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Abstract—Static analysis of functionally graded metal-
ceramic beam is shown in this paper for different boundary
conditions. For the ceramic part Zirconium Carbide was chosen
for its high toughness and melting point. Structural steel is used
in the metal part. Properties of the beam varies in the thickness
direction according to power law. This paper also shows the
principal natural frequency under different boundary conditions
of the functionally graded beam. The static loadings are applied
at the metal surface of the beam and the analysis are carried out
through finite element method using higher order shear
deformation theory for different power law exponent of the FGM.
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.  INTRODUCTION

Functionally graded materials (FGM) are anisotropic
materials normally consist of mixture of ceramic and metal.
FGM is composed of various layers including pure ceramic at
one end and pure metal at the other end. The layers in between
the pure ceramic and metal are mixture of both ceramic and
metal. The volume fraction of the fundamental materials is
varying gradually through the thickness direction from one
layer to another. By this way the composite can have the both
specification of the both materials. As the layers have gradually
varying properties along the thickness, the FGM can exhibit the
ability to reduce the residual stress, thermal stress and stress
concentration at the interface of the layer found in conventional
composites. Ceramics usually have better thermal load capacity
than the metal, but due to lack of their ductility they cannot
withstand higher mechanical load. On the other hand, metals
have better ability to withstand high mechanical load but as
their co efficient of thermal expansion is higher than the
ceramic, they can’t withstand high thermal load. As mentioned
above, FGM can exhibit the specification of both metals, they
can withstand a very high thermal load and a mechanical load
which is practically impossible compared to single materials.
So, they are designed for high temperature applications such as,
nuclear reactor, space shuttle, blade of a gas turbine armor
protection for military vehicles, fusion energy devices, bio
medical implants such as bone implants, dental implants etc.
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Fig. 1. A typical FGM

The material properties at the various layers of an FGM can be
found by means of a power series [1]. An example of a typical
FGM is shown in fig. 1.

M. Simsek [2] solved the functionally graded simply supported
beam subjected to a uniformly distributed load. The beam has
been investigated by using Ritz method within the framework
of higher order shear deformation theory and Timoshenko
beam theory analytically. Aydogdu and Taskin [3] investigated
the free vibration of an FGM using the Euler boundary bean
theory, parabolic shear deformation theory and exponential
shear deformation theory. H.J. Xiang and J. Yang [4]
determined the free and forced vibrations of the FGM using the
Timoshenko beam theory. Chakraborty and Gopalakrishnan [5]
analyzed the wave propagation behavior of FG beam under
high frequency impulse mechanical and thermal loading, by
using a spectrally formulated finite element method. S. Alexraj,
N. Vasiraja and P. Nagaraj [6] studied about the cantilever and
simply supported FGM beam under mechanical and thermal
load by means of finite element method. They [6] assumed two
boundary conditions, cantilever and simply supported and also
they used Al as the metal in the FGM and ZrO- as the ceramic.
Yang J., Chen Y., Xiang Y. and Jia X.L. [7] studied about the
free and forced vibration of cracked FGM subjected to an axial
load and moving load. Benatta M.A., Mechab I., Tounsi A. and
Adda Bedia E.A. [8] proposed an analytical solution of
functionally graded short beams including warping effect.

In this paper, the static analysis of a ten layered ZrC-
Structural steel FGM has done, and also investigated the natural
frequency behavior of an FGM under no load for different
boundary conditions were investigated. The analysis has been
done by finite element method. It is assumed that the material
property of the beam vary through its thickness direction
according to the power law [1]. The boundary conditions are
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assumed as cantilever, simply supported and both ends fixed.
In this study, various displacements, stresses and strains of the
FGM beam for different material compositions are examined.

II. THEORY AND FORMUALTION

A functionally graded beam having length of L, width b,
thickness h with three different boundary conditions is shown
in figure 2. The beam is subjected to a uniformly distributed
load go. In this paper, not only the behavior of FGM under
bending loads but also the behavior of the FGM under
compressive load is also presented. In the FGM the effective
properties like

|—“q{l | J—’QG

T i

(@) (c)
Fig. 2. (a) both ends fixed (b) cantllever (b) simply supported beam
subjected to a uniformly distributed load.

