
Phase 1
• Compute the standard deviation for each row

Phase 2
• Select the minimum of booth rows

Phase 3
• Insert the corresponding city and discard its column.

Phase 4
• Transform the generated tour to be a cycle

Stochastic Column-Row Method for Travelling

Salesman Problem: the Dhouib-Matrix-TSP2

Stochastic Column-Row Method: Dhouib-Matrix-TSP2

Souhail Dhouib
Department of Industrial Management,

Higher Institute of Industrial Management

Sfax University, Tunisia

Abstract—In this paper, a stochastic method, named Dhouib-

Matrix-TSP2, is designed and developed to solve the travelling

salesman problem. This method based on our last column-row

method (Dhouib-Matrix-TSP1) is a stochastic process used as a

tool to enrich the diversification phase.

The result test shows that the diversification by the means of
the stochastic process generates the shortest total transport
distance.

Keywords—Combinatory Optimization; Metaheuristic;

Column-Row Method; Stochastic

I. INTRODUCTION

Recently in (Dhouib, 2021), we developed a new
constructive method named Dhouib-Matrix-TSP1 in order to
quickly find the optimal or near optimal solution for the
Travelling Salesman Problem (TSP). This method (Dhouib-
Matrix-TSP1) is a deterministic algorithm. Whereas, in this
paper, we present the Dhouib-Matrix-TSP2 which is a
stochastic version of Dhouib-Matrix-TSP1. This stochastic
technique is used as a way to diversify the research space.
Hence, this process will allow to generate different realizable
solutions.

The outlines of the paper are as follow. In section 2, the
travelling salesman problem is described. In section 3, the
Dhouib-Matrix-TSP1 is presented. In section 4, a new
stochastic column-row algorithm (Dhouib-Matrix-TSP2) to
find optimal or near optimal solution for the TSP is depicted.
In section 5, the application of our proposed method on a
10x10 distance matrix is provided. Finally, concluding
remarks are given in section 6.

II. TRAVELLING SALESMAN PROBLEM

In the travelling salesman problem, the aim is to find the

shortest roundtrip. This latter is essentially a Hamiltonian

tour, where a set of cities are visited only once except the

starting city which will be also the ending one.

The travelling salesman problem is NP-hard. However, it

is easily formulated as:

Optimize
1 1

n n

ij ij

i j

d x
= =

 (1)

Subject to

1

1

1, 1,...,

1, 1,...,

0 1, 1,..., , j 1,...,

n

ij

j

n

ij

i

ij

x i n

x j n

x or i n n

=

=

= =

= =

= = =



 . (2)

In the literature, there are several research works interested
in solving the TSP. (Mehmet & Kalayci. 2021) applies the
variable neighborhood search algorithm to optimize the cost-
balanced TSP. (Saji & Barkatou, 2021) designs a bat
metaheuristic to solve the TSP. (Krzysztof & Urszula, 2020)
solves the asymmetric travelling salesman problem using the
pheromone-based harmony search metaheuristic. (Akanksha
& Sharma, 2019) uses the particle swarm optimization
algorithm to solve the TSP. (Todosijevic et al., 2017) develops
a variable neighborhood search metaheuristic to optimize the
TSP.

III. DHOUIB-MATRIX-TSP1

In our previous research work (Dhouib, 2021), we have

presented the deterministic Dhouib-Matrix-TSP1 method

which is composed of four easy phases (see Fig 1.).

Fig. 1. Four phases for Dhouib-Matrix-TSP1

The four phases of Dhouib-Matrix-TSP1 are described as
follow. At first, calculate the standard deviation for each row
then find the minimal element existing in the position dxy in
the row of the smallest deviation. For more details see
(Dhouib, 2021).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS030318
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 03, March-2021

524

www.ijert.org
www.ijert.org
www.ijert.org

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0.2574

0.2388

0.2175

0.1809

0.2654

0.2108

0.1399

0.2476

0.2283

0.1997

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 Next, insert x and y cities in the list Cycle_List and
discard the columns of x and y.

