
State-of-the-Art Reinforcement Learning

Algorithms

Deepanshu Mehta
B. Eng (Information Technology)

Panjab University (UIET)

Chandigarh, India

Abstract—This research paper brings together many

different aspects of the current research on several fields

associated to Reinforcement Learning which has been growing

rapidly, providing a wide variety of learning algorithms like

Markov Decision Processes (MDPs), Temporal Difference (TD)

Learning, Advantage Actor-Critic (A2C), Asynchronous

Advantage Actor-Critic (A3C), Deep Q Networks (DQNs), Deep

Deterministic Policy Gradient (DDPG) and Evolution Strategies

(ES) for different applications. In this paper, the computations

and procedures involved in Reinforcement Learning algorithms

are briefly discussed. Reinforcement Learning can be used is

almost every field for its automation and advancement.

Nowadays, Meta-Learning, Automated Machine Learning and

Self-Learning Systems have become very popular. Meta-

learning which is an application of evolution strategies is an

exciting area of research that tackles the problem of learning to

learn faster with being generalizable to many tasks. Automated

machine learning is the process of automating end-to-end the

process of applying machine learning to real-world problems.

Keywords— Markov’s Decision Processes, Q Learning,

Temporal Difference Learning, Actor-Critic Algorithms, Deep

Deterministic Policy Gradients, Evolution Strategies Algorithm.

I. INTRODUCTION

Reinforcement Learning (RL) is an area of Machine

Learning which is very dynamic in terms of theory and its

application. Reinforcement Learning algorithms study the

behavior of subjects in environments and learn to optimize

their behavior[1]. RL algorithms can be classified as shown in

Fig.1.

Fig. 1. Reinforcement Learning classification.

RL algorithms can be categorized mainly into Value-based or

Value Optimization(Q-Learning) RL, Policy-based or Policy

Optimization RL and Evolution Strategies which is a

completely different Reinforcement Learning approach. [1]

There are a little Terminologies like Agent: The learner and

decision-maker, Environment: where the agent learns and

decides what actions to perform, Action(A): set of actions ‘a’

which can be performed in an environment, State(S): the set

of states of an agent in the environment, Reward(R): each

action performed by the agent provides a positive or a

negative reward. Expected Return(G): It is the cumulative

sum of rewards which the agent tries to maximize as shown

in “(1)”. [2]

Gt = Rt+1 + Rt+2 + Rt+3 + Rt+4 + - - - - - - - +RT (1)

where ‘T’ is the final time step.

Discounted Return: In this return, discount rate ‘ ’ ε [0,1] is

used to discount the future rewards and determine the present

value of future rewards so that more immediate rewards are

given more importance. Hence, expression of Discounted

Return becomes as shown in “(2)”.

Gt = Rt+1 + Rt+2 + 2Rt+3 + 3Rt+4 + - - - - - =

 (2)

Policy(π): the decision-making function that maps a given

state to probabilities of each possible action from that state.

Value function: These are functions of states that evaluates

how adequate it is for an agent to be in given state (State-

value function) which is denoted by “Vπ” or these are

functions of state-action pairs that estimate how good it is for

an agent to perform a given action in a given state (Action-

value function) which is denoted by “Qπ”. Both of these

functions are given in terms of Expected Return “Eπ” as

shown in “(3)” and “(4)”. [2][3]

Vπ(s) = Eπ [Gt | St = s] = Eπ [| St = s] (3)

Qπ(s,a) = Eπ [Gt | St = s, At = a] = Eπ [| St =

s, At = a] (4)

II. COMPUTATIONS AND PROCESSES INVOLVED

IN RL ALGORITHMS

A. Markov’s Decision Processes

It is the framework we use to describe RL problems. In MDP,

Agent and Environment interact continually and learns

simultaneously as shown in Fig.2. The environment

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS120332
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 12, December-2019

717

www.ijert.org
www.ijert.org
www.ijert.org

transitions into a new state when an agent takes an action and

during that very moment the agent gets a reward based on its

action. Transition is represented by a tuple (s, a, r, s’), where

s is the previous state, a is the action taken, r is the reward

received on taking the action a and s’ is the next state which

the environment is transitioned into[4]. The transition

probability from s state to s’ state with reward r and action a

is shown in “(5)”.