Young’s modulus E, Poisson’s ratio v, coefficient of thermal
expansion « and modulus of rigidity G vary continuously
through the thickness direction according to the power law [1].
According to the power law form,

Ein = (B —E V. +E, )

Vign = (Vi =V )V, +V, O]

Ay = (0, —a )V, +a, @)
E

- @

fom 214V )

N
Vc :(54_;
h 2

Here, N is a non-negative variable parameter which
describes the material property variation through the thickness
direction. Constituents’ ¢ and m stands for ceramic and metal
respectively. It is clear from equation (1-3) is that

Egn =Ec Vign =Ve Oy =@, at z=-h/2
E =q,atz=h/2

Variation of Young’s modulus along the thickness direction
of an FGM is shown in figure 3.
Based on the higher order shear deformation theory, the axial

fgm
En Vign =V %

fgm: m m

4.00EHTT o

3.50E+H11

300E+H11 s

2.50E+H011

Young’s Modulus (Pﬂ)

2O00EHT1

Fig. 3. Variation of Young’s modulus along the thickness direction

Where &,,and 7, are the normal and the shear strain
respectively. We are assuming that, the FGM obeys Hooke’s
law, the stresses in the beam become

Oy = En€xx 9)

XX fgm
Txy = C-:'fgm 7/xy (10)

Where oy« and ty, are axial normal and the shear stresses. The
strain energy of the beam is given by

L
U= % [ [(© + 74y Y YA )
0A

Where A is the cross-sectional area of the beam. The equivalent
stress is given by

O tO, O —

G = 5 + 5 2 cos2p+17,,s5in2¢p  (12)
_En ey EyE, ) i 2 13
£= 5 + cos2¢p+y,,sin2¢p  (13)

Where ¢ is an arbitrary angle between equivalent stress and the
normal stress. Now, substituting equation (7),(8),(9),(10) into
equation (11) gives

Axx (Uo,x)2 + 2(Bxx - kExx)
(uo,x)(¢,x) - 2kExx (Uo,x)
(WO,xx) + (Dxx + kZH Xx

displacement, ux, and the transverse displacement of any point 1k )
of the beam, u,, are given as [9] U= EJ. 2kF,)(#,)" +2k(kH,, dx (14)
3 0
U, (X, 2) = Uy (X) + 2(X) —KZ* (Wp, () + (%)) ©) CFL )Wy, )(@,) +K?
= (6)

100 =Wl H o (W) + (A~
Where up and wy are the axial and the transverse displacement ) L ) J
of any point on the neutral axis, ¢ is the rotation of the cross 6kay +9k ny) (¢ + Wo,x)
section, k=4/3h2, and ( )x denotes a derivatives with respectto ~ Where
X. Relationship between strain and displacement is given by E, @z, 72 7374

gm
Exx = Uy =Ugy +Z¢,x —k23(¢,X+ Oxx) Q) (Axx’Bxx’Dxx’Exx’Fxx’Hxx):j‘ ; )dA
2 A
7xy :ux,y +Z X :(1—3k2 )(¢+W0,x) (8)
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Xy !

(Ay:Dy.Fy) =[Gy (1,2, 2%)dA
A

Solving Equation (12) by variational method and formulating
global stiffness matrices

[Kidow Kl [Kolow](A] [f
[K4]N><N [Ks]NxN [Ks]NxN Br=|0 (15)
[K7]N><N [KB]NXN [KQ]NXN C 0

Where [K4],...,[Kg] are the stiffness matrices of the beam. f is
the generalized load vector governed by the uniformly
distributed loads that is applied on the beam.

0.000 0100¢m)
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Fig. 4. Modeling of FGM in ANSY'S

I1l.  METHODOLOGY

The finite element analysis of the beam is carried out in this
paper to investigate the static behavior of an FGM under
mechanical load and natural frequency under no load. There are
few software like ANSYS, ABAQUS that can analyze finite
element method. In this paper, ANSYS is used to carry out the
calculation of finite element method.

The functionally graded beam is composed of zirconium
carbide (ZrC; E.=406GPa, v.=0.19, a.=1.41x107K?) and
structural steel (En=200GPa, vn=0.3, am=1.2x10°K). The
properties of the transitional layers between metal and ceramic
changes through the thickness of the beam according to the
power law. The bottom surface of the beam is pure ceramic and
the upper surface of the beam is pure metal. The length, width
and the thickness of the beam is kept as L=0.4m, b=0.1m,

with the increment of power law exponent, the deformation
decreases.

