ P ∩ cl(A). Then X ∈ P and X ∈ cl(A) ∩ Q and so X ∈ P ∩ Q = A. Hence P ∩ cl(A) ⊆ A. Therefore A = P ∩ cl(A).

Conversely assume that there exist a c*g-open set P such that A = P ∩ cl(A). Now P is c*g-open set and cl(A) is closed. Therefore A is c*glc*-set.

Theorem 4.12: If a subset A of a topological space X is c*glc** - set then there exists an open set P such that A = P ∩ cl*(A), where cl*(A) is the closure of A as defined by Dunham [19].

Proof : By definition there exist an open set P and a c*g-closed set Q such that A = P ∩ Q. Then, since A ⊆ cl*(A) ⊆ Q, We have A ⊆ P ∩ cl*(A). Conversely, if X ∈ P ∩ cl*(A), then X ∈ Q and X ∈ P. Then, X ∈ Q ∩ P = A and hence P ∩ cl*(A) ⊆ A. Therefore A = P ∩ cl*(A).

Theorem 4.13: If A and B are c*glc*- set in a topological space X then A ∩ B is c*glc*-set in X.

Proof : From the assumptions there exist c*g-open sets P and Q such that A = P ∩ cl(A) and B = Q ∩ cl(B). Then A ∩ B = (P ∩ Q) ∩ cl(A) ∩ cl(B). Since P ∩ Q is c*g-open and cl(A) ∩ cl(B) is closed, A ∩ B is c*glc* - set.

5. c*g - locally closed continuous functions

Notations: - LC(X) denotes the class of all locally closed sets in a topological space X and C*GLC(X) denotes the class of all c*glc- sets in X.

Similarly, C*GLC**(X) [respectively C*GLC***(X)] denotes the class of all c*glc*-sets [respectively c*glc** - sets]

Ganster and Reilly [2] have proved that

Continuity

↓

LC- irresolute

↓

LC- continuity

Pushpalatha [17] has proved that

LC – continuity

↓

S*GLC- irresoluteness

www.ijert.org
S*GLC- continuity

GLC – continuous.

But none of these implications can be reversed. Also they observed that the composition of two S*GLC- irresolute functions is S*GLC- irresolute and the composition of a S*GLC – continuous function is S*GLC- continuous.

Definition 5.1.

A function f : X→Y from a space X into a space Y is called
(i) LC- irresolute [2] if f⁻¹(V) ∈ LC(X) for each V in LC(Y).
(ii) S*GLC- irresolute [17] if f⁻¹(V) ∈ S*GLC(X) for each V ∈ S*GLC(X).
(iii) LC-continuous [2] if f⁻¹(V) ∈ LC(X) for each open set V in Y.
(iv) S*GLC - continuous [17] if f⁻¹(V) ∈ LC(X) for each open set V in Y.

Definition 5.2.

A function f : X→Y from a space X into a space Y is called
i) C*GLC-irresolute if f⁻¹(V) ∈ C*GLC(X) for each V ∈ C*GLC(X).
ii) C*GLC-continuous if f⁻¹(V) ∈ C*GLC(X) for each open set V in Y.
iii) C*GLC* – irresolute (respectively C*GLC**- irresolute) if f⁻¹(V) ∈ C*GLC*(X) (respectively f⁻¹(V) ∈ C*GLC**(X)) for each V ∈ C*GLC*(Y) (respectively V ∈ C*GLC**(X)).
iv) C*GLC* - continuous (respectively C*GLC**- continuous) if f⁻¹(V) ∈ C*GLC*(X) (respectively f⁻¹ (V) ∈ C*GLC**(X)) for each open set V in Y.

Theorem 5.3: If a function f : X→Y from a space X into a space Y is LC- continuous then it is C*GLC- continuous but not conversely.

Proof: - Assume that f is LC -continuous. Let V be an open set in Y. Then f⁻¹(V) is locally closed in Y. But locally closed sets are c*g- locally closed sets. Therefore f⁻¹(V) ∈ C*GLC(X) and so f is C*GLC-continuous. The converse need not be true as seen from the following example.

Example 5.4: Let X = Y = {a,b,c}, τ = { φ,x, {a} } and σ be the discrete topology. Define f : (X,τ) →(Y,σ) as the identity function .Then f is not LC-continuous. Because {b} is open in Y but f⁻¹({b}) = {b} is not locally closed in y, clearly f is C*GLC-continuous.

Theorem 5.5: If function f: X→Y from a space X into a space Y is C*GLC- irresolute then it is C*GLC- continuous.
Proof: - Let V be open in Y. Since every open set is c*g-open set and every c*g-set open set is c*g-locally closed, V ∈ C*GLC(Y). Since f is C*GLC-irresolute, f^{-1}(V) ∈ C*GLC(X). Therefore f is C*GLC-continuous. Thus we have the following implications

i) Continuity
 \[\downarrow \]
 LC-irresolute
 \[\downarrow \]
 LC-continuity
 \[\downarrow \]
 C*GLC-continuous

ii) C*GLC-irresoluteness
 \[\downarrow \]
 C*GLC-continuity

However none of the above implications can be reversed.

Theorem 5.6: If function f: X→Y from a space X into a space Y be C*GLC-continuous and A be a c*g-open subset of X (respectively closed). Then the restriction f/A: A→Y is C*GLC-continuous.

Proof: - Let V be open in Y.Let f^{-1}(V) = W. Then W is c*glc in X.Since f is C*GLC-continuous .Let W= P∩Q where P is c*g-open in X and Q is c*g-closed in X. Now (f/A)^{-1}(V) = W∩A = (P∩Q) ∩A = (P∩A)∩Q.

But P∩A [respectively A∩G] is c*g-closed by [18] is c*g-open in X and so the restriction f/A is C*GLC-continuous.

Theorem 5.7: (i) Let f : X→Y be C*GLC-continuous and B be an open subset of Y containing f(X). Then f : X→B is C*GLC-continuous.
(ii) If f : X→Y and g : Y→Z are both C*GLC-irresolute then the composition g◦f: X→Z is C*GLC-irresolute.
(iii) If f : X→Y is C*GLC-continuous and g : Y→Z is continuous then the composition g◦f : X→Z is C*GLC-continuous.

Proof: - (i) Let V be open in B.Since B is open in Y, the set V is open in Y .Therefore f^{-1}(V) is c*glc in X. Hence f : X→B is C*GLC-continuous.
(ii) Let V be c*glc-set in Z. Since g is C*GLC-irresolute, g^{-1}(V) is c*glc in Y. Since f is C*GLC-irresolute, f^{-1}(g^{-1}(V)) is c*glc in X .But f^{-1}(g^{-1}(V)) = (g◦f)^{-1}(V) and so g◦f is C*GLC-irresolute.
(iii) Let V be open in Z. Since g is continuous g^{-1}(V) is open in Y. Since f is C*GLC-continuous, f^{-1}(g^{-1}(V)) is c*glc in X. But f^{-1}(g^{-1}(V)) = (g◦f)^{-1}(V) and so g◦f is C*GLC-continuous.
References

[22]. K. Kavithamani, c*g-closed sets in topological spaces., Antarctica journal, vol 10 (2013) .[To Appear].