P(s’, r | s, a) = Pr {St = s’, = r | St+1 = s, At-1 = a} (5)

While interacting with the environment, the main goal of the

agent is to maximize the returns according to which optimal

policy, optimal state-value function V*, optimal action-value

function Q* are chosen[4]. Bellman Optimality equation for

calculating Q* proves to be immensely useful.[4]

Q*(s,a) = E [+ maxa’ Q*(s’, a’)] (6)

OR

Vπ(s) = E [+ π()) | = s] (7)

Fig. 2. Agent-Environment Interaction

Once we have Q*, we can determine the optimal policy as

with Q* for any state s, an RL algorithm can find the action a

that maximizes Q*(s,a).

 Also, in MDP, Epsilon greedy Strategy or ε – greedy

Strategy is used to get a balance between exploitation and

exploration. Exploration is the act of exploring the

environment to find out information about it whereas

Exploitation is the act of exploiting the information that is

already known about the environment in order to maximize

the return. The agent will always start with the exploration as

it does not know anything at that time. Here “ε” is the

exploration rate which ranges from 0-1 where ε=1 means the

agent is only exploring and ε=0 means it is only exploiting

the information it has. MDPs are used in TD Learning,

DQNs,A2C,A3C and DDPG.[5][6]

B. Temporal Difference Learning

Temporal difference is an agent learning from an

environment through episodes without any preliminary

information about the environment. TD Learning is

considered as a better algorithm as compared to Monte-Carlo

(MC). In TD Learning, the agent learns at every step and

update values unlike in MC, where the values are updated at

the termination of an episode. TD Learning is an

unsupervised learning approach. [7][8]

TD(1) is the same as MC and TD Error can be calculated as

shown in “(8)”.

TD Error = Gt – V(St) (8)

Updation of values: V(St) ← V(St) + α (Gt – V(St)) (9)

In TD(0), TD Error is calculated using “(10)”.

TD Error = Rt+1 + V(St+1) - V(St) (10)

Updation of values: V(St) ← V(St) + α (Rt+1 + V(St+1) –

V(St)) (11)

In TD(0), instead of using Gt , we only look at immediate

Reward Rt+1 plus the discount of the estimated value of only 1

step ahead V(St+1). TD(λ) is used if we want to update values

prior to the ending of the episode and use more than one step

ahead for our calculation. It has two views in it: Forward and

Backward view.

Forward View: Looks at the next n-steps frontwards and λ is

essentially operated to decay those future estimates. λ is the

credit assignment variable.

Backward View: Updates values at each step. So, after each

step in an episode, you make updates to all prior steps[9]. δt is

the TD Error as shown in “(12)”. We also use Eligibility

Traces (ET) to assign credit to prior steps appropriately.
Basically, ET keeps a record of the occurrence and recency of

moving into a given state which can be calculated using

“(13)”. Credit is assigned to the states that are visited

frequently and recently with respect to our final state.[9] The

lambda (λ) and gamma (γ) are the terms which discount those

traces.
δt = Rt+1 + V(St+1) – V(St) (12)

ETt(s) = (λ) ETt-1(s) + 1 (13)

Updation of values: V(St) ← V(St) + α δt ETt(s) (14)

An environment can have an infinite number of states (i.e.

continuous state spaces). If we are using a neural network,

then to update its weights θ, we well do,

θ ← θ + α(r + maxa’ Q*(s’, a’) - Q(s, a)) (15)

where Q*(s, a) = E [r + maxa’ Q*(s’, a’) | s]

TD Error is used in A2C, A3C, and DDPG[10].

III. STATE OF THE ART REVIEW OF

REINFORCEMENT LEARNING ALGORITHMS

A. Deep Q Learning

In this algorithm, we use DQNs or Deep Q Networks which

consists of deep neural networks. It is a value-based RL

algorithm. Each state in the environment would be expressed

by a set of pixels and the agent would be capable to take

distinct actions from each state. Rather than using value

iterations as in MDPs to determine the Q-values and find

optimal Q-function, we alternatively use a function

approximator to estimate optimal Q-function i.e. using Deep

Neural Networks. In Q Learning, the target depends upon the

prediction.[11] Q Learning is a semi-gradient off-policy

algorithm. We will make use of DQNs as shown in Fig.3 to

estimate the Q-values for each state-action pair in a given

environment. The objective of this network is to approximate

the optimal Q-function which will satisfy the Bellman

equation. The loss from the network is determined by

comparing the outputted Q-values to the target Q-values from

the righthand side of the Bellman equation. After the loss is

calculated, the network updates weights via Stochastic

Gradient Descent and Backpropagation and this is how loss is

minimized[12].

