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Abstract—This research paper brings together many 

different aspects of the current research on several fields 

associated to Reinforcement Learning which has been growing 

rapidly, providing a wide variety of learning algorithms like 

Markov Decision Processes (MDPs), Temporal Difference (TD) 

Learning, Advantage Actor-Critic (A2C), Asynchronous 

Advantage Actor-Critic (A3C), Deep Q Networks (DQNs), Deep 

Deterministic Policy Gradient (DDPG) and Evolution Strategies 

(ES) for different applications. In this paper, the computations 

and procedures involved in Reinforcement Learning algorithms 

are briefly discussed. Reinforcement Learning can be used is 

almost every field for its automation and advancement. 

Nowadays, Meta-Learning, Automated Machine Learning and 

Self-Learning Systems have become very popular. Meta-

learning which is an application of evolution strategies is an 

exciting area of research that tackles the problem of learning to 

learn faster with being generalizable to many tasks. Automated 

machine learning is the process of automating end-to-end the 

process of applying machine learning to real-world problems. 

 

Keywords— Markov’s Decision Processes, Q Learning, 

Temporal Difference Learning, Actor-Critic Algorithms, Deep 

Deterministic Policy Gradients, Evolution Strategies Algorithm. 

 

I.  INTRODUCTION  

Reinforcement Learning (RL) is an area of Machine 

Learning which is very dynamic in terms of theory and its 

application. Reinforcement Learning algorithms study the 

behavior of subjects in environments and learn to optimize 

their behavior[1]. RL algorithms can be classified as shown in 

Fig.1. 

Fig. 1. Reinforcement Learning classification. 

 

RL algorithms can be categorized mainly into Value-based or 

Value Optimization(Q-Learning) RL, Policy-based or Policy 

Optimization RL and Evolution Strategies which is a 

completely different Reinforcement Learning approach. [1] 

There are a little Terminologies like Agent: The learner and 

decision-maker, Environment: where the agent learns and 

decides what actions to perform, Action(A): set of actions ‘a’ 

which can be performed in an environment, State(S): the set 

of states of an agent in the environment, Reward(R): each 

action performed by the agent provides a positive or a 

negative reward. Expected Return(G): It is the cumulative 

sum of rewards which the agent tries to maximize as shown 

in “(1)”. [2] 

 

Gt = Rt+1 + Rt+2 + Rt+3 + Rt+4 + - - - - - - - +RT                     (1)   

where ‘T’ is the final time step.   

Discounted Return: In this return, discount rate ‘ ’ ε [0,1] is 

used to discount the future rewards and determine the present 

value of future rewards so that more immediate rewards are 

given more importance. Hence, expression of Discounted 

Return becomes as shown in “(2)”.    

Gt = Rt+1 + Rt+2 + 2Rt+3 + 3Rt+4 + - - - - -  = 

                           (2) 

Policy(π): the decision-making function that maps a given 

state to probabilities of each possible action from that state. 

Value function: These are functions of states that evaluates 

how adequate it is for an agent to be in given state (State-

value function) which is denoted by “Vπ” or these are 

functions of state-action pairs that estimate how good it is for 

an agent to perform a given action in a given state (Action-

value function) which is denoted by “Qπ”. Both of these 

functions are given in terms of Expected Return “Eπ” as 

shown in “(3)” and “(4)”.  [2][3] 

 

Vπ(s) = Eπ [Gt | St = s] = Eπ [ | St = s]        (3)  

 

Qπ(s,a) = Eπ [Gt | St = s, At = a] = Eπ [ | St = 

s, At = a]                                                                             (4)                

 

II. COMPUTATIONS AND PROCESSES INVOLVED 

IN RL ALGORITHMS  

A. Markov’s Decision Processes  

It is the framework we use to describe RL problems. In MDP, 

Agent and Environment interact continually and learns 

simultaneously as shown in Fig.2. The environment 
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transitions into a new state when an agent takes an action and 

during that very moment the agent gets a reward based on its 

action. Transition is represented by a tuple (s, a, r, s’), where 

s is the previous state, a is the action taken, r is the reward 

received on taking the action a and s’ is the next state which 

the environment is transitioned into[4]. The transition 

probability from s state to s’ state with reward r and action a 

is shown in “(5)”. 