At second, compute the minimal element for row x and
row y and select the smallest between them named z.

At third, add z in the Cycle_List and discard its column.
Then, return to the last phase if there are still non discarded
columns in the matrix, unless, go to the next phase.

Finally, transform the generated route in Cycle_List to be a
roundtrip: translate the cities in the beginning of the roundtrip
at the end until the starting city will be at the first position. In
addition, insert the starting city at the last position in the
roundtrip.

IV. DHOUIB-MATRIX-TSP2 DESIGN

This section will describe the proposed method: the
Dhouib-Matrix-TSP2. Actually, it is a stochastic version of
the Dhouib-Matrix-TSP1. Whereas, the selection of the
minimal element is replaced by the random selection from k
minimal elements: this will enhance the diversification of the
research space.

The pseudo-code of the proposed approach, Dhouib-
Matrix-TSP2, is presented as follow (see Fig 2).

Fig. 2. Dhouib-Matrix-TSP2

V. EXPERIMENTS AND RESULTS ANALYSIS

The proposed methods, namely Dhouib-Matrix-TSP1 and

Dhouib-Matrix-TSP2, are developed using Python language.

A numerical example from (Mandziuk, 1996), 10x10 matrix

(see Fig 3.), is used to prove the good convergence and the

efficiency of Dhouib-Matrix-TSP2.

Fig. 3. Distance Matrix

Well, to quickly and effectively search the optimal path
for the ten cities of the travelling salesman problem, we first
apply the Dhouib-Matrix-TSP1 which needs only 10
iterations.

Step 1: Compute the standard deviation for each row. Then,

select the minimal value (0.1399) which is in row 7.

Fig. 4. Compute the standard deviation for each row

Step 2: Select the minimal element in row 7 which is 0.262 in

position d7,10. Thus, insert cities 7 and 10 in the list and

discard their columns (See Fig 5.).

Fig. 5.

Discard columns

7 and 10

Step

3:

Select the minimal element in row 7

and row

10 and

select the smallest

one

which is 0.064 in position d10,3. Thus,

insert city

3

after city 10 and

discard its

column

(See Fig 6.).

Fig. 6. Discard column 3

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS030318
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 03, March-2021

525

www.ijert.org
www.ijert.org
www.ijert.org

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

0 0.629 0.408 0.564 0.117 0.620 0.327 0.814 0.799 0.370

0.629 0 0.228 0.212 0.712 0.738 0.461 0.304 0.626 0.260

0.407 0.228 0 0.265 0.500 0.672 0.327 0.480 0.668 0.064

0.564 0.212 0.264 0 0.612 0.530 0.304 0.250 0.427 0.242

0.117 0.712 0.500 0.617 0 0.569 0.340 0.865 0.789 0.454

0.620 0.738 0.672 0.530 0.569 0 0.362 0.663 0.323 0.610

0.326 0.461 0.326 0.304 0.340 0.362 0 0.539 0.474 0.262

0.814 0.304 0.480 0.250 0.865 0.663 0.539 0 0.430 0.476

0.798 0.626 0.668 0.428 0.789 0.323 0.474 0.430 0 0.622

0.370 0.260 0.064 0.242 0.454 0.610 0.262 0.476 0.622 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Step 4: Compute the minimal element in row 7 and row 3 and

select the smallest one which is 0.228 in position d3,2. Thus,

insert citiy 2 after city 3 and discard its column (See Fig 7.).

Fig. 7. Discard column 2

Step 5: Select the minimal element in row 7 and row 2 and

select the smallest one which is 0.212 in position d2,4. Thus,

insert city 4 after city 2 and discard its column (See Fig 8.).

Fig. 8. Discard column 4

Step 6: Select the minimal element in row 7 and row 4 and

select the smallest one which is 0.250 in position d4,8. Thus,

insert city 8 after city 4 and discard its column (See Fig 9.).

Fig. 9. Discard column 8

Step 7: Select the minimal element in row 7 and row 8 and

select the smallest one which is 0.326 in position d1,7. Thus,

insert city 1 before city 7 and discard its column (See Fig

10.).