With Deep Q Networks, we often utilize the technique called

“Experience Replay” and “Replay Memory” during its

training. In it, we store all the agent’s experiences et at each

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS120332
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 12, December-2019

718

www.ijert.org
www.ijert.org
www.ijert.org

time step in a dataset called replay memory in a form of tuple

represented as et = (st, at, rt+1, st+1). The replay memory dataset

is randomly sampled and used to train the network and this

sampling helps in breaking the correlation between the

consecutive steps and avoids inefficient learning. Now, we

use two kinds of Networks namely Policy Networks and

Target Networks.

Fig. 3. Deep Q Networks with input as stack of picture frames and output as

Q-values

The network which is fed by random sampled et for training

and outputs Q-values is called the policy network. In this

network, the loss which is shown in “(16)” is backpropagated

and minimized[13]. A Q table is made which is updated at

each time step during training. New Q-value is equal to the

weighted sum of old Q-value and the learned value as shown

in “(17)”.

Loss = E [+ maxa’ Q*(s’, a’)] – E []

 (16)

Qnew(s,a) = (1-α) Q(s,a) + α (Rt+1 + maxa’ Q*(s’, a’)) (17)

where α is the learning rate. Or we can also say,

Target = r + (1 - done) max {Q*(s’, :)} (18)

Prediction = Q(s,a), where done = True if the task is done

successfully and done = False in the opposite case.

Error = (Target – Prediction)2 (19)

If we use the same Q in Target and Prediction, then Target is

always fluctuating along with the prediction so, both will

become dependent on each other and thus inefficiency hence,

we use a separate Target Network for getting Target values to

avoid this. [14]

B. A2C and A3C Algorithms

A2C Stands for Advantage Actor-Critic and A3C Stands for

Asynchronous Advantage Actor-Critic Algorithm. Both

algorithms are policy-based RL algorithms. Policy-based

algorithms output policies rather than the q values and each

policy distribution has different exploration estimations.

Policy-based methods can handle continuous action spaces

easily as it represents parameters of the distribution as output

which is finite[12][15]. In training a policy-based algorithm,

instead of minimizing error and finding optimal policy, the

concept of gradient is used. According to Policy Gradient

Theorem,

∇θ J(θ) = E [A(s,a) ∇θ log π(a|s)] ≈ (1/N) [A(si,ai)

∇θ log π(ai|si)], (20)

where Advantage, A(s,a) = Q(s,a) – V(s), (21)

or A(s,a) = R + V(s’) – V(s), (22)

and ∇θ is the gradient and V(s) is the baseline. J(θ) is the loss

function whose gradient with respect to θ is found.

Advantage function captures how preferable an action can be

as compared to others at a given state, while we know the

value function captures how beneficial it is to be at this state.

Both A2C and A3C are actor-critic algorithms. In A2C and

A3C, take N = 5, collect all (state, action) pairs, calculate the

N-Step Reward and Advantage, and after that go in the

direction of the gradient and minimize the loss to update

weights in the neural network.

In A3C, we have one master network which intermittently

copies its weights to the worker networks as shown in Fig.4.

The worker nets are responsible for doing the rollouts. This

process is Multi-threaded. Every 5 steps, each worker sends

its gradients back to the master. Instead of updating its own

weight, the worker sends its gradients back to the master net

and master net updates its own weights. So, the master has

the most up to date policy. A3C implements Parallel training

where multiple workers in parallel environments

independently update a global value function. These agents

one by one interacts with its own copy of the environment and

at the same time, the other agents are interacting with their

environments. The reason this works better than having a

single agent (beyond the speedup of getting more work done),

is that the experience of each agent is not reliant on the

experience of the others. In this way, the overall experience

available for training becomes more divergent.

 Fig. 4. A3C architecture

In A2C, the steps are performed in each worker

synchronously unlike A3C. In A2C, a single-worker variant

of A3C is present. A2C is like A3C but without asynchronous

part. The critic estimates the value function and actor updates

the policy distribution in direction suggested by the critic

with policy gradients.[16] In A2C, we simultaneously

optimize the value function and the policy. Take N=5 steps of

an episode, collect (state, action) pairs, calculate N-step

reward and advantage, and go in the direction of the gradient.

The regularization here can be thought of as exploration.

Equation (23) and (24) determines cost function and loss

function respectively.

J = (yi - wTxi)2 + λ |θ|2, (23)

here λ is called the regularization parameter and is used to

penalize the weights. Regularized loss = Policy loss +

Penalty.

