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Abstract - The increasing frequency and intensity of forest fires
have created an urgent need for advanced systems capable of
predicting, modelling, and mitigating wildfire risks. This study
explores the simulation of forest fires using Artificial Intelligence
and Machine Learning (AI/ML) techniques, integrating
environmental variables such as temperature, humidity, wind
speed, vegetation density, and historical fire patterns. Machine
learning models-including random forests, gradient boosting, and
deep neural networks-are employed to identify key fire-triggering
factors and forecast fire spread dynamics. Additionally, spatial
data from remote sensing and geographic information systems
(GIS) are incorporated to generate realistic fire-behaviour
simulations. The proposed AI/ML-driven framework enhances the
accuracy and speed of fire prediction compared to traditional
mathematical or physics-based models, enabling real-time
scenario generation and early-warning insights. Results
demonstrate the potential of AI/ML techniques to support
decision-making in wildfire management, optimize resource
allocation, and reduce environmental and socio-economic impacts.
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I. INTRODUCTION

Forest fires are among the most destructive natural hazards,
causing extensive ecological damage, economic loss, and
threats to human life. In recent decades, factors such as climate
change, rising temperatures, prolonged droughts, and
expanding human activities have contributed to a significant
increase in both the frequency and severity of wildfires
worldwide. Traditional fire-prediction and simulation models,
which rely heavily on manual observation or physics-based
formulations, often struggle to capture the complex, nonlinear
interactions among environmental variables that influence fire
ignition and spread.

The rapid advancement of Artificial Intelligence (AI) and
Machine Learning (ML) has opened new pathways for
developing more accurate, adaptive, and data-driven forest-fire
simulation systems. AI/ML techniques can process large
volumes of heterogeneous data—such as satellite imagery,
meteorological records, vegetation indices, and historical fire
datasets—to identify hidden patterns and generate predictive

insights that surpass the capabilities of conventional models.
By leveraging algorithms such as random forests, neural
networks, and deep learning architectures, researchers can
simulate fire dynamics, forecast potential fire zones, and model
fire propagation under different climatic scenarios.
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Integrating AI/ML with remote sensing and Geographic
Information Systems (GIS) further enhances the precision and
spatial awareness of forest-fire simulations. These advanced
tools allow for real-time analysis, rapid assessment of fire
behaviour, and scenario-based predictions that support
emergency response teams in decision-making. As a result, Al-
driven wildfire simulation has emerged as a powerful approach
for improving fire-management strategies, reducing risk, and
strengthening resilience in vulnerable ecosystems.

Forest fires are becoming more common and intense due to
climate change and human activities. Traditional methods of
predicting and simulating these fires often cannot fully capture
the complex factors that influence how fires start and spread.
Artificial Intelligence (AI) and Machine Learning (ML) offer
powerful tools to improve wildfire prediction because they can
analyses large amounts of data—such as weather conditions,
satellite images, and vegetation information—and identify
patterns that humans may miss. By using AI/ML models along
with GIS and remote-sensing data, researchers can create more
accurate and realistic simulations of fire behaviour. These
advanced techniques help in forecasting fire risks,
understanding how fires might spread, and supporting faster,
more informed decision-making in wildfire management.

The rapid advancement of Artificial Intelligence (AI) and
Machine Learning (ML) has opened new pathways for
developing more accurate, adaptive, and data-driven forest-fire
simulation systems. AI/ML techniques can process large
volumes of heterogeneous data—such as satellite imagery,
meteorological records, vegetation indices, and historical fire
datasets—to identify hidden patterns and generate predictive
insights that surpass the capabilities of conventional models. By
leveraging algorithms such as random forests, neural networks,
and deep learning architectures, researchers can simulate fire
dynamics, forecast potential fire zones, and model fire
propagation under different climatic scenarios. advance
automation in document verification workflows and reduce
dependence on manual review.

II. LITERATURE REVIEW

Forest-fire prediction and simulation have been extensively
studied, with early research relying primarily on physics-based
and empirical models. Traditional models such as FARSITE,
Prometheus, and BEHAVE emphasized fuel characteristics,
topography, and weather parameters to estimate fire spread.
While these methods provided foundational insights into fire
behaviour, they often struggled to incorporate nonlinear
relationships among environmental variables and were limited
in their ability to adapt to dynamic real-world conditions.

Page 1

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

With the increase in computational power and availability of
large-scale environmental datasets, Artificial Intelligence (AI)
and Machine Learning (ML) techniques have emerged as
powerful tools in wildfire research. Early applications of ML
focused on classification and regression models such as
Support Vector Machines (SVM), Random Forests (RF),
and Artificial Neural Networks (ANNSs) to identify fire-prone
regions and predict ignition risks. These models demonstrated
improved accuracy over traditional approaches due to their
ability to learn complex patterns from multidimensional data.