 

P(s’, r | s, a) = Pr {St = s’, = r | St+1 = s, At-1 = a}           (5) 

While interacting with the environment, the main goal of the 

agent is to maximize the returns according to which optimal 

policy, optimal state-value function V*, optimal action-value 

function Q* are chosen[4]. Bellman Optimality equation for 

calculating Q* proves to be immensely useful.[4] 

 

Q*(s,a) = E [ + maxa’ Q*(s’, a’)]                    (6) 

OR            

Vπ(s) = E [ + π( ))  |   = s]                              (7) 

 

 

 

 

 

 
Fig. 2. Agent-Environment Interaction 

 

Once we have Q*, we can determine the optimal policy as 

with Q* for any state s, an RL algorithm can find the action a 

that maximizes Q*(s,a). 

 Also, in MDP, Epsilon greedy Strategy or ε – greedy 

Strategy is used to get a balance between exploitation and 

exploration. Exploration is the act of exploring the 

environment to find out information about it whereas 

Exploitation is the act of exploiting the information that is 

already known about the environment in order to maximize 

the return. The agent will always start with the exploration as 

it does not know anything at that time. Here “ε” is the 

exploration rate which ranges from 0-1 where ε=1 means the 

agent is only exploring and ε=0 means it is only exploiting 

the information it has. MDPs are used in TD Learning, 

DQNs,A2C,A3C and DDPG.[5][6] 

 

B. Temporal Difference Learning 

Temporal difference is an agent learning from an 

environment through episodes without any preliminary 

information about the environment. TD Learning is 

considered as a better algorithm as compared to Monte-Carlo 

(MC). In TD Learning, the agent learns at every step and 

update values unlike in MC, where the values are updated at 

the termination of an episode. TD Learning is an 

unsupervised learning approach. [7][8] 

TD(1) is the same as MC and TD Error can be calculated as 

shown in “(8)”.                                                                                                                                                       

TD Error = Gt – V(St)                                                           (8)                                                                                                             

Updation of values:  V(St) ←  V(St) + α (Gt – V(St))            (9) 

In TD(0), TD Error is calculated using “(10)”.            

TD Error = Rt+1 +  V(St+1) - V(St)                                    (10)                                                                                                       

Updation of values: V(St) ←  V(St) + α (Rt+1 +  V(St+1) – 

V(St))                                                                                   (11)                                                                 

In TD(0), instead of using Gt , we only look at immediate 

Reward Rt+1 plus the discount of the estimated value of only 1 

step ahead V(St+1). TD(λ) is used if we want to update values 

prior to the ending of the episode and use more than one step 

ahead for our calculation. It has two views in it: Forward and 

Backward view. 

Forward View: Looks at the next n-steps frontwards and λ is 

essentially operated to decay those future estimates. λ is the 

credit assignment variable.    

        

Backward View: Updates values at each step. So, after each 

step in an episode, you make updates to all prior steps[9]. δt is 

the TD Error as shown in “(12)”. We also use Eligibility 

Traces (ET) to assign credit to prior steps appropriately. 
Basically, ET keeps a record of the occurrence and recency of 

moving into a given state which can be calculated using 

“(13)”. Credit is assigned to the states that are visited 

frequently and recently with respect to our final state.[9] The 

lambda (λ) and gamma (γ) are the terms which discount those 

traces.                                        
δt = Rt+1 +  V(St+1) – V(St)                                (12) 

ETt(s)  = ( λ) ETt-1(s) + 1                                     (13) 

Updation of values: V(St) ←  V(St) + α δt ETt(s)              (14) 

An environment can have an infinite number of states (i.e. 

continuous state spaces). If we are using a neural network, 

then to update its weights θ, we well do, 

θ ← θ + α(r + maxa’ Q*(s’, a’) - Q(s, a))              (15)                          

where Q*(s, a) = E [ r + maxa’ Q*(s’, a’)  |  s]                  

TD Error is used in A2C, A3C, and DDPG[10]. 

 

III. STATE OF THE ART REVIEW OF 

REINFORCEMENT LEARNING ALGORITHMS 

A. Deep Q Learning 

In this algorithm, we use DQNs or Deep Q Networks which 

consists of deep neural networks. It is a value-based RL 

algorithm. Each state in the environment would be expressed 

by a set of pixels and the agent would be capable to take 

distinct actions from each state. Rather than using value 

iterations as in MDPs to determine the Q-values and find 

optimal Q-function, we alternatively use a function 

approximator to estimate optimal Q-function i.e. using Deep 

Neural Networks. In Q Learning, the target depends upon the 

prediction.[11] Q Learning is a semi-gradient off-policy 

algorithm. We will make use of DQNs as shown in Fig.3 to 

estimate the Q-values for each state-action pair in a given 

environment. The objective of this network is to approximate 

the optimal Q-function which will satisfy the Bellman 

equation. The loss from the network is determined by 

comparing the outputted Q-values to the target Q-values from 

the righthand side of the Bellman equation. After the loss is 

calculated, the network updates weights via Stochastic 

Gradient Descent and Backpropagation and this is how loss is 

minimized[12].  