L = - E [A(s,a) log π(s|a)] – H(π), (24)

where H(π) = πi log πi and H(π) is called the entropy.

Entropy is directly proportional to the exploration.[17]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS120332
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 12, December-2019

719

www.ijert.org
www.ijert.org
www.ijert.org

C. Deep Deterministic Policy Gradient Algorithm

When we take DQNs (which works with only discrete

actions) and modify it to work with continuous actions or

action spaces, the result comes out to be DDPG as shown in

Fig.5. DDPG is the combination of DQN and PG (Policy

Gradient). We use semi-gradient descent and all tricks of

DQNs are applicable in DDPG. It is only used for

environments which can have continuous action spaces i.e. is

not used much in video games but is used in our movements

or robot’s movements which will require continuous control.

[18]

Fig. 5. Inputs and Outputs in DDPG and DQN respectively

DDPG approach is a little different from the DQN approach.

The limitation of handling continuous action spaces in DQN

is overcome in DDPG. DDPG has two different networks just

like GANs. One of those is a Deterministic policy function

μ(s) represented by a neural network that outputs the optimal

action (scalar or vector) after taking an input ‘s’.

Deterministic policy function, μ(s) = arg maxa Q(s,a). The

other network is Q network which gets optimal action from

μ(s) and state ‘s’ as its inputs. Policy network μ(s) must pass

through the Q network to get the loss and output as an

Action-Value from the latter. When updating weights of μ-net

‘θμ‘, weights of Q-net ‘θQ’ remain fixed and the output from

Q net is maximized by adjusting the weights in μ-net[19]. For

optimizing μ(s), the loss function for μ-net and the Gradient

of its loss function is shown in “(25)” and “(26)”

respectively.

Jμ = E [Q(s, μ(s))] (25)

∇θ
μ

 Jμ = E [∇μ Q(s, μ(s)) .∇θ
μ
 μ(s)] (26)

We use the suboptimal approach and calculate the gradient of

the loss function and try to maximize the sum of future

rewards. DDPG updates μ and Q nets alternatively

considering two separate losses for each[20],[21]. Loss

function for Q-net can also be calculated as shown in “(27)”

and we will try to minimize it,

JQ = (1/N) (ri + (1 - d) Qtarg (si’, μtarg(si’)) - Q(si,

μ(si)))2 (27)

In DDPG, we do a soft update for both policy network and Q-

network unlike DQN i.e. we copy just a fraction of weights

from the main policy network and Q-network to two separate

target networks on every step.

 θμ
targ ← τ θμ

targ + (1 – τ) θμ (28)

θQ
targ ← τ θQ

targ + (1 – τ) θQ (29)

where 0 < τ << 1 [22]

D. Evolution Strategies Algorithm

Evolution Strategies (ES) is a black-box optimization

method. Both Value-based and Policy-based categories use

gradient descent to minimize the loss but ES takes a

biologically inspired approach in particular of evolution.

Evolution includes the concept of “Natural Selection”. As a

general nature’s rule, the fit or the strong survive and the

weak die. The offsprings which survive will produce

offsprings for the next generation and that generation will be

slightly different from their parents and these beneficial

changes will compound and after many generations, the

offsprings will be much stronger than their ancestors. Good

changes are kept and bad changes are thrown away as those

die.[23] Hill Climbing is an optimization technique used to

find the local optimum solution to the computational

problem. It starts with a solution that is very poor compared

to the optimal solution and then iteratively improves from

there. It does this by generating "neighbor" solutions which

are relatively a step better than the current solution, picks the

best and then repeats the process until it arrives at the most

optimal solution because it can no longer find any

improvements. Adding random noise leads to climbing of the

hill and if the fitness of the model is less, then the noise is

deleted. We try a new point and if that point is better than our

current point, then we make it our current point and if not,

then we consider another random point.[24] Also, Gradient

descent is a specific kind of “hill climbing” algorithm. Let the

learning rate = η; Normal distribution = εn; Noise Standard

deviation = σ and Initial policy parameters = θ(0), where

θ(n)= policy parameters for nth policy.

θtry = θ(t) + σ εn (30)

θtry is used to calculate reward by checking the fitness or it

can also be the accuracy. For calculating reward, Fn = F(θtry),

where Fn is called the reward function. [25]

Updation of policy parameters is shown in “(31)”.

θ(t+1) = θ(t) + η εn (31)

Fig. 6. Applying Gradient Descent to ES for training.