Recent advancements highlight the growing use of deep
learning techniques for both spatial and temporal fire
prediction. Convolutional Neural Networks (CNNs) have
been widely applied to satellite imagery (e.g., MODIS, Landsat)
for tasks such as fire detection, burned-area mapping, and
vegetation analysis. Likewise, Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks
have been used to model sequential meteorological data,
enabling near-real-time forecasting of fire spread under varying
weather conditions.

Another major development in the literature is the
integration of AI/ML models with Geographic Information
Systems (GIS) and remote sensing. These combined systems
allow high-resolution spatial simulations that incorporate
topography, fuel moisture, and wind patterns. Studies using
hybrid approaches—such as combining CNNs with physics-
based fire-spread models—have shown improved predictive
performance and better generalization across different
geographical regions.

Additionally, researchers have explored probabilistic and
ensemble learning approaches to quantify uncertainty in fire
simulation outputs. Ensemble techniques, including Gradient
Boosting and Random Forests, have been especially effective in
providing robust estimates of fire susceptibility and identifying
critical environmental drivers.

Overall, the literature demonstrates a clear trend toward
data-driven, Al-enabled wildfire simulation, offering
enhanced accuracy, adaptability, and scalability compared to
traditional models. These advancements not only improve
predictive capabilities but also support decision-making in
resource allocation, emergency response, and long-term forest
management.

However, these multimodal transformers still rely indirectly
on OCR outputs. Their text embeddings originate from OCR-
generated tokens, meaning that OCR errors continue to affect
downstream performance. Consequently, the reliability of
semantic extraction, especially in noisy or irregular documents,
remains constrained.

The structure of a research report on the simulation of forest
fires using AI/ML techniques typically begins with an
Introduction, which outlines the background of forest fires, the
need for more accurate simulation systems, and how AI/ML
technologies contribute to wildfire prediction. The Literature
Review section then examines previous studies, starting with
traditional modelling approaches such as physics-based and
empirical models, followed by modern machine learning
methods including SVM, Random Forest, ANN, and ensemble
techniques. It also highlights recent advancements in deep
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learning—such as CNNs for image-based fire detection and
LSTMs for time-series forecasting—as well as the integration
of A/ML models with GIS and remote-sensing technologies.
The Methodology section describes the data sources used,
preprocessing steps, model selection, and the overall simulation
framework. Afterward, the Results and Discussion section
presents the performance of the developed models, fire-spread
simulations, comparisons with traditional systems, and an
evaluation of the strengths and limitations. Finally, the
Conclusion summarizes key findings and suggests future
directions for improving AI/ML-based forest-fire simulations,
followed by a References section listing all cited works.

Data Acquisition and Integration

Involves collecting weather data, satellite imagery,
vegetation information, and historical fire records to build a
comprehensive dataset for model training and simulation.

Feature Analysis and Preprocessing

Includes cleaning, normalizing, and selecting relevant
features such as temperature, humidity, wind speed, fuel type,
and topography that strongly influence fire ignition and spread.

Machine Learning and Deep Learning Modeling

Utilizes algorithms like Random Forest, SVM, ANN, CNN,
and LSTM to predict fire occurrence, classify fire-prone areas,
and model fire behavior dynamically.

GIS and Remote Sensing Integration

Combines spatial data and satellite imagery to visualize fire
spread, assess terrain effects, and improve location-based
prediction accuracy.

Fire Spread Simulation Techniques

Focuses on generating realistic simulations using data-
driven models that can reproduce how fire moves across
landscapes under varying environmental conditions.

Performance Evaluation and Validation

Measures accuracy, reliability, and robustness using metrics
such as precision, recall, F1-score, and error rates to compare
the AI/ML model performance against traditional fire models.

Decision Support and Practical Applications

Provides insights for emergency response teams, supports
early warning systems, and assists in planning mitigation
strategies and resource allocation.

Limitations and Future Enhancements

Additionally, researchers have explored probabilistic and
ensemble learning approaches to quantify uncertainty in fire
simulation outputs. Ensemble techniques, including Gradient
Boosting and Random Forests, have been especially effective in
providing robust estimates of fire susceptibility and identifying
critical environmental drivers.
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. III. PROPOSED METHODOLOGY

The proposed methodology for simulating forest fires using
AI/ML techniques involves a systematic workflow consisting of
data collection, preprocessing, model development, and
simulation evaluation. The following steps outline the complete
process:

1. Data Collection

Data will be gathered from multiple reliable sources, including:

o Meteorological data (temperature, humidity, wind
speed, rainfall) from weather agencies.

e Remote sensing data such as MODIS or Landsat
satellite imagery.

o Vegetation and land-cover maps showing fuel type and
density.

e  Historical forest fire records from fire management
authorities.
This diverse dataset enables the model to learn
complex relationships affecting fire ignition and
spread.

