Strongly C*G- Continuous Maps In Topological Space

A. Pushpalatha

Professor Department of Mathematics, Government Arts College, Udumalpet-642 126, Tirupur District, Tamil Nadu, India.

K. Kavithamani

Research Scholar Karpagam University Coimbatore District Tamil Nadu, India

Abstract

In this paper, we have introduced the concept of strongly c^*g -continuous, perfectly c^*g -continuous, c^*g - locally closed, c^*g -locally continuous in Topological space.

Key words: Strongly c^*g continuous, perfectly c^*g continuous, c^*g -locally closed, c^*g locally continuous.

1. INTRODUCTION

Levine [3] introduced and investigated the concept of strong continuity in topological spaces. Sundaram [12] introduced strongly g – continuous maps and perfectly g – continuous maps in topological spaces. Pushapalatha [8] introduced strongly g*-continuous and perfectly g*- continuous maps in topological spaces. In this section we have introduced two strong forms of continuous maps in topological spaces, namely strongly c*g- continuous maps, perfectly c*g- continuous maps and study some of their properties .

The notation of a locally closed set in a topological space was introduced by Kurotowski & Sierpinski [13]. According to Bourbaki [20], a subset of a topological space X is locally closed in X if it is the intersection of an open set in X and closed set in X. Stone [14] has used the term FG for a locally closed subset . Locally closed sets are of some interest in the setting of local compactness,Stone-Cech Compactifications (or) Cech complete Spaces [15]. Sundaram [12] introduced the concept of generalized locally continuous function topological space in and investigated some of their properties.

Pushpalatha [8] introduced strongly generalized locally continuous functions & some of their properties in topological spaces. In the chapter, we have introduced the concept of c*g- locally continuous functions and study some of their properties.

2. PRELIMINARIES

DEFINITION: 2.1

A map f: $X \rightarrow Y$ from a topological space X into a topological space Y is called

i) Strongly continuous if $f^{1}(V)$ is both open and closed in X for each subset V in Y [3].

ii) Perfectly continuous if $f^{-1}(V)$ is both open and closed in X for each open subset V in Y [10].

iii) generalized continuous(gcontinuous) if $f^{-1}(V)$ is g-open in X for each open set V in Y [12].

iv) Strongly g- continuous if f $^{1}(V)$ is both open in X for each g-open set V in Y [12].

v) Perfectly g- continuous if f $^{1}(V)$ is both open and closed in X for each g-open set V in Y [12].

iv) Strongly g^* - continuous if f ¹(V) is both open in X for each g^* open set V in Y [8].

v) Perfectly g^* - continuous if f¹(V) is both open and closed in X for each g^* -open set V in Y [8].

3. STRONGLY c*g- CONTINUOUS MAPS IN TOPOLOGICAL SPACE

Definition: 3.1

A map $f : X \rightarrow Y$ from a topological space X into a topological space Y is said to be strongly c*g- continuous if the inverse image of every c*g- open set in Y is open in X.

Theorem 3.2

If a map $f: X \to Y$ from a topological space X into a topological space Y in strongly c*gcontinuous, then it is continuous but not conversely.

Proof:-Assume that f in strongly c^*g continuous. Let G be any open set in Y. Since, every open set in c^*g - open, G is c^*g open in Y. Since f is strongly c^*g continuous, $f^1(G)$ is open in X. Therefore f is continuous.

The converse need not be true as seen from the following example.

Example 3.3: Let $X = Y = \{a,b,c\}$ with the topologies $\tau_1 = \{\phi, X, \{a\}\{a,b\}\}$ & $\tau_2 = \{\phi, Y, \{a,b\}\}$. Define a map $f(X, \tau_1) \rightarrow (Y, \tau_2)$ be the identity. Then f is continuous. But f is not strongly c*g continuous since, for the c*g open set $G=\{b\}$ in Y, f¹(G) = {G} is not open in X. **Theorem 3.4:** If f : X \rightarrow Y from a topological space X into a topological space Y is strongly continuous then it is strongly c*gcontinuous but not conversely.

Proof:- Assume that f is strongly continuous. Let G be any c^*g open set in Y. Since f is strongly continuous, f^1 (G) open in X by the definition of strongly continuous. Therefore f is strongly c*g-continuous.

