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Abstract— In recent years, there has been a tremendous
advancement in battery technology due to the development of
EVs and HEVs. But still, the State of Charge (SOC) estimation
remains a challenge in battery engineering. SOC is defined as
the ratio of remaining charge to the maximum capacity of the
battery. SOC estimation is of prime importance with regard to
battery safety and maintenance. This paper reviews different
SOC estimation techniques along with their advantages and
disadvantages.
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l. INTRODUCTION

Due to growing environmental concerns and depletion of
conventional fuels, automobile industry in currently focusing
on development of Electric (EVs) and Hybrid Electric
Vehicle (HEVs). A rechargeable high voltage battery is the
driving force for EVS/HEVs. A Battery Management System
(BMS) is necessary to ensure the safe operation of the battery.
BMS consists of sensors, electronic units housed on or away
from the battery and a display unit.

e Functions of BMS:

1) Monitoring of battery current, voltage (individual cell
voltages as well as pack voltage)

2) Temperature monitoring (pack temp)

3) State Of Charge(SOC) and Sate Of Health(SOH
estimation)

4) Balancing of cells

5) Generating Safety Critical alarm and derating the output
if required.

6) Emergency Shutdown in Critical state.

In this paper, we are going to explore various SOC
estimation techniques. Before, proceeding further, let us
understand what do you mean by SOC? SOC of a cell or a
battery at a given instant is the ratio of the charge available at
that point to the charge available when it is full charged. It is
expressed in percent, from 100% when full to 0% when
empty. Analogous to how much fuel is available in car’s tank.

e Importance of SOC

1) SOC indicates whether available charge is sufficient
enough to carry out a particular function or not.

2) Knowledge of SOC helps in operating the battery in the
limits of charge and discharge.

3) Very high or low SOC tends to permanently damage to
battery.

SOC estimation is difficult as it represents internal state
of the battery. There is no sensor /instrument to measure SOC
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directly. It needs to be inferred from battery voltage or battery
current. Hence, the word SOC Estimation and not SOC
measurement.

Il.  SOC ESTIMATION TECHNIQUES

A. OCV Method

OCYV refers to Open Circuit Voltage of the battery (battery
no load condition). It is the simplest method for SOC
estimation. With some battery chemistries, OCV voltage is
linear function of SOC. Thus, measuring the OCV we can
predict the SOC of the battery easily. While with other Li-ion
chemistries, OCV vs SOC is a flat curve [18]. In such
condition, usage of this method is limited. Other limitations
using this method. It is an offline method. Battery should not
be connected to any load for at least 2 hours to accurately
measure the OCV. Also, OCV not only varies with SOC, but
with a cell’s internal resistance.
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Figure 1: SOC Vs OCV Curve

As you can observe in the figure above, SOC range 20 -
80% OCV does not vary considerably. This makes SOC
Estimation difficult in this region. Thus, to conclude it is a
laboratory method and can be only used at extreme ends
(When battery is nearly full or empty). Also, a good method
for initial SOC Estimation.

B. Coulomb Counting

Coulomb Counting is the most readily used algorithm for
SOC estimation. It is based on the fundamental relation
between charge and current. Integrating the current in and out
of the battery to give relative value of charge.

tn

Qen = Q1o — f 1) dt

0
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Where, Q,,, = Residual Capacity at nth time
Q:o= Initial battery capacity
I (t) = Battery current.

To start with initial SOC of the battery should be known
from then onwards CC algorithm is implemented. Limitations
of this algorithm are cell leakage current is not considered.
Current sensor offset, can result in drift in SOC estimation.
As Li-ion cells have low self- discharge, there leakage current
is not a problem here but offset in current sensor drifts the
SOC graph [18].

C. Electro-Chemical Spectroscopy

EIS is an AC technique where a small magnitude AC
signal typically mV is injected into battery terminals and
resultant voltage response is measured. The measured DC
Battery impedance is dependent on magnitude of applied
signal, magnitude of response signal and its phase shift.

Vmax

2(f) = g

Imax

Where, Vmax is AC voltage response, Imax magnitude of
lagging current response and @ is the phase angle between
them. EIS is carried out over a wide range of frequencies to
model battery’s behavior. Load current causes impedance to
vary nonlinearly with SOC [1]. Different C rates yields
different values of impedance at same SOC. Also, the change
in impedance is barely negligible in the region of partial to
full SOC [4]. Therefore, using EIS alone for estimating
battery SOC will not yield accurate results.

e EIS can be used in two different ways to predict SOC:

1) To parameterize ECM and then use ECM to predict
socC

2) To infer SOC directly from EIS
measurements.