2. Data Preprocessing
The collected data undergoes processing to enhance its
quality and usability:
e Removal of missing, inconsistent, or noisy values.
e Normalization and scaling of numerical variables.

e Extraction of vegetation indices (e.g., NDVI) from
satellite images.

e Encoding of categorical features such as fuel type or
terrain class.

e Spatial alignment of data layers within a GIS
environment.
Preprocessing ensures the dataset is clean, consistent,
and suitable for ML model training.

Fig. 1. System architecture for OCR-free cross-document
inconsistency detection.

B. Workflow Pipeline

The operational workflow consists of sequential processing
stages, shown in Fig. 2, designed to transform raw document
images into structured comparison outcomes.
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3. Feature Engineering

Relevant features influencing fire behaviour are derived or
selected, including:

e Climatic variables (temperature, humidity).
o Fuel characteristics (vegetation type, density).
o Topography (elevation, slope, aspect).

o Wind direction and speed.

e Proximity to human activities.
Feature engineering improves model accuracy and
interpretability.

4. Model Development

Multiple AI/ML algorithms will be developed and compared to
determine the best-performing model:

e  Machine Learning models: Random Forest, Support
Vector Machine, Gradient Boosting.

e Deep Learning models: Convolutional Neural
Networks (for image analysis), LSTM networks (for
time-series prediction).

Models are trained using labelled data from past fire
events and validated using a separate test set.

5. Fire Spread Simulation

The predicted fire ignition probability and environmental
conditions are fed into a simulation module:

e The module uses spatial layers from GIS to simulate
fire movement.

e Deep learning outputs (e.g., hotspot detection) guide
the directional spread.
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e  The simulation updates dynamically based on weather
conditions and fuel availability.
This produces realistic fire-spread patterns for
different scenarios.

6. Performance Evaluation
Model and simulation performance will be assessed using:
Fl-score for

e Accuracy, Precision, Recall,

classification tasks.

e RMSE or MAE for prediction tasks.

e Spatial accuracy of simulated fire boundaries
compared to actual burned areas.
The best-performing model will be selected for
deployment.

7. Decision Support Integration

The final system will be integrated into a user-friendly interface:
e  Fire-risk maps for early warning systems.
e  Real-time updates using live weather data.

e  Visual simulation outputs to support decision-making
for emergency responders.

The proposed methodology for simulating forest fires using
AI/ML techniques involves a structured approach that begins
with collecting diverse datasets, including weather information,
satellite imagery, vegetation maps, and historical fire records.
These datasets are then cleaned, normalized, and aligned
spatially to ensure accuracy and consistency. Key
environmental features—such as temperature, humidity, wind
patterns, fuel type, and topography—are extracted to improve
model performance. Various machine learning and deep
learning algorithms, including Random Forest, SVM, CNN, and
LSTM, are developed and trained to predict fire ignition and
behavior. The outputs from these models are integrated into a
GIS-based simulation module that generates realistic fire-
spread patterns under different environmental conditions.
Finally, the system’s performance is evaluated using statistical
accuracy metrics and spatial comparison with real fire events,
leading to a refined simulation tool that can support early
warning systems and emergency decision-making..
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he increasing frequency and intensity of forest fires have created
an urgent need for advanced systems capable of predicting,
modelling, and mitigating wildfire risks. This study explores the
simulation of forest fires using Artificial Intelligence and
Machine Learning (AI/ML) techniques, integrating
environmental variables such as temperature, humidity, wind
speed, vegetation density, and historical fire patterns. Machine
learning models—including random forests, gradient boosting,
and deep neural networks—are employed to identify key fire-
triggering factors and forecast fire spread dynamics.
Additionally, spatial data from remote sensing and geographic
information systems (GIS) are incorporated to generate realistic
fire-behaviour simulations. The proposed AI/ML-driven
framework enhances the accuracy and speed of fire prediction
compared to traditional mathematical or physics-based models,
enabling real-time scenario generation and early-warning
insights. Results demonstrate the potential of AI/ML techniques
to support decision-making in wildfire management, optimize
resource allocation, and reduce environmental and socio-
economic impacts’. Field Normalization and Schema Mapping

Forest fires are becoming more common and intense due to
climate change and human activities. Traditional methods of
predicting and simulating these fires often cannot fully capture
the complex factors that influence how fires start and spread.
Artificial Intelligence (AI) and Machine Learning (ML) offer
powerful tools to improve wildfire prediction because they can
analyses large amounts of data—such as weather conditions,
satellite images, and vegetation information—and identify
patterns that humans may miss. By using AI/ML models along
with GIS and remote-sensing data, researchers can create more
accurate and realistic simulations of fire behaviour. These
advanced techniques help in forecasting fire risks,
understanding how fires might spread, and supporting faster,
more informed decision-making in wildfire management..

