
State Transition Table Based Control Software Engineering For Micros

 1Hyacinth C. Inyiama
2
Ifeyinwa Obiora-Dimson

3
Christiana C. Okezie

1,2,3

 Department of Electronic and Computer Engineering Nnamdi Azikiwe University, Awka.

Anambra State, Nigeria.

Abstract

A State Transition Table based software engineering

for micros has been developed in this paper. The

method begins with a control specification and a

corresponding Algorithmic State Machine (ASM)

chart. A State Transition Table (STT) corresponding

to the ASM chart is then developed such that there

are as many rows in the STT as there are link paths

in the ASM chart. The STT is organized such that the

state code comes before the qualifiers. This segments

the entire STT into various states in the state machine

and facilitates the software development. Structured

software is then written to match the STT such that

there is one program statement per link path. The

advantage of this technique is that it begins with an

initial disciplined hardware approach up to the STT

stage and then generates the structured software that

match the rows of the STT on one-on-one basis. This

makes debugging easy. This approach is universal

and can be applied to any process control system that

can be represented as an ASM chart.

Keywords: Algorithmic State Machine (ASM) chart;

Microprocessor/microcomputer; Software

engineering; State Transition Table (STT); Link path;

Digital system design.

1. Introduction

Microprocessors and microcontrollers are very

flexible for use in complex logic system development

because of the extra flexibility provided by

programming the software for specific design

functions. The features of a

microcontroller/microprocessor based system that

recommended it to an electronic control engineer are

as follows:

1. A microprocessor/microcontroller based

system is compact, with low component

count. It has few sources of error and a high

reliability figure. This is in sharp contrast to

the case of a hardware-only system which

would be quite complex especially when a

complex control algorithm is being

implemented, leading to many components,

many potential error sources, inflexibility

due to rigid interconnections, and low

reliability as buttressed by [1] .

2. The use of software in

microprocessor/microcontroller based

systems not only ensures that pertinent

system requirements of each application are

met but also makes possible the inclusion of

other useful features that can ensure the

usefulness of a project.

3. Troubleshooting (i.e. fault finding) in a

microprocessor/microcontroller based

system involves less complicated re-wiring

effort compared to a hardware-only system

because quite often, it is only the software

that needs be modified in order to correct an

error. Even when hardware rewiring is

necessary, the components involved are well

structured and easy to work with.

4. Because the microprocessor/microcontroller

is both versatile and flexible, it can be used

in a wide range of dedicated applications

while leaving its exact function in each case

to be established by the logic designer (or

electronic control engineer). This tailoring to

a particular application is achieved through

programming together with the use of an

appropriate digitally controlled interface

between the microprocessor/microcontroller

and each dedicated application [7]

The technique for the provision of such interfaces

have been standardized and typically involve input-

output-mapped input/output, memory-mapped

input/output, Direct Memory Access (DMA) and the

use of interrupts [8].

5. When the dedicated applications are needed

to be in operation one at a time, a single

microprocessor/microcontroller system can

be used to implement two or more of such

applications leading to more considerable

cost savings. For example, all the control

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

system laboratory sessions that may involve

up to fifteen (15) different real time control

experiments done one per week for the

semester can all be implemented using just

one microprocessor/microcontroller based

system as in [9].

6. The present low cost of

microprocessor/microcontroller (about N500

per unit) increase the cost effectiveness of

microprocessor/microcontroller based

system compared to other systems.

Great programming effort is required in software

development for micros because of the close

interaction between hardware and software. Thus

any approach that can enhance software

development speed is worthwhile. The State

Transition Table (STT) approach is one of such

software engineering methodologies that is both

systematic and thorough. This design method

will be showcased is this paper.

2. Software Engineering

Software can be structured or unstructured. The

problem with unstructured software is that it is not

easily maintainable. Often such programs feature

complicated flowcharts that are difficult to follow

and the use of GOTO statements that tie the different

portions of the program together in an untidy manner.

For this reason, structured programming, often called

GOTO-less programming is preferred. In digital

systems design using micros, the trend has been to

draw a flow chart and then write a software program

in high level language or assembly language

corresponding to the flowchart directly [2]. The

control algorithm can either be structured or

unstructured. For structured algorithms, it can be

easier to write the program directly from the

flowchart but for unstructured systems, it can be

tasking and error prone.

