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Abstract—Static analysis of functionally graded metal-

ceramic beam is shown in this paper for different boundary 

conditions. For the ceramic part Zirconium Carbide was chosen 

for its high toughness and melting point. Structural steel is used 

in the metal part. Properties of the beam varies in the thickness 

direction according to power law. This paper also shows the 

principal natural frequency under different boundary conditions 

of the functionally graded beam. The static loadings are applied 

at the metal surface of the beam and the analysis are carried out 

through finite element method using higher order shear 

deformation theory for different power law exponent of the FGM.  

Keywords—Functionally graded matrial; power law; static 

analysis; metal ceramic beam; 

I. INTRODUCTION

Functionally graded materials (FGM) are anisotropic 

materials normally consist of mixture of ceramic and metal. 

FGM is composed of various layers including pure ceramic at 

one end and pure metal at the other end. The layers in between 

the pure ceramic and metal are mixture of both ceramic and 

metal. The volume fraction of the fundamental materials is 

varying gradually through the thickness direction from one 

layer to another. By this way the composite can have the both 

specification of the both materials. As the layers have gradually 

varying properties along the thickness, the FGM can exhibit the 

ability to reduce the residual stress, thermal stress and stress 

concentration at the interface of the layer found in conventional 

composites. Ceramics usually have better thermal load capacity 

than the metal, but due to lack of their ductility they cannot 

withstand higher mechanical load. On the other hand, metals 

have better ability to withstand high mechanical load but as 

their co efficient of thermal expansion is higher than the 

ceramic, they can’t withstand high thermal load. As mentioned 

above, FGM can exhibit the specification of both metals, they 

can withstand a very high thermal load and a mechanical load 

which is practically impossible compared to single materials. 

So, they are designed for high temperature applications such as, 

nuclear reactor, space shuttle, blade of a gas turbine armor 

protection for military vehicles, fusion energy devices, bio 

medical implants such as bone implants, dental implants etc.  

Fig. 1. A typical FGM 

The material properties at the various layers of an FGM can be 

found by means of a power series [1]. An example of a typical 

FGM is shown in fig. 1. 

M. Şimşek [2] solved the functionally graded simply supported

beam subjected to a uniformly distributed load. The beam has

been investigated by using Ritz method within the framework

of higher order shear deformation theory and Timoshenko

beam theory analytically. Aydogdu and Taskin [3] investigated

the free vibration of an FGM using the Euler boundary bean

theory, parabolic shear deformation theory and  exponential

shear deformation theory. H.J. Xiang and J. Yang [4]

determined the free and forced vibrations of the FGM using the

Timoshenko beam theory. Chakraborty and Gopalakrishnan [5]

analyzed the wave propagation behavior of FG beam under

high frequency impulse mechanical and thermal loading, by

using a spectrally formulated finite element method. S. Alexraj,

N. Vasiraja and P. Nagaraj [6] studied about the cantilever and

simply supported FGM beam under mechanical and thermal

load by means of finite element method. They [6] assumed two

boundary conditions, cantilever and simply supported and also

they used Al as the metal in the FGM and ZrO2 as the ceramic.

Yang J., Chen Y., Xiang Y. and Jia X.L. [7] studied about the

free and forced vibration of cracked FGM subjected to an axial

load and moving load. Benatta M.A., Mechab I., Tounsi A. and

Adda Bedia E.A. [8] proposed an analytical solution of

functionally graded short beams including warping effect.

In this paper, the static analysis of a ten layered ZrC-

Structural steel FGM has done, and also investigated the natural 

frequency behavior of an FGM under no load for different 

boundary conditions were investigated. The analysis has been 

done by finite element method. It is assumed that the material 

property of the beam vary through its thickness direction 

according to the power law [1]. The boundary conditions are 
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assumed as cantilever, simply supported and both ends fixed. 

In this study, various displacements, stresses and strains of the 

FGM beam for different material compositions are examined. 

II. THEORY AND FORMUALTION

A functionally graded beam having length of L, width b, 

thickness h with three different boundary conditions is shown 

in figure 2. The beam is subjected to a uniformly distributed 

load q0. In this paper, not only the behavior of FGM under 

bending loads but also the behavior of the FGM under 

compressive load is also presented. In the FGM the effective 

properties like  

 (a)   (b)  (c) 

Fig. 2. (a) both ends fixed (b) cantilever (b) simply supported beam 

subjected to a uniformly distributed load. 