The converse need not be true as seen from the following example.

Example 3.5: Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,x,\{a\},\{b\},\{a,b\}\}$ and $\sigma =$ $\{\phi,y \{a\}\}$.Consider a map $f: (x, \tau) \rightarrow (y, \sigma)$ is defined by f(a)=f(c)=c & f(b)=b. Then f is strongly c*g- continuous. But not strongly continuous. For the subset $\{a\}$ of Y $f^{-1}(\{a\}) = \{a\}$ is open in X, but is not closed in X. **Theorem 3.6:** If $f: X \to Y$ is strongly c^*g continuous, then it is strongly g^* -continuous but not conversely.

Proof: Assume that f is strongly c^*g continuous. Let G be any strongly g- open set in Y. Since every strongly g- open set is c^*g - open, G is c^*g - open in Y. Since f is strongly c^*g - continuous, $f^1(G)$ is open in . Therefore f is strongly g*-continuous.

The converse need not be true as seen from the following example.

Example 3.7: Let $X = Y = \{a,b,c\}$ be topological spaces with the topologies $\tau =$ $\{\phi, X, \{a\}, \{c\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{$ $\varphi, y \{a, c\}$. Let f: $(X, \tau) \rightarrow (y, \sigma)$ be the Then f is strongly g*identity map. continuous, but not strongly c*gcontinuous. For, $\{b\}$ is a c*g- open in Y, but $f({b} = {b})$ is not open in X.

Therorem 3.8: A map $f: (X \to Y)$ from a topological spaces X into a topological space Y is strongly c*g- continuous if and if only if the inverse image of every c*g-closed set in Y is closed in X.

Proof:- Assume that f is strongly c^*g continuous. Let G be any c^*g - closed set in Y. Then G^c is c^*g - open in Y. Since f is strongly c^*g - continuous $f^{-1}(G^c)$ open in X. But $f^{1}(G^{c}) = X - f^{1}(G)$ and so $f^{1}(G)$ is closed in X.

Conversely assume that the inverse image of every c*g- closed set in Y is closed in x. Let G be any c*g- open set in Y. Then G^c is c*g- closed in Y. By assumption, f¹ (G^c) is closed in X. But f¹ (G^c) = X - f¹ (G^c) and so f¹ (G) is open in X. Therefore f is strongly c*gcontinuous.

Remarks3.9: From the above observation we get the following diagram.

Strongly continuity

 \downarrow

Strongly c*g continuous

 \downarrow

Continuity.

In the above diagram none of the implications can be reversed.

Theorem 3.10: If a map $f : X \to Y$ is strongly c*g- continuous and a map g: Y $\to Z$ is c*g- continuous, then the composition $g \circ f : X \to Z$ is continuous

Proof:- Let G be any open set in Z. Since g is c^*g - continuous, $g^{-1}(G)$ is c^*g - open in Y. Since f is strongly c^*g - continuous, f^{-1}

 $[g^{-1}(G)]$ is open in X. But $(g \circ f)^{-1}(G) = f^{-1}$ $[g^{-1}(G)]$. Therefore $g \circ f$ is continuous.

Definition 3.10 A map $f: X \to Y$ is said to be perfectly c^*g - continuous if the inverse image of every c^*g - open set in Y is both open and closed in X.

Theorem 3.11: A map $f : X \rightarrow Y$ from a topological space X into a topological space Y is perfectly c*g- continuous, then it is strongly c*g- continuous but not conversely.

Proof: Assume that f is perfectly c^*g continuous. Let G be any c^*g - open set in Y. Since f is perfectly c^*g - continuous, $f^{-1}(G)$ is open in X. Therefore f is strongly c^*g continuous.

The converse need not be true as seen from the following example.

Example 3.12: Let X =Y= {a,b,c} ,with topologies $\tau_1 = \{\phi, x, \{a\}, b \{a, b\}\}$ and $\tau_2 =$ { $\phi_1, y, \{a, b\}$. Define f: (X, τ_1) \rightarrow (y, τ_2) as the identity map. Then f is strongly c*gcontinuous but not perfectly c*gcontinuous. Since, for the c*g open set G={a} in Y, $f^{-1}(G) = \{G\}$ is open but not closed in X. **Theorem 3.13:** If a map $f : X \rightarrow Y$ is perfectly c^*g - continuous then it is perfectly g^* - continuous but not conversely.