With the increase in computational power and availability of
large-scale environmental datasets, Artificial Intelligence (AI)
and Machine Learning (ML) techniques have emerged as
powerful tools in wildfire research. Early applications of ML
focused on classification and regression models such as
Support Vector Machines (SVM), Random Forests (RF), and
Artificial Neural Networks (ANNs) to identify fires. regions
and predict ignition risks. These models demonstrated.
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Comparison Logic
Define Comparison Criteria

e Prediction Accuracy: How well the model predicts
fire ignition or spread (measured using metrics like
accuracy, precision, recall, F1-score).

e Spatial Accuracy: How closely the simulated fire
spread matches real-world burned areas (using GIS
overlay or loU — Intersection over Union).

e Computational Efficiency: Time and resources
required to train and run the model.

e Robustness and Generalization: Ability to handle
different regions, climates, and fire scenarios without
significant performance loss.

e Scalability: Ease of integrating larger datasets or
higher-resolution imagery.

" Select Models for Comparison

e  Traditional Machine Learning: Random Forest, SVM,
Gradient Boosting.

e Deep Learning: CNN (for spatial data), LSTM (for
temporal data).

e Hybrid or Ensemble Models combining multiple
approaches.

L Standardize Testing Procedure

e  Use the same preprocessed dataset for all models.

e Apply k-fold cross-validation to ensure unbiased
evaluation.

e Useidentical input features and target variables for fair
comparison.

LI Evaluate Performance Metrics

e Compute classification metrics (accuracy, precision,
recall, F1-score) for fire occurrence prediction.

e Compare predicted fire spread with actual burned
areas using spatial metrics (IoU, Dice coefficient).

e Record computational time and resource consumption

for each model.
Analyses Strengths and Weaknesses

e Highlight which models perform better under certain
conditions (e.g., CNN for high-resolution images,
LSTM for sequential weather data).

e Identify limitations such as overfitting, underfitting, or
poor generalization.

[l Decision Making

e Rank models based on overall performance across all
criteria.

e Select the model or combination of models that
provides the best trade-off between accuracy,
efficiency, and robustness for real-world wildfire
simulation.

where x and ydenote embedding vectors. This allows

detection of rephrased, reordered, or partially overlapping
information that retains equivalent meaning.

J
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The structure of a research report on the simulation of forest
fires using AI/ML techniques typically begins with an
Introduction, which outlines the background of forest fires, the
need for more accurate simulation systems, and how AI/ML
technologies contribute to wildfire prediction. The Literature
Review section then examines previous studies, starting with
traditional modelling approaches such as physics-based and
empirical models, followed by modern machine learning
methods including SVM, Random Forest, ANN, and ensemble
techniques. It also highlights recent advancements in deep
learning—such as CNNs for image-based fire detection and
LSTMs for time-series forecasting—as well as the integration
of AI/ML models with GIS and remote-sensing technologies.
The Methodology section describes the data sources used,
preprocessing steps, model selection, and the overall simulation
framework. Afterward, the Results and Discussion section
presents the performance of the developed models, fire-spread
simulations, comparisons with traditional systems, and an
evaluation of the strengths and limitations. Finally, the
Conclusion summarizes key findings and suggests future
directions for improving AI/ML-based forest-fire simulations,
followed by a References section listing all cited works.

The predicted fire ignition probability and environmental
conditions are fed into a simulation module:
e The module uses spatial layers from GIS to simulate
fire movement.
e  Deep learning outputs (e.g., hotspot detection) guide
the directional spread.
e  The simulation updates dynamically based on weather

conditions and fuel availability.
This produces realistic fire-spread patterns for different
scenarios.

Main Aspects

1. Prediction accuracy (accuracy, precision, recall, F1-

score)

2. Spatial accuracy (alignment of simulated vs. actual fire
spread)

3. Computational efficiency (training and simulation
time)

4. Robustness and generalization (performance across
different regions and scenarios)

5. Scalability (ability to handle larger datasets or higher-
resolution data)

Models for Comparison

6. Traditional ML models: Random Forest, SVM,
Gradient Boosting
7. Deep Learning models: CNN (spatial data),
LSTM (temporal data)
8. Hybrid or ensemble models combining multiple
approaches
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9. GIS and Remote Sensing Integration
Combines spatial data and satellite imagery to [
Standardized Testing

10. Use of consistent datasets and features

11. Application of k-fold cross-validation

12. Uniform input and target variables for fair evaluation

13. Performance Metrics

14. Classification metrics for fire occurrence prediction

15. Spatial metrics (IoU, Dice coefficient) for fire spread
simulation

16. Computational resource usage (time, memory)

If you want these turned into a diagram, bullet list, or expanded
explanation, I can do that too!