Consider the problem to periodically measure motor

speed in an application where the current speed of the

motor is used to determine its state of efficiency and

ability to cope with the load. Suppose there is a

digital motor speed encoder (fig 1a), that generates an

ON/OFF waveform (fig 1b) for every revolution of

the motor. One then needs to develop a program to

determine the time the motor spends in a cycle which

corresponds to the ON time (TON) plus the OFF time

(TOFF) in the waveform of fig 1b. The motor speed in

revolutions/second can then be determined once the

time for one revolution is known. Fig 2 shows an

unstructured flowchart to determine motor speed and

the pseudo code corresponding to this is as shown in

table 1. These contrasts sharply with the structured

flowchart (fig 3) and the corresponding pseudo code

(table 2). Obviously the latter is easier to follow than

the former even though both would produce the same

result.

“Fig 1a: digital motor speed encoder” “Fig 1b: digital motor speed Time graph”

TON

TOFF

TOFF
TON

T

T

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

“Fig 2: unstructured algorithm for Revolution per second (RPS) calc.”

 “Table 1: Pseudo code for the unstructured software”

REV. signal

Begin

Set timer T1

LCD: DGSMTR
not moving

Set timer
LCD:rectify fault

LCD: press
CONTINUE
when Ready

REV. signal

Time out

continue

Set timer T0

REV. signal

Time out

REV. signal

REV. signal

Set timer for RPS

Read timer
LCD: OFFtime = t1 secs

REV. signal

Read timer T
LCD: ON time=t2
secs
Reset timer

Use T=t1 + t2 to
compute RPS

Return

0

0

0

0

0

1

1

1

0

0

1

1

0

Read timer and
add t to form
REV. signal fault
rectification
time + f sec.

For motor to
rev up

Pseudo code

If revolution signal (RevSig) is high then

 Begin wait for the next falling edge

 Start timer to time the OFF time (TOFF)

 Wait for the next rising edge

 Read the OFF time (TOFF) from timer

 Restart timer to measure (TON)

 Wait for the next falling edge

 Read the ON time (TON) from timer

 Go To 100

 End.

Else
 Begin wait for the next rising edge
 Start timer to time the ON time (TON)

 Wait for the next falling edge
 Read the ON time (TON) from timer
 Restart timer to measure TOFF

 Wait for the next rising edge
 Read the OFF time (TOFF) from timer
 Go To 100
 End
ENDIF.
100 Begin
 T= TON +TOFF.

 Compute RPM using T display on LCD

End.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

4. State Transition Table Based Control

Software design

 The steps involved in STT based control software

design for micros include:

1. Put down the specifications for the

envisaged system,

2. Develop the corresponding Algorithmic

State Machine (ASM) chart,

3. Derive the STT corresponding to the

ASM chart.

4. Reduce input/output line demand of the

application using input multiplexing

and output decoding as in [6], if need

be.

5. Modify STT by placing the State Code

column before the Qualifiers‟ column.

6. Write Case Construct based

implementation of the STT in software.

7. Fit software into the microcontroller as

in [5]

5. Control System Example

A traffic light control system is desired for a T-

junction. The sequence of movement for vehicles

desired is in three phases as shown in Fig 4a through

4c. The arrows without a bar (-) in front in each case

indicates the lanes that are passed while the arrows

with a bar (-) in front are those on hold. A queue

detector is featured in this design such that when

there are no more vehicles on a direction that has

right of access, the next direction is triggered.

Read Rev signal

Call low time

Call high time

RPS CALC

Rev sig

low?

END

Call low time

Call high time

0

1

Begin
 Test Revsignal
 If logic 1
 Call HIGH TIME
 Call LOW TIME
 ELSE
 Call HIGH TIME
 END IF
 CYCLE TIME=HIGH TIME +LOW TIME
 CALL rpm CALC
END

“Fig 3: A structured algorithm for calculating the RPS

of a motor”

"Table 2: Pseudo code for the structured software”

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

HREDLE,
HREDN, HREDE

HAMBLE
HREDN
HREDE

HREDLE,
HAMBN
HREDN, HREDE

HGRNN
HREDE,
HREDLE
HR1

T

T

T

T

QN

1

0

0000
DCBA

0

1

0

0011

1

 HCLRT

ST0

ST1

ST2

ST3

HREDN, HREDE
HREDLE

HAMBN
HREDE
HREDLE

HAMBE, HREDE
HREDN,
HREDLE

HGRNE, HREDN,
HREDLE, HR2

T

T

T

T

QE

1

0

0100
DCBA

0

1

0

0111

1

 HCLRT

ST4

ST5

ST6

ST7

HREDLE,
HREDN, HREDE

HAMBE
HREDN
HREDLE

HREDLE,
HREDE
HAMBLE,
HREDN

HGRNLE,
HREDN
HREDE, HR3

T

T

T

T

1

0

1000
DCBA

0

1

0

1011

1

 HCLRT

ST8

ST9

ST10

ST11

1 1 1 0

0 0

0
QLE

0

“Figure 5: ASM chart for traffic light control at a T-junction with queue detectors QN, QE, QLE”