Proof: Assume that f is perfectly c^*g continuous. Let G be a a c^*g - open set in Y. Then G is c^*g - open in Y. Since f is perfectly c^*g - continuous, $f^1(G)$ is both open and closed in X. Therefore f is perfectly g^* - continuous.

The converse need not be true as seen from the following example.

Example 3.14:Let X =Y={a,b,c) with topologies $\tau = \{\phi, X, \{a\}, \{b,c\}\}$ and $\sigma =$ $\{\phi, Y \{a\}\}$.Define a map f: $(X, \tau) \rightarrow (Y, \sigma)$ as the identify function. Then f is perfectly g*- continuous, but not perfectly c*g- continuous, since for the c*g open set {b} in Y f¹ {(b) ={b} is not both open and closed in X.

Theorem 3.15: If a map $f : X \to Y$ from a topological space X into a topological space Y is perfectly c*g- continuous if and only if $f^{-1}(G)$ is both open and closed set in X for every c*g- closed set G in Y.

Proof: Assume that f is perfectly c^*g continuous. Let F be any c^*g - closed set in Y. Then F^c is c^*g - open set in Y. Since f is perfectly c^*g - continuous, $f^1(F^c)$ is both open & closed in X . But $f^1(F^c) = X - f^1(F)$ and also $f^1(F)$ is both open and closed in X.

Conversely assume that the inverse image of every c*g- closed set in Y is both open and closed in X. Let G be any c*g- open set in Y . Then G^c is c*g- closed in Y. By assumption $f^1(G^c)$ is both open and closed in Y. But $f^1(G^c) = X - f^1(G)$ and so $f^1(G)$ is both open and closed in Y. Therefore f is perfectly c*g- continuous.

Remark 3.16: From the above observations have the following we implications them and none of are revereable.

4. c*g – locally continuous function in topological spaces

Definition 4.1:

A subset S of X is called c^*g - locally closed set [c^*glc -set] if S= A \cap B, Where A is c^*g open in X and B is c^*g - closed in X .C*GLC(X) denotes the class of all c^*g - sets in X.

Theorem 4.2: If a subset S of X is locally closed then it is c*g- locally closed but not conversely.

Proof:Let $S= P \cap Q$, Where P is open in X and Q is closed in X. Since every open set is c*g- open and every closed, S is c*glocally closed in X.

The converse need not be true as seen from the following examples.

Example 4.3: Consider the topological space $x = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}\}$. Then the set $\{a, c\} c^*g$ - locally closed but is not locally closed.

Theorem 4.4: If a subset S of X is strongly generalized locally closed in X then S is c*g- locally closed but not conversely.

Proof :-Let $S = P \cap Q$, where P is strongly gopen and q is strongly g- closed in X. Since strongly g- open implies c^*g - open and strongly g- closed implies c^*g - closed, S is c^*g - locally closed set in X. **Example 4.4:** Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}\}$. Then the set $\{a, b\}$ c*g - locally closed but is not strongly generalized locally closed.

Theorem 4.5: If a subset S of X is c*glocally closed in X, then S is regular generalized locally closed but not conversely.

Proof :- Let $S = P \cap Q$, Where P is c*glocally closed and Q is c*g- locally closed in X.Since c*g- locally closed implies rgclosed and c*g- locally open implies rgopen. Therefore S is regular generalized locally closed.

Example 4.6: Let $X=\{a,b,c,d\},$ $\tau=\{\phi,X,\{a\}\{b\},\{a,b\}\}$. Then $\{d\}$ is rglocally closed but is not c*g- locally closed set in X.

Theorem 4.7: If A is c^*g - locally closed in X and B is c^*g - open (respectively closed) in X, then A \cap B is c^*g - locally closed in X. **Proof :-**There exist a c^*g - open set P and a c^*g - closed set Q such that A =P \cap Q. Now, A \cap B= (P \cap Q) \cap B = (P \cap B) \cap Q [respectively A \cap B = P \cap (Q \cap B)]. Since P \cap B is c^*g - open [respectively Q \cap B is c^*g closed], A \cap B is c^*g - locally closed in X.