You said:

give me an proposed methology for the above

ChatGPT said:

Here is a clear, well-structured Proposed Methodology for a
project on Simulation of Forest Fire Using AI/ML Techniques.
It is written in an academic format and can be directly added to
your report.

Proposed Methodology

[l Gather diverse datasets, including meteorological data
(temperature, humidity, wind), historical fire records, vegetation
and fuel maps, and satellite imagery (e.g., MODIS,
Landsat).Ensure spatial and temporal coverage to support model
training and testing across different regions.

2. Data Preprocessing

e Clean and normalize datasets to remove missing,
inconsistent, or noisy values. Align spatial datasets
within a GIS framework. Extract relevant features
(e.g., NDVI, slope, aspect, fuel type, proximity to
human activity).Split data into training, validation, and
testing sets.

3. Feature Engineering

o Identify and select features that strongly influence fire
ignition and spread.

e  Derive additional features if needed, such as
vegetation indices or fire weather indices.

e Encode categorical variables and scale numerical
features for model compatibility.

o .
3. Feature Engineering
Relevant features influencing fire behavior are derived or
selected, including:

e Climatic variables (temperature, humidity).

o Fuel characteristics (vegetation type, density).

e Topography (elevation, slope, aspect).

e  Wind direction and speed.
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e  Proximity to human activities.
Feature engineering improves model accuracy and
interpretability.

4. Model Development

Multiple AI/ML algorithms will be developed and compared to
determine the best-performing model:

e  Machine Learning models: Random Forest, Support
Vector Machine, Gradient Boosting.

e Deep Learning models: Convolutional Neural
Networks (for image analysis), LSTM networks (for
time-series prediction).
Models are trained using labeled data from past fire
events and validated using a separate test set.

5. Fire Spread Simulation
The predicted fire ignition probability and environmental
conditions are fed into a simulation module:

e The module uses spatial layers from GIS to simulate
fire movement.

e Deep learning outputs (e.g., hotspot detection) guide
the directional spread.

e  The simulation updates dynamically based on weather

conditions and fuel availability.
This produces realistic fire-spread patterns for different
scenarios.

6. Performance Evaluation
Model and simulation performance will be assessed using:
e Accuracy, Precision, Recall, Fl-score for
classification tasks.
e RMSE or MAE for prediction tasks.

e Spatial accuracy of simulated fire boundaries
compared to actual burned areas.
The best-performing model will be selected for
deployment.

7. Decision Support Integration
The final system will be integrated into a user-friendly interface:
e  Fire-risk maps for early warning systems.
e Real-time updates using live weather data.
e  Visual simulation outputs to support decision-making
for emergency responders.
8. Future Improvements
Future enhancements may include:
e  Real-time learning using streaming data.
e  Hybrid models combining physics-based and Al-based
simulations.
e Use of UAV (drone) imagery for finer resolution
prediction.

If you want, I can also create a flowchart, algorithm steps, or
methodology diagram for your project.

You said:

give me main things in paragraph for the above

ChatGPT said:

Here is a concise paragraph summarizing the main points of
the proposed methodology:
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The proposed methodology for simulating forest fires using
AI/ML techniques involves a structured approach that begins
with collecting diverse datasets, including weather information,
satellite imagery, vegetation maps, and historical fire records.
These datasets are then cleaned, normalized, and aligned
spatially to ensure accuracy and consistency. Key environmental
features—such as temperature, humidity, wind patterns, fuel
type, and topography—are extracted to improve model
performance. Various machine learning and deep learning
algorithms, including Random Forest, SVM, CNN, and LSTM,
are developed and trained to predict fire ignition and behavior.
The outputs from these models are integrated into a GIS-based
simulation module that generates realistic fire-spread patterns
under different environmental conditions. Finally, the system’s
performance is evaluated using statistical accuracy metrics and
spatial comparison with real fire events, leading to a refined
simulation tool that can support early warning systems and
emergency decision-making.

If you'd like, I can make it shorter or more technical.

You said:

give me an comparsion logic for the above

ChatGPT said:

Here’s a comparison logic you can use for evaluating and
comparing different AI/ML approaches in forest fire simulation:

Comparison Logic

The comparison logic focuses on systematically evaluating
different AI/ML models to determine which performs best for
forest fire prediction and simulation. The process includes the
following steps:

1. Define Comparison Criteria

o Prediction Accuracy: How well the model
predicts fire ignition or spread (measured using
metrics like accuracy, precision, recall, F1-score).

o Spatial Accuracy: How closely the simulated fire
spread matches real-world burned areas (using
GIS overlay or IoU — Intersection over Union).

o Computational Efficiency: Time and resources
required to train and run the model.

o Robustness and Generalization: Ability to
handle different regions, climates, and fire
scenarios without significant performance loss.

o Scalability: Ease of integrating larger datasets or
higher-resolution imagery.