0001

0010

0101

0110

1001

1010

Fig 4a

1
1

Fig 4b

2
2

“Fig 4: Traffic flow sequence in a T-junction”

3

Fig 4c

3

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

The Algorithmic State Machine (ASM) chart of

figure 5 shows the control program flow for the

sequence shown in Fig 4a through 4c. The

conditional output HCLRT is used to clear the timing

for the present sequence and move to the next when

no queue is detected.

In the ASM chart (fig 5), N, NE and LE are used to

differentiate the traffic light in each of the three

directions. For example, HGRNLE, HAMBLE,

HREDLE represents the Green, Amber and Red

lights of one direction; HGRNN, HAMBN, HREDN

are for the next direction while HGRNE, HAMBE,

HREDE are for the third direction. (see figure 4a, 4b

and 4c).

 In an ASM chart, a rectangular box is called a state.

A state has a state name in the lower left hand corner

and state code at the top right hand corner as shown

by [3]. Thus the ASM chart of fig 5 has twelve states.

Since no two states may have the same state code, a

state map followed by a state assignment is used to

assign state code to ensure that this is achieved (fig

6).

Typically, when the ASM chart is going to be used

for hardware design, the state codes are assigned such

that only one bit changes as one moves from one

state code to the next either above or below it.

However in software based STT for micros, it is

more convenient to assign the state codes serially in

order that the corresponding case constructs based on

state code might be easier to follow.

Another important component of the ASM chart is

the decision box which has one entry point (and two

exit points). Two or more decision boxes may occur

in a sequence when more complicated decisions are

to be made. It is also possible to have one state box

leading to another without a decision box depending

on the algorithm of the control logic.

The variables listed in the state box are the outputs

that come ON when the process is in that state. They

depend only on state codes. The outputs listed in the

rounded boxes are conditional outputs that depend on

the state code preceding it and on the logic levels of

one or more of the qualifiers following that state. In

the ASM chart of fig 5, HCLRT is a conditional

output.

The information contained in an ASM chart (fig 5)

can be represented as a flat table (table 3) called State

Transition Table (STT). A path from a given state to

another state or back to itself is called a link path. A

link path may or may not contain qualifiers. When all

the link paths in an ASM chart are placed in tabular

form as in table 3, the table contains exactly the same

information as is in the ASM chart. The reason for

the transition from ASM chart to STT is that the

remaining software or logic design steps are easier to

visualize from a table than from the corresponding

ASM chart.

 The fields in an STT are as follows:

1. The link path column

2. The present state name column

3. The present state code group of columns

4. The qualifiers group of columns

5. The next state name column

6. The next state code group of columns and

7. The output group of columns [3].

DC

BA
00

00

01 10 11

01

10

11

0000

0100

1000

0001

ST5

1001

0010

ST6

1010

--- ---

1011

ST7

0011

Fig 6A: State Map

State

name

State

code

ST0

ST1

ST2

ST3

ST4

ST5

ST6

ST7

ST8

ST9

ST10

ST11

0000

0001

0010

0011

0100

0101

0110
0111

1000
1001

1010
1011

Fig 6b: State

Assignment

“Fig 6: State Map and State Assignment”

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

“Table 3: State transition table for the traffic light control”