We want to go in directions which are better than where we

currently are. The concept of parallelization is used in

running multiple offsprings. No backpropagation, MDPs,

Bellman eq., value function, etc like previously are

used.[26][27] We see better exploration behavior in ES as

compared to other policy techniques. There are fewer

hyperparameters like learning rate, population size (number

of offsprings to create) and noise deviation (how far can

offsprings go from the parent). Fig.6 is showing that given an

initial policy, we can always generate a population of similar

policies around it by applying random changes to its weights.

We then evaluate all these new policies and estimate the

gradient i.e. we check in what direction things look more

promising. Finally, we update weights and policy parameters

to move exactly in that direction and start again and loop

until we are satisfied with the outcome. [26]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS120332
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 12, December-2019

720

www.ijert.org
www.ijert.org
www.ijert.org

IV. DIFFERENCES BETWEEN THE RL ALGORITHMS

The most valid differences which can be stated between the RL algorithms discussed above are as follows (see Table I).

Table- I: The most valid differences which can be formed in

V. CONCLUSION

This paper has provided an overview of reinforcement

learning algorithms which were used in the past and also the

algorithms which are in use these days. The comparison

between the RL algorithms shows that the Evolution

strategies algorithm is much more efficient and faster than

other RL algorithms with the only drawback that the data

used for its training acquires a lot of memory. Reinforcement

Learning is not just limited to the algorithms discussed in this

paper. Most recent applications in this particular technology

are Neural Scene Representation and Rendering, Brain-

Computer Interface, Stock Predictions, Trading, Sports

betting, proving complex Mathematical Theorems, Health

Care, Astronomy, Business, Manufacturing, Chatbots, Self-

driving Car, Astronomy, Playing video games at Superhuman

levels and many more. Reinforcement Learning is the future

as it has been predicted by researchers and scientists that

humanoid robots will be built in the future with superhuman

powers that will be much more intelligent and efficient than

an average human. It will also be able to do innovations,

learn by itself and perform several tasks that a human cannot

do at all.

REFERENCES

[1] N. R. Ravishankar and M. V. Vijayakumar, “Reinforcement Learning

Algorithms: Survey and Classification,” Indian J. Sci. Technol., vol.
10, no. 1, pp. 1–8, 2017.

[2] A. Gosavi, “Reinforcement learning: A tutorial survey and recent

advances,” INFORMS J. Comput., vol. 21, no. 2, pp. 178–192, 2009.
[3] A. K. Chattopadhyay and T. Chattopadhyay, “Monte Carlo

simulation,” Springer Ser. Astrostatistics, vol. 3, no. March, pp. 241–

275, 2014.

[4] J. Patrick and M. A. Begen, “Markov decision processes and its

applications in healthcare,” Handb. Healthc. Deliv. Syst., no. January

2011, p. 17, 2016.

[5] M. Van Otterlo, “Markov Decision Processes: Concepts and

Algorithms,” Course ’Learning Reason., no. May, pp. 1–23, 2009. the

algorithms discussed.
[6] S. Thrun, “Monte Carlo POMDPs,” Adv. Neural Inf. Process. Syst.

12, pp. 1064–1070, 2000.

[7] H. Penedones, D. Vincent, H. Maennel, S. Gelly, T. Mann, and A.
Barreto, “Temporal Difference Learning with Neural Networks -

Study of the Leakage Propagation Problem,” no. July, 2018.

[8] A. Amiranashvili, A. Dosovitskiy, V. Koltun, and T. Brox, “TD or not
TD: Analyzing the Role of Temporal Differencing in Deep

Reinforcement Learning,” no. 2016, pp. 1–15, 2018.

[9] G. Tesauro, “Practical Issues in Temporal Difference Learning,”
Mach. Learn., vol. 8, no. 3, pp. 257–277, 1992.

[10] F. Kunz, “An Introduction to Temporal Difference Learning,”

Citesee, pp. 1–8, 2000.
[11] V. Mnih et al., “Human-level control through deep reinforcement

learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[12] A. Stooke and P. Abbeel, “Accelerated Methods for Deep

Reinforcement Learning,” 2018.

[13] V. François-lavet et al., “An Introduction to Deep Reinforcement

Learning. (arXiv:1811.12560v1 [cs.LG])
http://arxiv.org/abs/1811.12560,” Found. trends Mach. Learn., vol. II,

no. 3–4, pp. 1–140, 2018.
[14] V. Mnih, D. Silver, and M. Riedmiller, “Deep Q Network (Google),”

pp. 1–9, 2015.