2. Select Models for Comparison

o Traditional Machine Learning: Random Forest,
SVM, Gradient Boosting.

o Deep Learning: CNN (for spatial data), LSTM (for
temporal data).

o Hybrid or Ensemble Models combining multiple
approaches.

3. Standardize Testing Procedure

o Use the same preprocessed dataset for all models.

o Apply k-fold cross-validation to ensure unbiased
evaluation.
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o Use identical input features and target variables
for fair comparison.

4. Evaluate Performance Metrics

o Compute classification metrics (accuracy,
precision, recall, Fl-score) for fire occurrence
prediction.

o Compare predicted fire spread with actual burned
areas using spatial metrics (IoU, Dice coefficient).

o Record computational time and resource
consumption for each model.

5. Analyze Strengths and Weaknesses

o Highlight which models perform better under
certain conditions (e.g., CNN for high-resolution
images, LSTM for sequential weather data).

o Identify limitations such as overfitting,
underfitting, or poor generalization.

6. Decision Making

o Rank models based on overall performance across
all criteria.

o Select the model or combination of models that
provides the best trade-off between accuracy,
efficiency, and robustness for real-world wildfire
simulation.

If you want, I can also create a comparison table template
showing different models, metrics, and performance for your
report. This makes it very clear and visual. Do you want me to
do that?

Cross — Document Reasoning

Identify and select features that strongly influence fire ignition
and spread. Derive additional features if needed, such as
vegetation indices or fire weather indices. Encode categorical
variables and scale numerical features for model compatibility.

Model Development
e Implement multiple AI/ML models for comparison:
o Traditional ML: Random Forest, Support

Vector Machine, Gradient Boosting. Deep
Learning: Convolutional Neural Networks
(CNN) for spatial data, LSTM networks for
temporal prediction. Hybrid/Ensemble
Models: Combining multiple approaches for
improved performance. Train models on
historical fire events using standardized input
features.

e | Use model outputs (fire ignition probability and
spread patterns) as inputs to a GIS-based simulation
module. Simulate fire propagation under varying
environmental conditions to assess each model’s

predictive performance.
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1. Probability of Fire Occurrence (Classification)

Using a logistic regression or probabilistic classifier:
1

P(fire) = 1 + e~ Bo+Bix1+B2xz++Pnxn)

Where:
®  P(fire)= probability of fire ignition

®  Xx,Xy,...,X,= features (temperature, humidity, wind speed,
vegetation density, etc.)

® By, f1,-.., fn=model coefficients learned during training

2. Random Forest Prediction

Random Forest combines multiple decision trees. For classification:
$ = mode{h, (x), hz(x), ..., by (x)}

Where:
®  y=predicted class (fire / no fire)
®  hy,h,,..., h,=predictions from each decision tree

®  x=input feature vector

3. Neural Network (ANN)

For predicting fire spread or ignition probability:

y:f(zn: w;x; + b)

Where:
®  y=output (fire probability or intensity)
®  x;=input features
®  w;=weights
®  b=bias
®  f=activation function (e.g., Sigmoid for probability)

For deep networks, multiple layers are stacked:
at*) = FWDOa® + pO)

4. LSTM for Temporal Fire Prediction
If modelling sequential weather or fire data:

fe = o(Ws - [he_1,x¢] + byf)

if =o(W; - [hemy, ] + b))

Cy = tanh (W, - [h_q, x¢] + b¢)
Co=fe*Coq+ip*C,

0 =W, - [he—1, %] + b,)

hy = o, * tanh (C;)

Where:
®  x,=input at time t(weather, vegetation, previous fire intensity)
®  h,=hidden state
®  (,=cell state

®  ¢g=sigmoid function

IV. SYSTEM ARCHITECTURE

The main od that the system techniques that was involved in
that techniques on the values of stimulation of forest fires using

aim techniques on it.
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1. Data Acquisition Layer
e Sources:
o Meteorological data (temperature, humidity, wind speed, rainfall)
o Satellite imagery (MODIS, Landsat)
o Vegetation and land-cover maps (fuel type, density)
o Historical fire incident records
¢ Function: Collects heterogeneous data for training and simulation.