Link

path

Present

state

name

Present

state

code

Qualifiers Next

state

name

Next state

code

State output Conditi

onal

output

Out-

put in

HEX

DCBA

T QN QE QLE

D′C′B′A′

H
A

M
B

L
E

H
R

E
D

N

H
R

E
D

E

H
R

E
D

L
E

H
A

M
B

N

H
G

R
N

N

H
R

1

H
A

M
B

E

H
G

R
N

E

H
R

2

H
G

R
N

L
E

H
R

3

 H
C

L
R

T

L1

L2

ST0

ST0

0000

0000

0 - - -

1 - - -

ST0

ST1

0000

0001

1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

0

0

00

02

L3
L4

ST1
ST1

0001
0001

1 - - -
0 - - -

ST1
ST2

0001
0010

0 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0

0
0

02
04

L5

L6

ST2

ST2

0010

0010

0 - - -

1 - - -

ST2

ST3

0010

0011

0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0

0

0

04

06

L7 ST3 0011 1 0 - - ST3 0011 0 0 1 1 0 1 1 0 0 0 0 0 0 06
L8 ST3 0011 0 0 - - ST4 0100 0 0 1 1 0 1 1 0 0 0 0 0 1 09

L9 ST3 0011 - 1 - - ST4 0100 0 0 1 1 0 1 1 0 0 0 0 0 1 09

L10 ST4 0100 0 - - - ST4 0100 0 0 1 1 1 0 0 0 0 0 0 0 0 08
L11 ST4 0101 1 - - - ST5 0101 0 0 1 1 1 0 0 0 0 0 0 0 0 0A

L12 ST5 0101 1 - - - ST5 0101 0 1 1 1 0 0 0 0 0 0 0 0 0 0A

L13 ST5 0110 0 - - - ST6 0110 0 1 1 1 0 0 0 0 0 0 0 0 0 0C

L14 ST6 0110 0 - - - ST6 0110 0 1 1 1 0 0 0 1 0 0 0 0 0 0C
L15 ST6 0111 1 - - - ST7 0111 0 1 1 1 0 0 0 1 0 0 0 0 0 0E

L16 ST7 0111 1 - 0 - ST7 0111 0 1 0 1 0 0 0 0 1 1 0 0 0 0E

L17 ST7 0111 0 - 0 - ST8 1000 0 1 0 1 0 0 0 0 1 1 0 0 1 11
L18 ST7 0111 - - 1 - ST8 1000 0 1 0 1 0 0 0 0 1 1 0 0 1 11

L19 ST8 1000 0 - - - ST8 1000 0 1 0 1 0 0 0 1 0 0 0 0 0 10

L20 ST8 1000 1 - - - ST9 1001 0 1 0 1 0 0 0 1 0 0 0 0 0 12

L21 ST9 1001 1 - - - ST9 1001 0 1 1 1 0 0 0 0 0 0 0 0 0 12

L22 ST9 1001 0 - - - ST10 1010 0 1 1 1 0 0 0 0 0 0 0 0 0 14

L23 ST10 1010 0 - - - ST10 1010 1 1 1 1 0 0 0 0 0 0 0 0 0 14

L24 ST10 1010 1 - - - ST11 1011 1 1 1 1 0 0 0 0 0 0 0 0 0 16

L25 ST11 1011 1 - - 0 ST11 1011 0 1 1 0 0 0 0 0 0 0 1 1 0 16
L26 ST11 1011 0 - - 0 ST0 0000 0 1 1 0 0 0 0 0 0 0 1 1 1 01

L27 ST11 1011 - - - 1 ST0 0000 0 1 1 0 0 0 0 0 0 0 1 1 1 01

State transition table (Table 3) represents the ASM

chart of fig 2. The qualifiers T, QE, QLE QN, and

the present states D, C, B, A would constitute the

input needed for this operation. Similarly, there

are16 output lines, D′, C′, B′ A′, HAMBLE,

HREDN, HREDE, HREDLE, HAMBN, HGRNN,

HR2, HAMBE, HGRNE, HR1, HGRNLE. To

limit the number of direct output lines from the

processor to 8 or less, the state outputs are realized

by decoding each present state. The next state

codes (4-bits) and the conditional output HCLRT

(1-bit) are generated directly from the output port.

This approach reduced the number of direct output

lines needed to just 5. A 4-to-16 line decoder can

be used to generate all of the state outputs using

the state codes D C B A as the control input to the

4-to-16 line decoder.

However, each output exists in more than one state of

the ASM chart and this necessitates ORing of a

number of decoded states for each output signal.

Since an exhaustive decoder followed by OR-tie

constitutes a ROM, it is better to use a ROM to

achieve the dual purpose of decoding states and

ORing different signals. This leads to the optimized

design shown in fig 7 at the output side.

The signals from the ROM on the output side are

used to turn the traffic lights ON or OFF via the

traffic light interface. The interface could be

implemented using Solid State Switches (SSS) as in

[4] such that when a signal from the ROM is logic 1,

the corresponding light turns ON and when it is logic

0, the light turns OFF. Thus a SSS receives a binary

control input and connects Alternating Current (AC)

power to the corresponding light if the binary control

input is a „1‟. The AC power is cut OFF from the

corresponding light otherwise (fig 8).