In [3] EIS along with OCV method and Current
measurement is used. As impedance merely changes in high
SOC region of discharge curve, SOC is predicted by
combination of OCV and CC method. In low SOC region
impedance changes drastically and therefore EIS
measurements are considered. For both the regions curve
fitting technique is implied. In [4] implements EIS in a
hardware where a DC/DC converter is used to inject Ac ripple
voltage. Digital signal Processing tools are used to measure
the impedance. This test is performed over the entire SOC
range. The Measured impedance along with instantaneous
values of input voltage and phase shift between voltage and
current is fed to an ANN. A database model is thus created to
estimate SOC.

impedance

Due to charge and discharge cycles, battery impedance
increases as battery capacity fades. If EIS measurements are
carried out in real time battery ageing effects can be
incorporated in SOC prediction [5].In [5], online estimation
using EIS as current battery model decades with time. The
excitation frequency of the Ac input is varied and impedance
for a wide frequency is observed. This is plotted in Nyquist
plot. This is used to parameterize the ECM and further used
for estimating SOC.

D. Kalman Filter

A Kalman Filter is a state estimation Algorithm. It is used
where a system state cannot be measured directly. In context
to Battery SOC, KF is used to find the best estimate of internal
state SOC from an indirect measurement of voltage and
battery current. KF is known to eliminate noises from different
sensors as well as to reduce the effect of process noise. KF is
based on state space representation. It works on assumption
that both process and sensor noise are gaussian in nature.

X = Axk_l + Buk
Yk = ka + Duk

Building a mathematical model of the real system. When a
known input is applied to this model. An estimated output is
obtained. But, since mathematical model is only an
approximation of your real system, actual output and
estimated output do not match. The goal of KF is to minimize
this difference. It controls the error difference. Batteries are
modelled using ECM. KF is generally used in combination
with ECM. KF is a recursive two-step process [15].

Initialization:
4
xo T = E[x]
At T
Py " = E[(x — x0)(x — x0)"]
Siepl: PREDICTION Step2: UPDATE
Predict the state Calculate Kalman Gain
X7 = Ay ™+ BU -, Ki = PG /(CePC 6T +R)
Predict the error in prediction Update the state estimate
P "= AP TAT 4+ 0t ="+ K[y — €57

Update the error covariance

P =1 - KPS

/

Figure 2: Kalman Filter Algorithm

Prediction:

Here the system model is used to calculate a priori state
estimate x,,"*and error covariance matrix P, *

Update:

Uses the priori estimate and priori error covariance along
with current measurement to obtain the Posterior estimate. KG
is calculated such that it minimizes the error covariance.

Where, x,"* =initial state of the system
P,"* = Initial error covariance
x, ~ = Priori state estimate
P,"~ = priori error covariance
A= state matrix
B= input matrix
C= observation matrix
Q= process error covariance
x, T = Posterior state estimate
K;, = Kalman Gain
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P,."* = posterior error covariance
R= measurement error covariance
V= measurement at k

KG is the measure of how heavily the posterior estimate
depends on measurement or on the model prediction.

E. Extended Kalman Filter

In real, no system is completely linear and KF is defined
for linear systems only. In such a system, the state function
or the observation function or both may be nonlinear [16].
Nonlinear state space system is as follows

X = f (o1, W) + Wy
Vi = g (X, ug) + vy

wy~N(0, Q) and v,~N (0, R)

_ Of (Xpe—1, Ui)
0Xp—1

_ Of (i)
duy

A

B

_ 090, k)

=20
axk

_ a9 (X, uy)

D
auk

Nonlinear functions f and g are linearized locally at each
time step using Taylor series expansion and considering only
first order terms known as Jacobians. A & B are first partial
derivatives of function f w.r.t x;, _; and u,.Matrices C and D
are first partial derivatives of function g w.rt x,_; and
u,[17]. The Algorithm for Extended Kalman filter remains
the same as that of Kalman filter. The Only difference lies
with calculation of matrices.