Detect Smoke Open camera Window PC Detect Fire
YOLOV5

|
(=1 [=]

MPU Save videos and
images

Run YOLOV5

Send Email

Human confirmation J
1
Yes|Fire Fire Department

i

Real Fire Cigarette Smoke Campilng Fire

No Fire

(| o
ug

Fig. 3. Architecture Diagram
o LSTM for temporal sequences (weather
and fire progression data)

e Hybrid/Ensemble Models: Combining multiple

2. Data Preprocessing and Feature Engineering Layer approaches to improve prediction accuracy.

e Tasks: e  Qutput: Fire ignition probability, fire-prone zones,
o Data cleaning (handling missing and noisy and potential spread patterns.
values)Normalization —and  scaling  of 4. Simulation and GIS Integration Layer
numerical features Extraction of vegetation
indices (e.g., NDVI)Encoding categorical e Tasks:
features (fuel type, terrain class) o Integrate model predictions with GIS-
e Output: A structured dataset suitable for AI/ML based spatial data
models . o Simulate fire spread across terrain based on
3. AI/ML Modeling Layer environmental factors (wind, slope,
e  Machine Learning Models: Random Forest, SVM, vegetation)
Gradient Boosting for fire occurrence classification o Generate realistic fire propagation

. scenarios
e Deep Learning Models:

e  Output: Visual maps and dynamic simulation of

o CNN for spatial patterns (satellite imagery) fire spread
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5. Evaluation and Comparison Layer

e  Metrics: Accuracy, Precision, Recall, F1-score, loU
for spatial alignment, computational efficiency

e Function: Evaluate different AI/ML models and
select the best-performing one for deployment.

6. Decision Support and Visualization Layer
e  Tasks:
o Provide early warning maps

o Display simulation results and fire-risk
zones

o Support emergency response planning and
resource allocation

e  Output: User-friendly dashboard for authorities
and forest management teams.

e The system collects multi-source environmental data,
preprocesses it, and extracts key features affecting fire
behaviour. AI/ML models are then trained to predict
fire ignition and simulate fire spread. GIS integration
allows spatial visualization of fire propagation. The
system evaluates model performance using statistical
and spatial metrics, and the final outputs are presented
in a decision-support dashboard to aid early warning
and wildfire 1. Data Backup and Storage

e Maintain redundant copies of all datasets
(meteorological, satellite, vegetation, historical fire
records).

e  Use cloud storage or external servers to prevent
data loss.

e Regularly update and archive historical fire data
for model retraining and long-term analysis.

e 2.Model Backup

e Keep saved versions of trained AI/ML models to
restore in case of failure.

e Maintain a version control system for model updates
and improvements.

e  Backup hyperparameters and training configurations
for reproducibility.

V. EXPERIMENTAL SETUP

The experimental setup for evaluating the proposed
OCRfree cross-document inconsistency detection system is
organized into three components: dataset construction,
document composition, and evaluation metrics. Since no
publicly available dataset exists for multi-document
inconsistency detection, a custom dataset was constructed
following established practices in the document understanding
literature [1], [7], [16].

A. Dataset Construction

A domain-specific evaluation dataset was curated to
simulate real verification scenarios involving identity
documents, certificates, and address proofs. Each document
was manually annotated with key fields such as name, date of
birth, identification numbers, and address components.
Document sets consisting of 2—4 documents were created to
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model cross-document relationships. To assess the model’s
ability to detect inconsistencies, controlled variations were
introduced in selected fields, including spelling deviations,
numeric shifts, and partial address mismatches. This approach
aligns with methods used in prior cross-document reasoning and
contradiction detection studies [8], [11]. Although the dataset is
not publicly distributed, its construction process parallels the
structure, annotation style, 3. System and Software Backup

e Backup the software environment (libraries,
dependencies, scripts) to ensure smooth deployment.

e  Use virtual environments or Docker containers to
replicate the system if hardware fails.

4. Redundant Computational Resources

e Implement secondary servers or cloud instances for
model inference in case the primary system is down.

e Use load balancing if simulations require high
computational power.

5. Disaster Recovery Planning

e Define emergency recovery protocols for data and
system failure.

e Maintain offline copies of critical GIS maps and
datasets.

e  Schedule regular system testing and recovery drills.

6. Logging and Monitoring

e Keep logs of model predictions, simulations, and
system operations.

e  Monitor system performance to detect errors or
anomalies early.