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

Since the STT (table 3) already has the present state

code before the qualifier bits as desired, one can now

proceed to generate STT-based software, using state

code in a case construct. When each state code is

selected, the output options are determined by the

qualifier bits attendant in that state. The pseudo code

of the STT-based software now follows.

Do case

Case StateCode of

0: If T=0 then output =0 //link path 1

 Else output=2 End if // link path 2.

1: If T=0 then output = 2 //link path 3

 Else output =4 End if // link path 4.

2: If T=0 then output = 4 // link path 5

 Else output =6 End if //link path 6.

3: If T=1 And Qn=0 then output = 6 //link path 7

 Else if T=0 And Qn =0 then output =9 // link

path 8

 Else if Qn=1 then output =9 End if // link path 9.

 End if

 End if

4: If T=0 then output = 8 // linkpath 10

 Else output =0Ah End if // link path 11.

5: If T=1 then output = 0Ah // link path 12

 Else output =0Ch End if // link path 13.

6: If T=0 then output = 0Ch // link path 14

 Else output =0Eh End if // link path 15.

7: If T=1 And Qe=0 then output = 0Eh // link path 16

 Else if T=0 And Qe =0 then output =11h // link

path 17

 Else if Qe=1 then output =11 End if // link

path 18.

 End if

 End if

8: If T=0 then output =10h //link path 19

 Else output =12h End if // link path 20.

9: If T=1 then output = 12h // link path 21

 Else output =14h End if // link path 22.

10: If T=0 then output = 14h // link path 23

 Else output =16h End if // link path 24

11: If T=1 And Qle=0 then output = 16h // link path

25

 Else if T=0 And Qle =0 then output =01h //

link path 26

 Else if Qle=1 then output =01 End if // link

path 27.

 End if

 End if

End case.

B
u

lb

From ac source

Binary control i/p

Solid state switch

“Fig 8: AC power source switching a bulb”

D
C

B
A

DC B A

Exhaustive
decoder

OR- tie
ROM HCLRT

T
Q

QE
QLE

MICROCONTROLLER/MICROPROCESSOR

DCBA

R Clk
HAMBLE

HR1

HR3
HGRNLE
HR2
HGRNE
HAMBE

HGRNN
HAMBN
HREDLE
HREDE
HREDN

“Fig 7: Microprocessor based implementation of T-junction traffic light control system [4]”

Clock
gen

Reset
signal

Traffic
light
interface

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

5. System Evaluation

If a fully expanded ROM-based design were to be

implemented for the STT of table 5, it would have

been necessary to first expand table 5 so as to

eliminate the dashes (-), replacing them with binary

combinations. A dash entry in table 5 implies that the

qualifier at the top of that column does not feature in

the states where it is represented as a dash. Because a

dash cannot be programmed into a ROM, each

combination of dashes would have to be replaced by

the full binary combinations that are possible. Thus,

each row in the STT with two dashes (- -) need to be

replicated four times in each of where the two dashes

are represented either as 00 or 01 or 10 or 11.

Similarly any row with 3 dashes leads to 8

replications in each of which the 3 dashes are

represented as either 000 or 001 or 010 or 011 or 100

or 101 or 110 or 111, and so on. Thus for a fully

expanded STT needed for a ROM-based design, table

5 would have 192 rows instead of 27 rows in the

original STT. This is called combinatorial explosion,

which is a drawback for ROM-based designs, where

unwanted combinations that contribute nothing to the

logic would have to be represented in an exhaustive

decoding process associated with ROMs.

Contrast this with Programmable Logic Array (PLA)-

based design where a selective address decoder is

used to represent only the rows shown in table 5,

ignoring dashes. Thus the PLA height would be much

shorter than for the corresponding ROM height.

The STT based software engineering shown in the

foregoing used just one program statement to

represent each row (or link path) of the STT. Thus it

closely approximates a PLA-based design by not

insisting on exhaustive decoding of unused

combinations represented as dashes. Therefore for

microprocessor/ microcontroller based design, the

STT-based software engineering approach combines

the selective decoding feature of PLAs with the

flexibility of software associated with micros but not

possible with PLAs.

7. Traffic Timing Signal T

Each set of traffic control lights has duration as

follows

6 seconds of amber for the direction about to hand-

over right of way

2 seconds of red in the direction about to handover

right of way

6 seconds of amber in the direction about to receive

right of way

18 seconds of green to the direction that has the right

of way.

This timing ratio of 6:2:6:18 is the same as 3:1:3:9.