Table 1 Maximum Deformation Under 100kN Load.

Cantilever Both ends fixed Simply supported
N (mm) (mm) (mm)
Total Direction Total Direction Total Directio
al (wo) al (wo) nal (wo)
0.510 0.0176  0.004062  0.0864
0 3 0.078861 6 2 57 0.0796
0.408 0.003533  0.0657  0.06145
0.1 87 0.059327  0.0147 9 61 1
0.376 0.0129  0.003243  0.0571  0.05358
0.5 34 0.058783 61 7 65 P
0.356 0.0119  0.003067  0.0570  0.04117
1 g9 008822 Tog 4 61 2
0.328 0.0105 0.002792  0.0533  0.04934
3 1 0.057259 98 4 6 7
0.315 0.0101 0.0520
5 77 0.054277 63 0.002679 05 0.04797
0.301 0.0097  0.002551  0.0476
10 71 0.050854 539 7 44 0.0404
0.252 0.0085 0.002030  0.0427  0.02533
100 71 0.039671 072 8 38 2

The stress and strain under 100kN force is tabulated in
table 2 and table 3 respectively. And responses under other
loads are shown in fig. 5-7 for different boundary conditions.
Both the stress and strain are maximum for N=0.1 for all
boundary conditions except shear stress for both ends fixed
beam. For both ends fixed beam, shear stress is maximum for
metal constituents only. There is a dissimilarity in this stress
and strain section compared to the previous deformation
section. For cantilever FG beam, both the equivalent and shear
stress is maximum for N=0.1. After that point, stress is
reducing gradually with the decrease in power law exponent.
For both ends fixed beam, equivalent stress is maximum for
N=0.1 but shear stress is maximum for metal constituent. After
that point the power law exponent was taken as 0.5, for this
exponent, both equivalent and shear stress decreased, but after
that point, both the stresses increased and then decreased with
the increment of power law exponent. Same phenomenon
happened for simply supported FG beam too.

The same response is also true for strains too. It can clearly
be seen from table 3 and fig. 5-7.

Table 2. Maximum Stress under 100kN Load

4 e Cantilever Both ends fixed Simply supported
h=0.1m. Uniformly distributed load of 1000N, 1500N, 2000N, (MPa) (MPa) (MPa)
2500N, 3000N, 5000N, 10000N, 20000N, 50000N and N Equiv g . Eguival o . Equivale o

: : alent ent nt

100000N are applied on the beam respectively and the (@) (ox) ) (o%) (@) (0%)
performance is studied. The mechanical load was applied on the 2319
metal surface. The FGM beam was modeled in ANSYS. The 0 9 63876 65976 2048 51389 12531
mesh size of 1mm is taken in this paper. Total number of nodes 01 3786-5 70442 74893 18.747 15064 393-7
is 2342610 and the total number of elements is 500000. Figure 305
4 shows the modeling of an FGM in ANSYS. 0.5 3 74655 48158 12452 50756  129.42

IV. RESULTS 1 %% 0880 61412 16348 14629 007
The responses under static loading is shown in this section. 3 2872 g g 55,89 14.95 1ag3p 3777
Table 1. represents the response total deformation and 9 ' : ' : 9
directional deformation under 100kN force. The total 5 2822-6 91192 4315 14407 1452 3777-4
deformation under other applied forces are shown in fig. 8-10. 2775 52.87
From the figures, deformation is maximum for the minimum 10 7 8.5166 4 13.823 49722 126.89
value p0_55|b!e for _power law exponent. That means the 100 2018 ool 5589 13567 49706 12681
deformation is maximum for metal constituents. After that, 8
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Table 3. Maximum Strain under 100kN Load

Cantilever Both ends fixed Simply supported
N i?:r:;/ Shear quur:;/al Shear quur:;/al Shear
( g) (SXY) ( g) (fxy) ( £) (‘gXY)
0.001 0.000 0.00026 0.0025 0.00162
0 16 0.00083 33 6 7 9
01 0.001 0.0010 0.000 0.00024 0.0037 0.0022
' 476 3 298 4 1 91
05 0.001 0.0009 0.0001 0.00016  0.0012  0.00075
' 382 71 79 2 5 9
1 0.001  0.00092 0.000 0.00021 0.0036 0.0022
31 2 255 3 03 29
3 0.001 0.0001 0.000 0.00019 0.0035 0.0022
167 25 229 4 79 15
5 0.001 0.0001 0.000 0.00018 0.0035 0.0022
097 19 219 7 76 13
10 0.001  0.0001 0.000 0.0012  0.00074
018 11 208 0.00018 25 4
100 0.000  0.00003 0.000 0.00007 0.0012  0.00074
497 47 142 95 24 3