7. Documentation Backup

e Maintain comprehensive documentation of data
sources, model architectures, preprocessing steps,
and simulation methodology.

e  Ensure documentation is stored in multiple locations
to prevent loss.

e Recent advancements highlight the growing use of
deep learning techniques for both spatial and temporal
fire prediction. Convolutional Neural Networks
(CNNs) have been widely applied to satellite imagery
(e.g., MODIS, Landsat) for tasks such as fire detection,
burned-area mapping, and vegetation analysis.
Likewise, Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks have
been used to model sequential meteorological data,
enabling near-real-time forecasting of fire spread under
varying weather conditions.

e Another major development in the literature is the
integration of AI/ML models with Geographic
Information Systems (GIS) and remote sensing.
These combined systems allow high-resolution spatial
simulations that incorporate topography, fuel moisture,
and wind patterns. Studies using hybrid approaches—
such as combining CNNs with physics-based fire-
spread models—have shown improved predictive
performance and better generalization across different
geographical regions
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Inconsistency Detection Performance
1. Definition:

Inconsistency detection in forest fire simulation refers to the
system’s ability to identify anomalies or conflicts in input data,
model predictions, or simulation outputs. These inconsistencies
may arise from:

e Missing or corrupt data in meteorological, vegetation,
or satellite datasets

e Conflicting inputs (e.g., unusually high temperature
with excessive humidity)

e Model prediction errors or unrealistic fire-spread
patterns

e  GIS or spatial misalignment in simulation outputs

3. Implementation Approaches:

Data Validation Rules: Threshold-based checks (e.g.,
temperature > 60°C is flagged as inconsistent)Statistical Outlier
Detection: Z-score or IQR methods for numerical features Al-
Based Anomaly Detection: Autoencoders or One-Class SVMs
trained to detect unusual patterns in input or predicted fire data
Cross-Validation Checks: Comparing model outputs with
historical fire behaviour and environmental constraints A
confusion matrix can be used to illustrate the system’s
classification behaviour across consistent and inconsistent
document sets. Visual charts such as bar graphs or precision
recall curves may also be incorporated to highlight performance
trends and metric distributions.

4. Importance:
o Ensures data integrity and reduces error propagation
in fire spread simulations.
e Enhances trustworthiness of AI/ML predictions for
decision-making.
e Supports early identification of potential system
failures or unreliable predictions.

If you want, I can also create a table or flowchart showing
how inconsistency detection is integrated into the forest fire

simulation pipeline along with performance evaluation metrics.

This makes it very visual and easy to include in a report.
3. Logical and Rule-Based Discrepancies

Rule-based modules detected inconsistencies in date fields,
invalid identification formats, and document-typespecific
constraints. These findings are consistent with the role of logical
validation in prior cross-document reasoning studies [8], [11].

4. Before—After Comparison

Visual side-by-side comparisons of extracted fields before
and after normalization revealed substantial improvements in
matching accuracy. Normalization steps such as date

[JERTV 151 S020060

standardization and digit cleaning significantly reduced
superficial mismatches.

The predicted fire ignition probability and environmental
conditions are fed into a simulation module:

e The module uses spatial layers from GIS to simulate fire
movement. Deep learning outputs (e.g., hotspot detection)
guide the directional spread. The simulation updates
dynamically based on weather conditions and fuel
availability.

This produces realistic fire-spread patterns for different
scenarios.

RESULTS

With the increase in computational power and availability of
large-scale environmental datasets, Artificial Intelligence
(AI) and Machine Learning (ML) techniques have emerged
as powerful tools in wildfire research. Early applications of
ML focused on classification and regression models such as
Support Vector Machines (SVM), Random Forests (RF),
and Artificial Neural Networks (ANNs) to identify fire-
prone regions and predict ignition risks. These models
demonstrated improved accuracy over traditional approaches
due to their ability to learn complex patterns from
multidimensional data.

VII. CONCLUSION

The simulation of forest fires using Al and Machine
Learning techniques represents a significant advancement over
traditional modelling approaches. By integrating diverse
datasets—including meteorological information, satellite
imagery, vegetation maps, and historical fire records—AI/ML
models such as Random Forests, SVMs, CNNs, and LSTMs can
accurately predict fire ignition, identify fire-prone areas, and
simulate fire spread across complex terrains. The incorporation
of GIS and remote sensing data enhances spatial awareness,
enabling realistic fire propagation simulations and improved
decision support for emergency management.

Through the proposed methodology, the system systematically
preprocesses and engineers key environmental features,
develops multiple AI/ML models, and evaluates them using
robust performance metrics, including prediction accuracy,
spatial alignment, and inconsistency detection. Backup
mechanisms and redundancy measures ensure data integrity and
system reliability, while inconsistency detection further
enhances the trustworthiness of predictions. Comparison logic
allows for identifying the most effective models under varying
conditions, ensuring optimal performance in real-world wildfire
scenarios.

Overall, AI/ML-driven forest fire simulation offers a data-
driven, adaptive, and scalable approach to wildfire
management. It not only improves prediction accuracy and
early warning capabilities but also provides actionable insights
for resource allocation, fire mitigation, and ecosystem
protection. Future enhancements—such as real-time data
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integration, hybrid modelling, and UAV imagery—can further
strengthen the system, making it a vital tool for combating the
growing threat of forest fires worldwide.
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