Note that 6+2+6+18=32 whereas 3+1+3+9=16. The

former requires a 5-bit counter whereas the latter

requires a 4-bit counter for timing each of the three

arms in a T-junction. So if one uses a 4-bit counter,

clocked every 2 seconds, the timing objective can be

realized (fig 9).

Table 4 shows the truth table for T in terms of the 4-

bit counter output lines D, C, B, A. A power up one

shot which sends a pulse when the power comes ON

resets the 4-bit counter at start-up. Since 1 count is

achieved every 2 seconds, T stays low for 3 counts

(i.e. 6 seconds), then goes high for 1 count (i.e. 2

seconds) and goes low again for 3 counts (i.e. 6

seconds) and finally goes high for 9 counts (i.e. 18

seconds). When the queue in the direction that has

right of way is finished before 18 seconds, HCLRT is

generated to restart the timing cycle for another

direction otherwise, the counter restarts by itself

when it reaches 18 seconds in the direction of right of

way. The k-map used to minimize the terms in the

equation for T is shown in figure 10.

4-bit

binary

counter

R Clock

Power up
one shot

1 Pulse in 2 seconds
clock generator

HCLRT

T

“Fig 9: Timing circuit for the traffic light control”

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

9www.ijert.org

IJ
E
R
T

IJ
E
R
T

“Table 5: truth table of the 4-bit counter”

M D C B A T T WAVEFORM

 0 0 0 0 0

 0 0 0 1 0

 0 0 1 0 0

 0 0 1 1 1

 0 1 0 0 0

 0 1 0 1 0

8. Conclusion

An STT table based software engineering for micros

has been showcased in the foregoing. The approach is

universal and can be applied to any process control

system that can be represented as an ASM chart. The

advantage of this approach is that it combines a

thorough initial hardware design approach leading to

the STT before generating the corresponding

software that has just one statement per link path in

the STT. This structured software is therefore easy to

debug because of the one-to-one mapping of each

statement with the rows of the STT. It combines the

disciplined approach to hardware design with a

structured software engineering approach to realize a

dependable end product.

9. References

1. Bryan, L.A. and Bryan E. A., (2002). Programmable

Controllers Theory and Implementation, 2nd edition.

Illinois: American technical publishers Inc, 4-26.

2. Floyd, T. L., (2009). Digital fundamentals, 10th edition.

Prentice hall of India:Pearson, 738-742.

3. Inyiama Hyacinth C.; Okezie Christiana C.; Okafo

Ifeyinwa C., (2011a). Digital control of palm fruit

processing using ROM based linked state machines.

European Journal of Scientific Research, 59(4), 594-606.

4. Inyiama Hyacinth C.; Okafo Ifeyinwa C.; Okezie

Christiana C., (2011b). PC based process control systems:

problems and prospects. International Journal of Academic

reseasch, 3(6), 183-189.

5. Inyiama Hyacinth C.; Okezie Christiana C.; Okafo

Ifeyinwa C, (2012). Agent based process control system

design. Proceedings of the peer reviewed 2012 national

conference on infrastructural development and

maintenance in the Nigerian environment. Nnamdi

Azikiwe University, Awka 27-28 August. Nigeria.

6. Inyiama Hyacinth C.; Okezie Christiana C.; Okafo

Ifeyinwa C, (in print). Complexity reduction in ROM-based

process control systems via input multiplexing and output

decoding. International Journal of Engineering

Innovations.

7. RAM, B.,(2008). Fundamentals of Microprocessor and

Microcontrollers. New-Delhi: Dhanpat Rai publications,

3.1-3.15, 1.46, 9.1-9.7.

8. Tanenbaum, Andrew S., (2006). Structured computer

organisation, 5th edition. New-Delhi: Prentice Hall of

India, 383-386.

9. Uzedhe, G. O. (2009). Design and implementation of a

microcontroller based real-time emulator for basic logic

gates and structured logic devices. M.Eng Thesis, Nnamdi

Azikiwe University Awka. Nigeria.

 0 1 1 0 0

 0 1 1 1 1

 1 0 0 0 1

 1 0 0 1 1

 1 0 1 0 1

 1 0 1 1 1

 1 1 0 0 1

 1 1 0 1 1

 1 1 1 0 1

 1 1 1 1 1

00

01

11

10

DC
BA

00 01 11 10

0 0 0

0 0 0 1

1 1

1

1

1

 1 1

1

1

T = B.A + D

B

T A

D

“Fig 10: k-map, logic diagram and equation for T“

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

10www.ijert.org

IJ
E
R
T

IJ
E
R
T