F. Artificial Neural Networks

An Artificial Neural Network is an information
processing algorithm that works similarly to the biological
neurons in human brain. Neural Networks are characterized
by their ability to model non-linear systems and their self-
learning capability. A typical ANN consists of an input layer,
one more hidden layer and an output layer. Each neuron in
every layer is connected to each other neuron in succeeding
layer. Depending, on the complexity and precision required,
number of hidden layers vary. At input layer, battery
parameters —terminal voltage, battery current both in past and
present are used as input variables. Output is SOC [6]. In
order to train the network, data sets are fed to the network.

In [6] NN was implemented using the software
MathWorks MATLAB®. In addition to present values of
terminal voltage and battery current, their past values are also
used as input variables. As previous time inputs are
considered, a better understanding is provided to the Neural
Network. SOC is dependent on its previous value as well as
external inputs.

Back- propagation is used to train the network. To perform
under dynamic conditions, a varying battery current data set is
considered. In [7], EKF in combination with NN is used and
concluded that EKF-NN provides better results than EKF or
NN alone. A battery with hysteresis is modeled and SOC
estimated from EKF is fed to NN as input. In [9], a simple NN
having 2 inputs, 1 hidden layer and 1 output layer is used. Back
propagation algorithm is used. Voltage and current are inputs
while SOC is output.

G. Fuzzy Logic

Fuzzy Logic describes fuzziness of the system. It is a
multi-valued logic that allows intermediate values to be
defined. Fuzzy logic is an extension of Boolean logic where
there is no absolute truth but uncertainty. It is widely used to
model nonlinear systems with high accuracy.

e  FL uses the following 4 steps:

1) Fuzzification: It is the process of making a Boolean
quantity into a fuzzy value and this is achieved by
different membership functions. These functions
define the degree of fuzziness.

2) Fuzzy Rule base: Fuzzy rules (If-then rules) are built
according to system knowledge.

3) Interference: All the fuzzy rules are converted into
fuzzy output variables.

4) De-fuzzification: It is the process of converting
fuzzy back to a scalar value.

FL can be used where battery SOC in terms of high or low
is enough rather than the precise SOC. In [10] two RC circuit
model is used. All the model parameters are extracted
experimentally. SOC and temperature are input variables for a
FL controller and output is battery voltage. FL is used to build
a battery model and this model is used in other SOC estimation
techniques [11]. Cheng et al. in [12] is used to adjust the error
covariance matrix in KF algorithm. In [13] FL is not directly
used to estimate SOC but used to calculate polarization
resistance. Where as in [14] SOC is directly estimated from
FL controller.

I1l.  CONCLUSION

SOC estimation is a complex task involving various factors
such as battery modelling, temperature, effects, capacity fade
due to cycling, sensor and measurement noise. Among all the
SOC estimation methods discussed above, one or more
methods can be combined according to user specific
requirements to attain desired accuracy in SOC estimation.

All the methods are summarized in the below table 1.

IJERTV8I S070197

www.ijert.org 545

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :

http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 07, July-2019

Table 1: Summary of SOC Estimation Techniques

[11
Method Advantages Disadvantages
ocv Easy method Long rest time [2]
Useful to determine required
SOC at extreme ends. Offline method 3]
Not applicable to all
battery types
Coulomb Relatively easy Accuracy affected
Counting computation due to drift [4]
Online Sensor error cannot
be rectified.
ANN Applicable to all Data driven model [51
battery types required
Online Huge data set for
No battery training the network [6]
mathematical model
required
EIS Can be online External
SOH information also |nstrl_deentatlon 71
available require
KF /[EKF Online Large computational (8]
capacity required.
Battery model is 9
required. (9]
Works on
assumptions [10]
Fuzzy logic Online High
Applicable to all computational cost.
battery chemistries. [11]
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ABBREVIATIONS [15]
ANN- Artificial Neural Network
BMS- Battery Management System
CC- Coulomb Counting [16]
EIS- Electro-chemical Impedance Spectroscopy
EKF- Extended Kalman filter [17]
EVs- Electric Vehicles
FL- Fuzzy Logic
[18]

HEVs- Hybrid Electric Vehicles.

KF- Kalman Filter

OCV- Open Circuit Voltage.
SOC- State of Charge

SOH- State of Health

REFERENCES

F. Huet, R. P. Nogueira, P. Lailler, and L. Torcheux, “Investigation of
the high-frequency resistance of a lead-acid battery,” J. Power Sources,
vol. 158, no. 2, pp. 1012-1018, Aug. 2006.