With Deep Q Networks, we often utilize the technique called 

“Experience Replay” and “Replay Memory” during its 

training. In it, we store all the agent’s experiences et at each 
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time step in a dataset called replay memory in a form of tuple 

represented as et = (st, at, rt+1, st+1). The replay memory dataset 

is randomly sampled and used to train the network and this 

sampling helps in breaking the correlation between the 

consecutive steps and avoids inefficient learning. Now, we 

use two kinds of Networks namely Policy Networks and 

Target Networks. 

 

 
Fig. 3. Deep Q Networks with input as stack of picture frames and output as 

Q-values 

 

The network which is fed by random sampled et for training 

and outputs Q-values is called the policy network. In this 

network, the loss which is shown in “(16)” is backpropagated 

and minimized[13]. A Q table is made which is updated at 

each time step during training. New Q-value is equal to the 

weighted sum of old Q-value and the learned value as shown 

in “(17)”. 

Loss = E [ + maxa’ Q*(s’, a’)] – E [ ]                                                                                                                                                                                                                             

                         (16)               

Qnew(s,a) = (1-α) Q(s,a) + α (Rt+1 + maxa’ Q*(s’, a’))      (17)                                                                                                                           

where α is the learning rate.      Or we can also say,  

Target = r + (1 - done) max {Q*(s’, :)}                           (18)                                              

Prediction = Q(s,a), where done = True if the task is done 

successfully and done = False in the opposite case.                   

Error = (Target – Prediction)2                                                                  (19) 

If we use the same Q in Target and Prediction, then Target is 

always fluctuating along with the prediction so, both will 

become dependent on each other and thus inefficiency hence, 

we use a separate Target Network for getting Target values to 

avoid this. [14] 

 

B. A2C and A3C Algorithms 

A2C Stands for Advantage Actor-Critic and A3C Stands for 

Asynchronous Advantage Actor-Critic Algorithm. Both 

algorithms are policy-based RL algorithms. Policy-based 

algorithms output policies rather than the q values and each 

policy distribution has different exploration estimations. 

Policy-based methods can handle continuous action spaces 

easily as it represents parameters of the distribution as output 

which is finite[12][15]. In training a policy-based algorithm, 

instead of minimizing error and finding optimal policy, the 

concept of gradient is used. According to Policy Gradient 

Theorem, 

∇θ J(θ)  =  E [ A(s,a) ∇θ log π(a|s)]   ≈  (1/N) [ A(si,ai) 

∇θ log π(ai|si)],                                                                    (20)                     

where Advantage, A(s,a) = Q(s,a) – V(s),                          (21)  

or A(s,a) = R + V(s’) – V(s),                                            (22)                 

and ∇θ is the gradient and V(s) is the baseline. J(θ) is the loss 

function whose gradient with respect to θ is found. 

Advantage function captures how preferable an action can be 

as compared to others at a given state, while we know the 

value function captures how beneficial it is to be at this state. 

Both A2C and A3C are actor-critic algorithms. In A2C and 

A3C, take N = 5, collect all (state, action) pairs, calculate the 

N-Step Reward and Advantage, and after that go in the 

direction of the gradient and minimize the loss to update 

weights in the neural network. 

In A3C, we have one master network which intermittently 

copies its weights to the worker networks as shown in Fig.4. 

The worker nets are responsible for doing the rollouts. This 

process is Multi-threaded. Every 5 steps, each worker sends 

its gradients back to the master. Instead of updating its own 

weight, the worker sends its gradients back to the master net 

and master net updates its own weights. So, the master has 

the most up to date policy. A3C implements Parallel training 

where multiple workers in parallel environments 

independently update a global value function. These agents 

one by one interacts with its own copy of the environment and 

at the same time, the other agents are interacting with their 

environments. The reason this works better than having a 

single agent (beyond the speedup of getting more work done), 

is that the experience of each agent is not reliant on the 

experience of the others. In this way, the overall experience 

available for training becomes more divergent. 

                             Fig. 4. A3C architecture 

 

In A2C, the steps are performed in each worker 

synchronously unlike A3C. In A2C, a single-worker variant 

of A3C is present. A2C is like A3C but without asynchronous 

part. The critic estimates the value function and actor updates 

the policy distribution in direction suggested by the critic 

with policy gradients.[16] In A2C, we simultaneously 

optimize the value function and the policy. Take N=5 steps of 

an episode, collect (state, action) pairs, calculate N-step 

reward and advantage, and go in the direction of the gradient. 