Definition 4.8:

A subset S of a topological space X is called c*glc*- set if $S=P\cap Q$ where P is c*g- open in X and Q is closed in X.

Definition 4.9:

A subset S of a topological space X is called c*glc**- set if $S=P\cap Q$ where P is open in X and Q is c*g- closed in X.

Theorem 4.10:

i) If A is c*glc* –set in X and B is c*g- open (or closed), then A∩ B is c*glc*- set in X.
ii) If A is glc **- set in X and B is closed then A∩ B is c*glc**.

Proof :-

i) Since A is c*glc*- set ,there exist a c*gopen set P and a closed set Q .Such that A = $P \cap Q$. Now $A \cap B = (P \cap Q) \cap B = (P \cap B)$ $\cap Q$. Since $P \cap Q$ is c*g- open and Q is closed, $A \cap B$ is c*glc*- set. In the case of B being a closed set, we have

 $A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B)$. Since P is c*g- open and $Q \cap B$ is closed, $A \cap B$ is c*glc*- set.

ii) Since A is $c*glc^{**}$, there exist an open set P and a c*g- closed set Q such that A= $(P\cap Q)$. Now $A\cap B = (P\cap Q) \cap B = P\cap (Q \cap B)$. Since Q is c*g-closed and B is closed, $Q\cap B$ is c*g-closed. Therefore, $A\cap B$ is $c*glc^{**-}$ set. **Theorem 4.11:** A subset A of a topological space X is c*glc*-set if and only if there exists a c*g- open set P such that $A=P\cap cl(A)$.

Proof :-Assume that A is c*glc*-set. There exists a c*g- open set P and a closed set Q such that A = P \cap Q. Since A \subset Q and Q is closed, A \subset cl(A) \subset Q. Then A \subset P and A \subset cl(A), and hence A \subset P \cap cl(A). To prove the reverse inclusion let X \in P \cap cl(A).Then X \in P and X \in cl(A) \cap Q and so X \in P \cap Q =A. Hence P \cap cl(A) \subseteq A. Therefore A=P \cap cl(A).

Conversely assume that there exist a c^*g open set P such that $A = P \cap cl(A)$. Now P is c^*g - open set and cl(A) is closed. Therefore A is c^*glc^* - set.

Theorem 4.12: If a subset A of a topological space X is $c*glc^{**}$ - set then there exists an open set P such that $A = P \cap cl^*(A)$, where $cl^*(A)$ is the closure of A as defined by Dunham [19].

Proof :- By definition there exist an open set P and a c*g- closed set Q such that $A = P \cap Q$. Then, since $A \subset cl^* (A) \subset Q$, We have $A \subset P \cap cl^*(A)$. Conversely , if $X \in P \cap cl^*(A)$,then $X \in Q$ and $X \in P$. Then, $X \in Q \cap P = A$ and hence $P \cap cl^*(A) \subset A$. Therefore $A = P \cap cl^*(A)$. **Theorem 4.13:** If A and B are c*glc*- set in a topological space X then A \cap B is c*glc*- set in X.

Proof :-From the assumptions there exist c^*g - open sets P and Q such that $A = P \cap cl(A)$ and $B = Q \cap cl(B)$. Then $A \cap B = (P \cap Q) \cap [(cl(A) \cap cl(B)]]$. Since $P \cap Q$ is

c*g-open and cl(A) \cap cl(B) is closed , A \cap B is c*glc* - set.

5. c*g - locally closed continuous functions

Notations: - LC(X) denotes the class of all locally closed sets in a topological space X and C*GLC(X) denotes the class of all c*glc- sets in X.

Similarly, C*GLC*(X) [respectively C*GLC**(X)] denotes the class of all c*glc*-sets [respectively c*glc** - sets]

Ganster and Reilly [2] have proved that

Continuity ↓ LC- irresolute ↓ LC- continuity Pushpalatha [17] has proved that LC – continuity ↓

S*GLC- irresoluteness

↓ S*GLC- continuity ↓

GLC – continuous.