Young’s modulus E, Poisson’s ratio v, coefficient of thermal 

expansion α and modulus of rigidity G vary continuously 

through the thickness direction according to the power law [1]. 

According to the power law form, 
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Here, N is a non-negative variable parameter which 

describes the material property variation through the thickness 

direction. Constituents’ c and m stands for ceramic and metal 

respectively. It is clear from equation (1-3) is that 
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Variation of Young’s modulus along the thickness direction 

of an FGM is shown in figure 3.  

Based on the higher order shear deformation theory, the axial 

displacement, ux, and the transverse displacement of any point 

of the beam, uz, are given as [9] 
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Where u0 and w0 are the axial and the transverse displacement 

of any point on the neutral axis,  is the rotation of the cross 

section, k=4/3h2, and ( )x denotes a derivatives with respect to 

x. Relationship between strain and displacement is given by
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Fig. 3. Variation of Young’s modulus along the thickness direction 

Where xx and xy are the normal and the shear strain

respectively. We are assuming that, the FGM obeys Hooke’s 

law, the stresses in the beam become 

xxfgmxx E   (9) 

xyfgmxy G   (10) 

Where σxx and τxy are axial normal and the shear stresses. The 

strain energy of the beam is given by 
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Where A is the cross-sectional area of the beam. The equivalent 

stress is given by 
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Where φ is an arbitrary angle between equivalent stress and the 

normal stress. Now, substituting equation (7),(8),(9),(10) into 

equation (11) gives 
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Solving Equation (12) by variational method and formulating 

global stiffness matrices 
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Where [K1],…,[K9] are the stiffness matrices of the beam. f is 

the generalized load vector governed by the uniformly 

distributed loads that is applied on the beam.  

Fig. 4. Modeling of FGM in ANSYS 

III. METHODOLOGY

The finite element analysis of the beam is carried out in this 

paper to investigate the static behavior of an FGM under 

mechanical load and natural frequency under no load. There are 

few software like ANSYS, ABAQUS that can analyze finite 

element method. In this paper, ANSYS is used to carry out the 

calculation of finite element method. 

The functionally graded beam is composed of zirconium 

carbide (ZrC; Ec=406GPa, vc=0.19, αc=1.41×10-7K-1) and 

structural steel (Em=200GPa, vm=0.3, αm=1.2×10-5K-1). The 

properties of the transitional layers between metal and ceramic 

changes through the thickness of the beam according to the 

power law. The bottom surface of the beam is pure ceramic and 

the upper surface of the beam is pure metal. The length, width 

and the thickness of the beam is kept as L=0.4m, b=0.1m, 

h=0.1m. Uniformly distributed load of 1000N, 1500N, 2000N, 

2500N, 3000N, 5000N, 10000N, 20000N, 50000N and 

100000N are applied on the beam respectively and the 

performance is studied. The mechanical load was applied on the 

metal surface. The FGM beam was modeled in ANSYS. The 

mesh size of 1mm is taken in this paper. Total number of nodes 

is 2342610 and the total number of elements is 500000. Figure 

4 shows the modeling of an FGM in ANSYS.  

IV. RESULTS

The responses under static loading is shown in this section. 

Table 1. represents the response total deformation and 

directional deformation under 100kN force. The total 

deformation under other applied forces are shown in fig. 8-10. 

From the figures, deformation is maximum for the minimum 

value possible for power law exponent. That means the 

deformation is maximum for metal constituents. After that, 

with the increment of power law exponent, the deformation 

decreases.  

Table 1 Maximum Deformation Under 100kN Load.  