The regularization here can be thought of as exploration. 

Equation (23) and (24) determines cost function and loss 

function respectively. 

J = ( yi - wTxi )2   +  λ |θ|2,                                           (23) 

here λ is called the regularization parameter and is used to 

penalize the weights. Regularized loss = Policy loss + 

Penalty. 

L = - E [ A(s,a) log π(s|a) ] – H(π),                                    (24) 

where H(π) =  πi log πi    and H(π) is called the entropy. 

Entropy is directly proportional to the exploration.[17] 
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C. Deep Deterministic Policy Gradient Algorithm 

When we take DQNs (which works with only discrete 

actions) and modify it to work with continuous actions or 

action spaces, the result comes out to be DDPG as shown in 

Fig.5. DDPG is the combination of DQN and PG (Policy 

Gradient). We use semi-gradient descent and all tricks of 

DQNs are applicable in DDPG. It is only used for 

environments which can have continuous action spaces i.e. is 

not used much in video games but is used in our movements 

or robot’s movements which will require continuous control. 

[18] 

 

 

 

 

 
 

                               

 
Fig. 5. Inputs and Outputs in DDPG and DQN respectively 

 

DDPG approach is a little different from the DQN approach. 

The limitation of handling continuous action spaces in DQN 

is overcome in DDPG. DDPG has two different networks just 

like GANs. One of those is a Deterministic policy function 

μ(s) represented by a neural network that outputs the optimal 

action (scalar or vector) after taking an input ‘s’. 

Deterministic policy function, μ(s) = arg maxa Q(s,a). The 

other network is Q network which gets optimal action from 

μ(s) and state ‘s’ as its inputs. Policy network μ(s) must pass 

through the Q network to get the loss and output as an 

Action-Value from the latter. When updating weights of μ-net 

‘θμ‘, weights of Q-net ‘θQ’ remain fixed and the output from 

Q net is maximized by adjusting the weights in μ-net[19]. For 

optimizing μ(s), the loss function for μ-net and the Gradient 

of its loss function is shown in “(25)” and “(26)” 

respectively.                                                           

Jμ = E [ Q( s, μ(s) ) ]                                      (25) 

∇θ
μ

  Jμ = E [ ∇μ Q( s, μ(s) ) .∇θ
μ
  μ(s)]                        (26) 

We use the suboptimal approach and calculate the gradient of 

the loss function and try to maximize the sum of future 

rewards. DDPG updates μ and Q nets alternatively 

considering two separate losses for each[20],[21]. Loss 

function for Q-net can also be calculated as shown in “(27)” 

and we will try to minimize it,           

                  

JQ = (1/N) ( ri + (1 - d) Qtarg (si’, μtarg(si’)) - Q(si, 

μ(si)))2                                                                               (27) 

In DDPG, we do a soft update for both policy network and Q-

network unlike DQN i.e. we copy just a fraction of weights 

from the main policy network and Q-network to two separate 

target networks on every step.      

                θμ
targ ← τ θμ

targ + (1 – τ) θμ                 (28)               

θQ
targ ← τ θQ

targ + (1 – τ) θQ                    (29) 

where 0 < τ << 1   [22] 
 

D. Evolution Strategies Algorithm 

Evolution Strategies (ES) is a black-box optimization 

method. Both Value-based and Policy-based categories use 

gradient descent to minimize the loss but ES takes a 

biologically inspired approach in particular of evolution. 

Evolution includes the concept of “Natural Selection”. As a 

general nature’s rule, the fit or the strong survive and the 

weak die. The offsprings which survive will produce 

offsprings for the next generation and that generation will be 

slightly different from their parents and these beneficial 

changes will compound and after many generations, the 

offsprings will be much stronger than their ancestors. Good 

changes are kept and bad changes are thrown away as those 

die.[23] Hill Climbing is an optimization technique used to 

find the local optimum solution to the computational 

problem. It starts with a solution that is very poor compared 

to the optimal solution and then iteratively improves from 

there. It does this by generating "neighbor" solutions which 

are relatively a step better than the current solution, picks the 

best and then repeats the process until it arrives at the most 

optimal solution because it can no longer find any 

improvements. Adding random noise leads to climbing of the 

hill and if the fitness of the model is less, then the noise is 

deleted. We try a new point and if that point is better than our 

current point, then we make it our current point and if not, 

then we consider another random point.[24] Also, Gradient 

descent is a specific kind of “hill climbing” algorithm. Let the 

learning rate = η; Normal distribution = εn; Noise Standard 

deviation = σ and Initial policy parameters = θ(0), where 

θ(n)= policy parameters for nth policy. 
 