Fig. 10. Discard column 1

Step 8: Select the minimal element in row 1 and row 8 and

select the smallest one (d1,5). Thus, insert city 5 before city 1

and discard its column (See Fig 11.).

Fig. 11. Discard column 5

Step 9: Select the minimal element in rows 5 and 8. Thus,

insert city 9 after city 8 and discard its column (See Fig 12.).

Fig. 12. Discard column 9

Step 10: Select the minimal element in rows 5 and 9. Thus,

insert city 6 after city 9 and discard its column (See Fig 13.).

Fig. 13. Discard column 6

Finally, we need to transform the generated tour {5-1-7-

10-3-2-4-8-9-6} to a roundtrip by translating the cities in the

first position to the end until the starting city will be at the

first position and add the starting city at the last position {1-

7-10-3-2-4-8-9-6-5-1}.

So, using the Dhouib-Matrix-TSP1, we found 2.78211
(deviation of 3.17%) in only 10 iterations using the standard
deviation metric (see Fig 14.).

Fig. 14. The solution found by Dhouib-Matrix-TSP1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS030318
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 03, March-2021

526

www.ijert.org
www.ijert.org
www.ijert.org

When we insert the Dhouib-Matrix-TSP2 in an iterative
structure, it can easily find the optimal solution (2.69646). In
Fig 15., we can see the step-by-step generation of the optimal
solution using Dhouib-Matrix-TSP2.

Fig. 15. The optimal solution found by Dhouib-Matrix-TP2

VI. CONCLUSION

This paper aims to insert a stochastic process in a
deterministic optimization method (Dhouib-Matrix-TSP1), in
order to generate the new method: Dhouib-Matrix-TSP2. The
distinguishing feature of this new technique resides in the
random selection of the n smallest elements which forced the
fetch of new solutions, not simply sought the smallest value as
in Dhouib-Matrix-TSP1.

This new stochastic method is developed using Python
language and the final test result proves its effectiveness and
good convergence. In our future research works, larger scale
TSP will be explored through our new method Dhouib-
Matrix-TSP2 to search the optimal path.

REFERENCES
[1] Dhouib S., "A New Column-Row Method for Traveling Salesman

Problem: The Dhouib-Matrix-TSP1," International Journal of Recent
Engineering Science, vol. 8, Issue 1, pp.6-10, 2021.

[2] Mandziuk J., “Solving the Travelling Salesman Problem with a
Hopfield - type neural network,” Demonstratio Mathematica, vol. 29,
issue 1,·1996.

[3] Glover F., “Multi-wave algorithms for metaheuristic optimization,”
Journal of Heuristics, vol. 22, pp. 331-358, 2016.

[4] Saji Y. and Barkatou M., “A discrete bat algorithm based on Lévy
flights for Euclidean traveling salesman problem,” Expert Systems with
Applications, vol.172(15), pp.114639, 2021.

[5] Todosijevic R., Mjirda A., Mladenovic M., Hanafi S., and Gendron, B.,
“A general variable neighborhood search variants for the travelling
salesman problem with draft limits,” Optimization Letters, vol.11(6),
pp.1047-1056, 2017.

[6] Krzysztof S. and Urszula B., “The Pheromone-Based Harmony Search
Algorithm for the Asymmetric Traveling Salesman Problem,” Applied.
Sciences, vol.10(18), pp. 6422, 2020.

[7] Akanksha S. & Sharma R. S., “Design of Semi-chaotic Integration-
Based Particle Swarm Optimization Algorithm and Also Solving
Travelling Salesman Problem Using It,” Soft Computing for Problem
Solving, pp. 695-709, 2019.

[8] Mehmet A. A. and Kalayci C. B., “A Variable Neighborhood Search
Algorithm for Cost-Balanced Travelling Salesman Problem,”
Metaheuristics for Combinatorial Optimization, pp. 23-36, 2021.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS030318
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 03, March-2021

527

www.ijert.org
www.ijert.org
www.ijert.org