N 

Cantilever 

(mm) 

Both ends fixed 

(mm) 

Simply supported 

(mm) 

Total 
Direction

al (w0) 
Total 

Direction

al (w0) 
Total 

Directio

nal (w0) 

0 
0.510

3 
0.078861 

0.0176
46 

0.004062
2 

0.0864
57 

0.0796 

0.1 
0.408

87 
0.059327 0.0147 

0.003533

9 

0.0657

61 

0.06145

1 

0.5 
0.376

34 
0.058783 

0.0129

61 

0.003243

7 

0.0571

65 

0.05358

2 

1 
0.356

99 
0.05822 

0.0119
39 

0.003067
4 

0.0570
61 

0.04117
2 

3 
0.328

1 
0.057259 

0.0105

98 

0.002792

4 

0.0533

6 

0.04934

7 

5 
0.315

77 
0.054277 

0.0101

63 
0.002679 

0.0520

05 
0.04797 

10 
0.301

71 
0.050854 

0.0097
539 

0.002551
7 

0.0476
44 

0.0404 

100 
0.252

71 
0.039671 

0.0085

072 

0.002030

8 

0.0427

38 

0.02533

2 

      The stress and strain under 100kN force is tabulated in 

table 2 and table 3 respectively. And responses under other 

loads are shown in fig. 5-7 for different boundary conditions. 

Both the stress and strain are maximum for N=0.1 for all 

boundary conditions except shear stress for both ends fixed 

beam. For both ends fixed beam, shear stress is maximum for 

metal constituents only.  There is a dissimilarity in this stress 

and strain section compared to the previous deformation 

section. For cantilever FG beam, both the equivalent and shear 

stress is maximum for N=0.1. After that point, stress is 

reducing gradually with the decrease in power law exponent. 

For both ends fixed beam, equivalent stress is maximum for 

N=0.1 but shear stress is maximum for metal constituent. After 

that point the power law exponent was taken as 0.5, for this 

exponent, both equivalent and shear stress decreased, but after 

that point, both the stresses increased and then decreased with 

the increment of power law exponent. Same phenomenon 

happened for simply supported FG beam too.  

      The same response is also true for strains too. It can clearly 

be seen from table 3 and fig. 5-7.  

Table 2. Maximum Stress under 100kN Load 

N 

Cantilever 

(MPa) 

Both ends fixed 

(MPa) 

Simply supported 

(MPa) 
Equiv

alent 

(σ) 

Shear 

(σxy) 

Equival

ent 

(σ) 

Shear 

(σxy) 

Equivale

nt 

(σ) 

Shear 

(σxy) 

0 
231.9

9 
63.876 65.976 20.48 513.89 125.31 

0.1 
376.5

8 
79.442 74.893 18.747 1506.4 

390.7
8 

0.5 
329.5

3 
74.655 48.158 12.452 507.56 129.42 

1 
306.8

2 
70.889 61.412 16.348 1462.9 

380.2

2 

3 
287.2

9 
9.648 55.89 14.95 1453.2 

377.7
9 

5 
282.6

2 
9.1192 

54.315 
14.407 1452 

377.4

7 

10 
277.5

7 
8.5166 

52.87

4 
13.823 497.22 126.89 

100 
201.8

8 
5.9141 55.89 13.567 497.06 126.81 
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Table 3. Maximum Strain under 100kN Load 

N 

Cantilever Both ends fixed Simply supported 
Equiv

alent 

(Ɛ) 

Shear 

(Ɛxy) 

Equival

ent 

(Ɛ) 

Shear 

(Ɛxy) 

Equival

ent 

(Ɛ) 

Shear 

(Ɛxy) 

0 
0.001

16 
0.00083 

0.000

33 

0.00026

6 

0.0025

7 

0.00162

9 

0.1 
0.001

476 

0.0010

3 

0.000

298 

0.00024

4 

0.0037

1 

0.0022

91 

0.5 
0.001
382 

0.0009
71 

0.0001
79 

0.00016
2 

0.0012
5 

0.00075
9 

1 
0.001

31 

0.00092

2 

0.000

255 

0.00021

3 

0.0036

03 

0.0022

29 

3 
0.001

167 

0.0001

25 

0.000

229 

0.00019

4 

0.0035

79 

0.0022

15 

5 
0.001
097 

0.0001
19 

0.000
219 

0.00018
7 

0.0035
76 

0.0022
13 

10 
0.001

018 

0.0001

11 

0.000

208 0.00018 

0.0012

25 

0.00074

4 

100 
0.000

497 

0.00003

47 

0.000

142 

0.00007

95 

0.0012

24 

0.00074

3 

Fig. 11-13 show the variation of directional deformation (Y- 

Axis) along the length of the FG beam for different boundary 

conditions. It is very clear from the figures is that, the transverse 

displacement is maximum for metal rich FG beam and 

minimum for ceramic rich FG beam as we know that 

deformation is inversely proportional to the Young’s modulus.  