But none of these implications can be reversed. Also they observed that the composition of two S*GLC- irresolute functions is S*GLC- irresolute and the composition of a S*GLC – continuous function is S*GLC- continuous.

Definition 5.1.

A function $f : X \rightarrow Y$ from a space X into a space Y is called

(i) LC- irresolute [2] if $f^{-1}(V) \in LC(X)$ for each V in LC(Y).

(ii) S*GLC- irresolute [17] if f^1 (V) \in

 $S^{*}GLC(X)$ for each $V \in S^{*}GLC(X)$.

(iii) LC-continuous [2] if $f^{-1}(V) \in LC(X)$ for each open set V in Y.

(iv) S*GLC - continuous [17] if $f^1(V) \in$

LC(X) for each open set V in Y.

Definition 5.2.

A function f: $x \rightarrow y$ from a space X into a space Y is called

i) C*GLC-irresolute if $f^{-1}(V) \in C^*GLC(X)$ for each $V \in C^*GLC(X)$.

ii) C*GLC-continuous if $f^{-1}(V) \in C^*GLC(X)$ for each open set V in Y.

iii) C^*GLC^* – irresolute (respectively C^*GLC^{**-} irresolute) if $f^1(V) \in$ $C^*GLC^*(X)$ (respectively $f^1(V) \in$ C*GLC**(X)) for each $V \in C^*GLC^*(Y)$ (respectively $V \in C^*GLC^{**}(X)$). iv) C*GLC* - continuous (respectively C*GLC**- continuous) if $f^{-1}(V) \in$

C*GLC*(X) (respectively f^{-1} (V) ∈ C*GLC**(X)) for each open set V inY.

Theorem 5.3: If a function $f : X \rightarrow Y$ from a space X into a space Y is LC- continuous then it is C*GLC- continuous but not conversely.

Proof: - Assume that f is LC -continuous. Let V be an open set in Y. Then $f^{1}(v)$ is locally closed in Y. But locally closed sets are c*g- locally closed sets. Therefore $f^{-1}(V)$ \in C*GLC(X) and so f is C*GLCcontinuous. The converse need not be true as seen from the following example.

Example 5.4: Let $X = Y = \{a,b,c\}, \quad \tau$ = { $\phi,x,\{a\}$ } and σ be the discrete topology. Define f : $(X,\tau) \rightarrow (Y,\sigma)$ as the identity function .Then f is not LC-continuous. Because {b} is open in Y but f¹{b} = {b} is not locally closed in y, clearly f is C*GLCcontinuous.

Theorem 5.5: If function f: $X \rightarrow Y$ from a space X into a space Y is C*GLC- irresolute then it is C*GLC- continuous.

Proof: - Let V be open in Y. Since every open set is c^*g - open set and every c^*g - set open set is c^*g - locally closed , V \in C*GLC(Y). Since f is C*GLC- irresolute, f ¹(V) \in C*GLC(X). Therefore f is C*GLC – continuous. Thus we have the following implications

i) Continuity \downarrow LC- irresolute \downarrow LC- continuity \downarrow C*GLC- continuous ii) C*GLC-irresoluteness \downarrow C*GLC - continuity

However none of the above implications can be reversed.

Theorem 5.6: If function f: $X \rightarrow Y$ from a space X into a space Y be C*GLC-continuous and A be a c*g- open subset of X (respectively closed). Then the restriction f/A: A \rightarrow Y is C*GLC- continuous.

Proof: - Let V be open in Y.Let f ¹(V) = W. Then W is c*glc in X.Since f is C*GLC- continuous .Let $W=P\cap Q$ where P is c*g - open in X and Q is c*g - closed in X. Now $(f/A)^{-1}(V) = W \cap A = (P \cap Q) \cap A = (P \cap A) \cap Q.$

But $P \cap A$ [respectively $A \cap G$] is c*gclosed by [18] is c*g open in X and so the restriction f/A is C*GLC- continuous.

Theorem 5.7: (i) Let $f : X \rightarrow Y$ be C*GLCcontinuous and B be an open subset of Y containing f(X). Then $f : X \rightarrow B$ is C*GLCcontinuous.