E. Karden and R. W. De Doncker, “The non-linear low-frequency
impedance of lead/acid batteries during discharge, charge and float
operation,” in Proc. Intelec, Oct. 14-18, 2001, pp. 65-72.

Martin Coleman, Chi Kwan Lee, Chunbo Zhu, and William Gerard
Hurley “State-of-Charge Determination From EMF Voltage
Estimation: Using Impedance, Terminal Voltage, and Current for
Lead-Acid and Lithium-Ion Batteries” IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS, VOL. 54, NO. 5, OCTOBER 2007
Alex Densmore, Moin Hanif “Determining Battery SoC Using
Electrochemical Impedance Spectroscopy and the Extreme Learning
Machine”

Andreas Christensen, Adetunji Adebusuyi “ Using on-board
Electrochemical Impedance Spectroscopy in Battery Management
Systems”, World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 -
© 2013

Ismail, M.; Dlyma, R.; Elrakaybi, A.; Ahmed, R.; Habibi, S. Battery
state of charge estimation using an artificial neural network. In
Proceedings of the 2017 IEEE Transportation Electrification
Conference and Expo (ITEC), Chicago, IL, USA, 22-24 June 2017;
pp. 342-349.

Zhihang Chen, Shiqi Qiu, M.Abul Masrur, Yi Lu Murphey “Battery
State of Charge Estimation Based on a Combined Model of Extended
Kalman Filter and Neural Networks.”

Shahriari, M.; Farrokhi, M. “Online state-of-health estimation of vrla
batteries using state of charge.” IEEE Trans.Ind. Electron. 2013, 60,
191-202.

Yan, Q.; Wang, Y.”Predicting for power battery soc based on neural
network.” In Proceedings of the 2017 36th Chinese Control Conference
(CCC), Dalian, China, 26-28 July 2017; pp. 4140-4143.

Du Jiani, Liu Zhita, Wang Youyi and Wen Changyun.” A Fuzzy Logic-
based Model for Li-ion Battery with SOC and Temperature Effect.”
2014 11th IEEE International Conference on Control & Automation
(ICCA) June 18-20, 2014. Taichung, Taiwan.

Ma, L.” Lithium-ion battery life evaluation method based on fuzzy
nonlinear accelerated degradation process. “In Proceedings of the 2016
10th International Conference on Software, Knowledge, Information
Management & Applications (SKIMA), Chengdu, China, 15-17
December 2016; pp. 309-313.

Cheng, P.; Zhou, Y.; Song, Z.; Ou, Y. “Modeling and soc estimation
of lifepo4 battery. “In Proceedings of the 2016 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Qingdao, China,
3-7 December 2016; pp. 2140-2144.

Burgos-Mellado, C.; Orchard, M.E.; Kazerani, M.; Cérdenas, R.; Saez,
D. Particle-filtering-based estimation of maximum available power
state in lithium-ion batteries. Appl. Energy 2016, 161, 349-363.
Zheng, Y.; Ouyang, M.; Lu, L.; Li, J; Han, X;; Xu, L. On-line
equalization for lithium-ion battery packs based on charging cell
voltages: Part 2. Fuzzy logic equalization. J. Power Sources 2014, 247,
460-466.

Florin CIORTEA, Marian NEMES, Sorin HINTEA.” Graphical
Interpretation of the Extended Kalman Filter: Estimating the State-of-
Charge of a Lithium Iron Phosphate Cell” Advances in Electrical and
Computer Engineering Volume 18, Number 3, 2018

Zhihao Yu 1, Ruituo Huai 2 and Linjing Xiao 1,.”State-of-Charge
Estimation for Lithium-lon Batteries Using a Kalman Filter Based on
Local Linearization” Energies 2015, 8, 7854-7873;
doi:10.3390/en8087854

Tarun Huria, Massimo Ceraolo, Javier Gazzarri, Robyn Jackey.” High
Fidelity ~Electrical Model with Thermal Dependence for
Characterization and Simulation of High Power Lithium Battery
Cells.”

Davide Andrea, “Battery Management Systems for Large Lithium-lon
Battery Packs”, 1% Edition, Artech House.

IJERTV8I S070197

www.ijert.org

546

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