Metals have lower Young’s modulus compared to the 

ceramic. The functionally graded beam  gradually becomes 

ceramic rich from the metal portions. As a result, the 

deformation is maximum for metal rich FG beam, but with the 

increment of power law exponent, the beam is intending to 

become more ceramic rich material. So, with the increment of 

power law exponent, the deformation is decreasing.  

The variation of transverse deformation curves are showing 

general trend regarding their boundary conditions when 

subjected to a uniformly distributed load. That confirmation 

depicts the validity of this work that is shown in this paper.  

The variation of shear stress (xy plane) along the length of 

the FG beam for different boundary conditions are shown in fig. 

14-16.  

Fig. 5. Equivalent stress vs equivalent strain for the cantilever beam 

Fig. 6. Equivalent stress vs equivalent strain for both ends fixed beam. 

Fig. 7. Equivalent Stress vs strain for simply supported beam 

This phenomenon also obeys the stress relation with power 

law exponent that were mentioned earlier in this paper. 

All the variations along the length of FG beams are taken 

from the upper side of the beam. Similarly, along the thickness 

direction, the results can be examined. In this paper, variation 

of responses along the length from the upper layer of the beam 

is presented only. 

One question may arise, why are the responses showing 

pretty much same curve. Well the answer is : the responses 

under static loading represents similar curves because the 

applied loads were following pretty much same trend as the 

total deformation or stress vs strain curve.  

Fig. 8. Total deformation for cantilever beam 
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Fig. 9. Total deformation for both ends fixed beam 

Fig. 10. Total deformation for simply supported beam 

Fig. 11. Variation of directional deformation along the length of the FG 

cantilever beam 

Fig. 12. Variation of directional deformation along the length of the FG 
both ends fixed beam 

Fig. 13. Variation of directional deformation along the length of the FG 
simply supported beam 

Fig. 14. Variation of shear stress along the length of the FG cantilever 

beam 
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Fig. 15. Variation of shear stress along the length of the FG both ends 

fixed beam 

Fig. 16. Variation of shear stress along the length of the FG simply 
supported beam 

Free vibration means the rate of vibration in a system when no 

load is applied on the system despite of its weight. Natural 

frequency depends on the material property of the structure. To 

be specific, the natural frequency depends on the density and 

Young’s modulus of any structure. Natural frequency is 

proportional to the square root of the modulus of elasticity and 

inversely proportional to the square root of the density [10]. 

Natural frequency also depends on different boundary 

condition as it affects the vibration modes. So, for specific 

application boundary condition should be specified properly 

before calculating the natural frequency.  

As beams have infinite numbers of degree of freedom the 

natural frequency is also infinite. Because, each degrees of 

freedom have their own natural frequency. In this study, the 

principal mode of natural frequency is determined for three 

different boundary conditions. 

Fig. 17. Natural frequency of the FG beam under different boundary 

conditions 

Table 4. Natural frequency of ZrC/Steel based FGM 

N 

Cantilever 

Hz 
Fixed 

Hz 
Simply Supported 

Hz 

0 491.51 2431.2 862.14 

0.1 538.95 2654.5 897.79 

0.5 591.45 2901.7 934.79 

1 614.95 3084.6 961.56 

3 653.67 3344.9 1003.4 

5 670.61 3440.1 1019.1 

10 690.18 3535.7 1035.3 

100 763.34 3825.6 1341 

Table 4. shows the exact values of natural frequency for 

different power law exponent and for different boundary 

conditions. Fig. 17. shows a graphical representation of these 

values in terms of different boundary conditions and in terms 

of different values of power law exponent. It is clear from fig. 

17 that natural frequency is maximum for both ends fixed beam. 

Also, whenever the FG beam intended to become ceramic rich, 

natural frequency increases.  

V. CONCLUSION

Static and free vibration analysis of ZrC/Steel based FGM was 

carried out in this paper by finite element method. The results 

indicated that the response and stress propagation in the FG 

beam for different boundary conditions were much more 

different than those found in the isotropic beams.  The free 

vibration analysis indicated that whenever the beam is 

intended to become ceramic rich, natural frequency increased. 

During the analysis, the material property at the different 

layers of the FG beam were strictly following the power law 

curve that has been shown in figure 3. 
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