[15] P.-H. Su, P. Budzianowski, S. Ultes, M. Gasic, and S. Young,
“Sample-efficient Actor-Critic Reinforcement Learning with

Supervised Data for Dialogue Management,” pp. 147–157, 2018.

[16] M. A. F. Birck, U. B. Correa, P. Ballester, V. O. Andersson, and R.
M. Araujo, “Multi-Task Reinforcement Learning : An Hybrid A3C

Domain Approach,” Eniac, no. February 2018, 2017.

[17] Y. Kwon, B. Saltaformaggio, I. L. Kim, K. H. Lee, X. Zhang, and D.
Xu, “A2C: Self Destructing Exploit Executions via Input

Perturbation,” no. March, 2017.

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M.
Riedmiller, “Deterministic policy gradient algorithms,” 31st Int. Conf.

Mach. Learn. ICML 2014, vol. 1, pp. 605–619, 2014.

 DQN Advantage Actor-Critic DDPG ES

1.Classification
 It is a value-based RL

algorithm[2]

A2C and A3C are policy-based RL

algorithms

It is a combination of both value

and policy-based RL
algorithms[2]

 It is different from value and

policy-based RL algorithms [24]

2.Training Speed Slowest Fast
 Slower than actor-critic but faster

than DQNs [18]
Fastest

3.Action Spaces Discrete[11] Discrete and Continuous both Only continuous[22]
Discrete and Continuous

both[27][25]

4.Memory

Consumed

Large replay memory

required although it has

only one target
net[13][14]

 Larger memory required as it has

many worker nets

Larger replay memory required as
it has two separate μ and Q target

net [20]

 Very Large memory required to

store data for training

5.Parallelization

Required
No

Yes as many worker nets are

working in parallel to update the
master net[16]

Does not support

parallelization[21]

Yes as many offspring models are

running in parallel[26]

6.Backpropagation Happens[11] Happens Happens[21], [22] Does not happen

7.Sub-networks
information

Contains only basic
deep neural nets

Actor is π (stochastic) and critic is

V (state-value function). Actors are
the workers which run in parallel

with one critic i.e. master net.[17]

Actor is μ (deterministic) and

actor is Q (action-value function).
There is just one actor and one

critic

 Multiple offsprings running in

parallel following the concept of
Natural Selection by following

best gradient direction

8.Weights used

 Weights on the main

network copied to target
nets[12]

Weights of Master net are copied

to worker nets

Weight are updated using Soft

updates to μ and Q target nets
separately[20]

 Offspring nets have same

weights initially

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS120332
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 12, December-2019

721

www.ijert.org
www.ijert.org
www.ijert.org

[19] S. Choi, T. Le, Q. Nguyen, M. Layek, S. Lee, and T. Chung, “Toward

Self-Driving Bicycles Using State-of-the-Art Deep Reinforcement

Learning Algorithms,” Symmetry (Basel)., vol. 11, no. 2, p. 290,

2019.
[20] Y. Hou and Y. Zhang, “Improving DDPG via Prioritized Experience

Replay,” no. May, 2019.

[21] X. Wu, S. Liu, T. Zhang, L. Yang, Y. Li, and T. Wang, “Motion
Control for Biped Robot via DDPG-based Deep Reinforcement

Learning,” 2018 WRC Symp. Adv. Robot. Autom. WRC SARA 2018

- Proceeding, pp. 40–45, 2018.
[22] T. P. Lillicrap et al., “Continuous control with deep reinforcement

learning,” 2015.

[23] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution
strategies,” Proc. Fourth Int. Conf. Genet. Algorithms, vol. 9, no. 3, p.

8, 1991.

[24] M. Emmerich, O. M. Shir, and H. Wang, “Evolution strategies,”
Handb. Heuristics, vol. 1–2, pp. 89–119, 2018.

[25] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution

Strategies as a Scalable Alternative to Reinforcement Learning,” pp.

1–13, 2017.

[26] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J.

Schmidhuber, “Natural evolution strategies,” J. Mach. Learn. Res.,

vol. 15, pp. 949–980, 2014.

[27] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and J.
Clune, “Improving exploration in evolution strategies for deep

reinforcement learning via a population of novelty-seeking agents,”

Adv. Neural Inf. Process. Syst., vol. 2018-Decem, no. NeurIPS, pp.
5027–5038, 2018.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS120332
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 12, December-2019

722

www.ijert.org
www.ijert.org
www.ijert.org