(ii) If f: $X \rightarrow Y$ and g : $Y \rightarrow Z$ are both C*GLC – irresolute then the composition $g \circ f$: $X \rightarrow Z$ is C*GLC – irresolute.

(iii) If $f: X \rightarrow Y$ is C*GLC – continuous and g: Y \rightarrow Z is continuous then the composition $g \circ f: X \rightarrow Z$ is C*GLC- continuous.

Proof : - (i) Let V be open in B.Since B is open in Y, the set V is open in Y.Therefore $f^{-1}(V)$ ic c*glc in X. Hence f :

 $X \rightarrow B$ is C*GLC- continuous.

(ii) Let V be $c^*glc - set$ in Z. Since g is C*GLC- irresolute, g^{-1} (V) is c^*glc in Y. Since f is C*GLC – irresolute,

 $f^{-1}(g^{-1}(V))$ is c*glc in X .But $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ and so $g \circ f$ is C*GLC- irresolute. (iii) Let V be open in Z. Since g is continuous $g^{-1}(V)$ is open in Y. Since f is C*GLC- continuous, $f^{-1}(g^{-1}(V))$ is c*glc in X.But $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ and so $g \circ f$ is C*GLC – continuous.

References

[1]. S.P.Arya and R.Gupta,On strongly continuous mappings,Kyungpook Math .J. ; 14(1974), 131-143.

[2] M.Gainter and J.L.Reilly, Locally closed sets and LC- continuous finction, int.J.maths .Sci. ; 12(1989),417-424.

[3] N.Levine, strong continuity in topological spaces, Amer. Math.Monthly ; 67 (1960), 269.

[4] J.Arockiarani,K.Balachandran and M.Gainter Regular generalized locally closed sets and RGL- continuous function , Indian J.Pure Appl.Math.; 28(1997),661-669.

[5] K.Balachandran, P.Sundaram and
H.Maki Generalized locally closed sets and
GLC- Continuous functions, Indian J. Pure
.Appl.Math.; 27(1996), 235-244.

[6] D.S.Jankovic, mappings of extremely disconnected spaces,

Acta. Math.hungae,;46(1985),83-92.

[7] N.Levine, A decomposition of continuity in topological spaces, Amer.Math.monthly 68(1961),44-46.

[8] A.Pushpalatha, strongly generalized continuous mappings in topological spaces,proceedings of the 87thsession of the Indian science congress, Pune (2000).p:25.

[9]. T.Noiri, A function which preserves connectedness, Casopis, Mat., 107 (1982), 393-396.

[10]. T.Noiri, Strong form of continuity in topological spaces, Rend. Circ. Math.Palermo, (1986), 107-113.

[11]. K.Kavithamani, A Study of c*g-homeomorphisms in topologicalspaces., IJERT Volume.1, Issue 9(November-2012) publication.

[12]P.Sundaram, Studies on generalizations of continuous maps in topological spaces,Ph.D., Thesis, Bharathiar University,Coimbatore. (1991).

[13]. C.Kuratowski and W.Sierpinski., Surles differences deux ensembles fermes, Tohoku Math.J., 20 (1921), 22-25.

[14]. A.H.Stone, Absolutely FG Spaces,
Proc. Amer. Math. Soc., 80 (1980), 515-520.
[15]. M.Stone, Application of the theory of
Boolean rings to general topology, Trans.
Amer. Math. Soc., 41 (1937), 374-481.

[16].G.Di Maio and T.Noiri, On s- closed spaces, Indian J. Pure appl. Math., 18 (1987), 226-233.

[17].A.Pushpalatha, Strongly generalizedhomeomorphisms in topological spaces,Ph.D., Thesis, Bharathiar University,Coimbatore.

[18].N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo; 19 (1970), 89-96.

[19]. W.Dunham and N.Levine, Further results on generalized closed sets in topology, Kyungpook Math. J. .; 20 (1980)169-175.

[20]N.Boburbaki, General topology , Addison-wesley, Reading, Mass., 1966.

[21]. N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological spaces, PhD Thesis, Bharathiar University, Coimbatore, (1999). University. Ser. A. Math., 16(1995),35-48.

[22]. K.Kavithamani, c*g-closed sets in topological spaces., Antartica journal, vol 10 (2013).[To Appear].