θtry = θ(t) + σ εn                                                     (30) 

θtry is used to calculate reward by checking the fitness or it 

can also be the accuracy. For calculating reward, Fn = F(θtry), 

where Fn is called the reward function. [25] 

Updation of policy parameters is shown in “(31)”.      

θ(t+1) = θ(t) + η  εn                                         (31) 

Fig. 6. Applying Gradient Descent to ES for training. 
                          

We want to go in directions which are better than where we 

currently are. The concept of parallelization is used in 

running multiple offsprings. No backpropagation, MDPs, 

Bellman eq., value function, etc like previously are 

used.[26][27] We see better exploration behavior in ES as 

compared to other policy techniques. There are fewer 

hyperparameters like learning rate, population size (number 

of offsprings to create) and noise deviation (how far can 

offsprings go from the parent). Fig.6 is showing that given an 

initial policy, we can always generate a population of similar 

policies around it by applying random changes to its weights. 

We then evaluate all these new policies and estimate the 

gradient i.e. we check in what direction things look more 

promising. Finally, we update weights and policy parameters 

to move exactly in that direction and start again and loop 

until we are satisfied with the outcome. [26] 
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IV. DIFFERENCES BETWEEN THE RL ALGORITHMS 

 

The most valid differences which can be stated between the RL algorithms discussed above are as follows (see Table I). 

  

Table- I: The most  valid differences which  can be  formed  in 

 

V. CONCLUSION 

This paper has provided an overview of reinforcement 

learning algorithms which were used in the past and also the 

algorithms which are in use these days. The comparison 

between the RL algorithms shows that the Evolution 

strategies algorithm is much more efficient and faster than 

other RL algorithms with the only drawback that the data 

used for its training acquires a lot of memory. Reinforcement 

Learning is not just limited to the algorithms discussed in this 

paper. Most recent applications in this particular technology 

are Neural Scene Representation and Rendering, Brain-

Computer Interface, Stock Predictions, Trading, Sports 

betting, proving complex Mathematical Theorems, Health 

Care, Astronomy, Business, Manufacturing, Chatbots, Self-

driving Car, Astronomy, Playing video games at Superhuman 

levels and many more. Reinforcement Learning is the future 

as it has been predicted by researchers and scientists that 

humanoid robots will be built in the future with superhuman 

powers that will be much more intelligent and efficient than 

an average human. It will also be able to do innovations, 

learn by itself and perform several tasks that a human cannot 

do at all. 
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 DQN Advantage Actor-Critic DDPG ES 

1.Classification 
 It is a value-based RL 

algorithm[2] 

A2C and A3C are policy-based RL 

algorithms  

It is a combination of both value 

and policy-based RL 
algorithms[2]  

 It is different from value and 

policy-based RL algorithms [24] 

2.Training Speed  Slowest Fast  
 Slower than actor-critic but faster 

than DQNs [18] 
Fastest  

3.Action Spaces Discrete[11]  Discrete and Continuous both  Only continuous[22]  
Discrete and Continuous 

both[27][25]  

4.Memory 

Consumed 

Large replay memory 

required although it has 

only one target 
net[13][14]  

 Larger memory required as it has 

many worker nets 

Larger replay memory required as 
it has two separate μ and Q target 

net [20]  

 Very Large memory required to 

store data for training 

5.Parallelization 

Required 
No  

Yes as many worker nets are 

working in parallel to update the 
master net[16]  

Does not support 

parallelization[21]  

Yes as many offspring models are 

running in parallel[26]  

6.Backpropagation Happens[11]  Happens  Happens[21], [22] Does not happen  

7.Sub-networks 
information 

Contains only basic 
deep neural nets  

Actor is π (stochastic) and critic is 

V (state-value function). Actors are 
the workers which run in parallel 

with one critic i.e. master net.[17]  

Actor is μ (deterministic) and 

actor is Q (action-value function). 
There is just one actor and one 

critic  

 Multiple offsprings running in 

parallel following the concept of 
Natural Selection by following 

best gradient direction 

8.Weights used 

 Weights on the main 

network copied to target 
nets[12] 

Weights of Master net are copied 

to worker nets  

Weight are updated using Soft 

updates to μ and Q target nets 
separately[20]  

 Offspring nets have same 

weights initially    
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