Fig. 11-13 show the variation of directional deformation (-
Axis) along the length of the FG beam for different boundary
conditions. Itis very clear from the figures is that, the transverse
displacement is maximum for metal rich FG beam and
minimum for ceramic rich FG beam as we know that
deformation is inversely proportional to the Young’s modulus.

Metals have lower Young’s modulus compared to the
ceramic. The functionally graded beam gradually becomes
ceramic rich from the metal portions. As a result, the
deformation is maximum for metal rich FG beam, but with the
increment of power law exponent, the beam is intending to
become more ceramic rich material. So, with the increment of
power law exponent, the deformation is decreasing.

The variation of transverse deformation curves are showing
general trend regarding their boundary conditions when
subjected to a uniformly distributed load. That confirmation
depicts the validity of this work that is shown in this paper.

The variation of shear stress (xy plane) along the length of
the FG beam for different boundary conditions are shown in fig.
14-16.
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Fig. 6. Equivalent stress vs equivalent strain for both ends fixed beam.
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Fig. 7. Equivalent Stress vs strain for simply supported beam

This phenomenon also obeys the stress relation with power
law exponent that were mentioned earlier in this paper.

All the variations along the length of FG beams are taken
from the upper side of the beam. Similarly, along the thickness
direction, the results can be examined. In this paper, variation
of responses along the length from the upper layer of the beam
is presented only.

400 One question may arise, why are the responses showing
- i pretty much same curve. Well the answer is : the responses
] / I s under static loading represents similar curves because the
09 ! —s—N=0.1 applied loads were following pretty much same trend as the
= 104 NS total deformation or stress vs strain curve.
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Fig. 5. Equivalent stress vs equivalent strain for the cantilever beam =il
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Fig. 8. Total deformation for cantilever beam
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Free vibration means the rate of vibration in a system when no
load is applied on the system despite of its weight. Natural
frequency depends on the material property of the structure. To
be specific, the natural frequency depends on the density and
Young’s modulus of any structure. Natural frequency is
proportional to the square root of the modulus of elasticity and
inversely proportional to the square root of the density [10].
Natural frequency also depends on different boundary
condition as it affects the vibration modes. So, for specific
application boundary condition should be specified properly
before calculating the natural frequency.

As beams have infinite numbers of degree of freedom the
natural frequency is also infinite. Because, each degrees of
freedom have their own natural frequency. In this study, the
principal mode of natural frequency is determined for three
different boundary conditions.
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—— Both Ends Fixed
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5 1500+ |
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Fig. 17. Natural frequency of the FG beam under different boundary
conditions

Table 4. Natural frequency of ZrC/Steel based FGM

N Can|t_:|zever Fixed Simply Supported
Hz Hz
0 491.51 2431.2 862.14
0.1 538.95 2654.5 897.79
0.5 591.45 2901.7 934.79
1 614.95 3084.6 961.56
653.67 3344.9 1003.4
5 670.61 3440.1 1019.1
10 690.18 3535.7 1035.3
100 763.34 3825.6 1341

Table 4. shows the exact values of natural frequency for
different power law exponent and for different boundary
conditions. Fig. 17. shows a graphical representation of these
values in terms of different boundary conditions and in terms
of different values of power law exponent. It is clear from fig.
17 that natural frequency is maximum for both ends fixed beam.
Also, whenever the FG beam intended to become ceramic rich,
natural frequency increases.

V. CONCLUSION

Static and free vibration analysis of ZrC/Steel based FGM was
carried out in this paper by finite element method. The results
indicated that the response and stress propagation in the FG
beam for different boundary conditions were much more
different than those found in the isotropic beams. The free
vibration analysis indicated that whenever the beam is
intended to become ceramic rich, natural frequency increased.
During the analysis, the material property at the different
layers of the FG beam were strictly following the power law
curve that has been shown in figure 3.
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