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Abstract— In recent years, there has been a tremendous 

advancement in battery technology due to the development of 

EVs and HEVs. But still, the State of Charge (SOC) estimation 

remains a challenge in battery engineering.  SOC is defined as 

the ratio of remaining charge to the maximum capacity of the 

battery. SOC estimation is of prime importance with regard to 

battery safety and maintenance. This paper reviews different 

SOC estimation techniques along with their advantages and 

disadvantages. 
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I. INTRODUCTION 

Due to growing environmental concerns and depletion of 

conventional fuels, automobile industry in currently focusing 

on development of Electric (EVs) and Hybrid Electric 

Vehicle (HEVs). A rechargeable high voltage battery is the 

driving force for EVs/HEVs. A Battery Management System 

(BMS) is necessary to ensure the safe operation of the battery.  

BMS consists of sensors, electronic units housed on or away 

from the battery and a display unit.  

• Functions of BMS: 

1) Monitoring of battery current, voltage (individual cell 

voltages as well as pack voltage) 

2) Temperature monitoring (pack temp) 

3) State Of Charge(SOC) and Sate Of Health(SOH 

estimation) 

4) Balancing of cells 

5) Generating Safety Critical alarm and derating the output 

if required. 

6) Emergency Shutdown in Critical state. 

In this paper, we are going to explore various SOC 

estimation techniques. Before, proceeding further, let us 

understand what do you mean by SOC? SOC of a cell or a 

battery at a given instant is the ratio of the charge available at 

that point to the charge available when it is full charged. It is 

expressed in percent, from 100% when full to 0% when 

empty. Analogous to how much fuel is available in car’s tank. 

• Importance of SOC  

1) SOC indicates whether available charge is sufficient 

enough to carry out a particular function or not. 

2) Knowledge of SOC helps in operating the battery in the 

limits of charge and discharge. 

3) Very high or low SOC tends to permanently damage to 

battery. 

SOC estimation is difficult as it represents internal state 

of the battery. There is no sensor /instrument to measure SOC 

directly. It needs to be inferred from battery voltage or battery 

current. Hence, the word SOC Estimation and not SOC 

measurement. 

II. SOC ESTIMATION TECHNIQUES 

A. OCV Method 

OCV refers to Open Circuit Voltage of the battery (battery 

no load condition). It is the simplest method for SOC 

estimation. With some battery chemistries, OCV voltage is 

linear function of SOC. Thus, measuring the OCV we can 

predict the SOC of the battery easily. While with other Li-ion 

chemistries, OCV vs SOC is a flat curve [18]. In such 

condition, usage of this method is limited. Other limitations 

using this method. It is an offline method. Battery should not 

be connected to any load for at least 2 hours to accurately 

measure the OCV. Also, OCV not only varies with SOC, but 

with a cell’s internal resistance. 

As you can observe in the figure above, SOC range 20 -

80%      OCV does not vary considerably. This makes SOC 

Estimation difficult in this region. Thus, to conclude it is a 

laboratory method and can be only used at extreme ends 

(When battery is nearly full or empty). Also, a good method 

for initial SOC Estimation. 
 

B. Coulomb Counting  

Coulomb Counting is the most readily used algorithm for 

SOC estimation. It is based on the fundamental relation 

between charge and current. Integrating the current in and out 

of the battery to give relative value of charge. 

 

𝑄𝑡𝑛 = 𝑄𝑡0 − ∫ 𝐼(𝑡)
𝑡𝑛

0

𝑑𝑡  

Figure 1: SOC Vs OCV Curve 
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Where, 𝑄𝑡𝑛 = Residual Capacity at nth time 

              𝑄𝑡0= Initial battery capacity 

            I (t) = Battery current. 

 

To start with initial SOC of the battery should be known 

from then onwards CC algorithm is implemented. Limitations 

of this algorithm are cell leakage current is not considered. 

Current sensor offset, can result in drift in SOC estimation. 

As Li-ion cells have low self- discharge, there leakage current 

is not a problem here but offset in current sensor drifts the 

SOC graph [18]. 
 

C. Electro-Chemical Spectroscopy 

EIS is an AC technique where a small magnitude AC 

signal typically mV is injected into battery terminals and 

resultant voltage response is measured. The measured DC 

Battery impedance is dependent on magnitude of applied 

signal, magnitude of response signal and its phase shift.  
 

    𝑍(𝑓)    =  
 𝑉𝑚𝑎𝑥

𝐼𝑚𝑎𝑥
𝑒𝑗𝜃  

 

Where, Vmax is AC voltage response, Imax magnitude of 

lagging current response and 𝜃 is the phase angle between 

them. EIS is carried out over a wide range of frequencies to 

model battery’s behavior. Load current causes impedance to 

vary nonlinearly with SOC [1]. Different C rates yields 

different values of impedance at same SOC. Also, the change 

in impedance is barely negligible in the region of partial to 

full SOC [4]. Therefore, using EIS alone for estimating 

battery SOC will not yield accurate results.  

• EIS can be used in two different ways to predict SOC: 

1) To parameterize ECM and then use ECM to predict 

SOC 

2) To infer SOC directly from EIS impedance 

measurements. 

In [3] EIS along with OCV method and Current 

measurement is used. As impedance merely changes in high 

SOC region of discharge curve, SOC is predicted by 

combination of OCV and CC method. In low SOC region 

impedance changes drastically and therefore EIS 

measurements are considered. For both the regions curve 

fitting technique is implied.  In [4] implements EIS in a 

hardware where a DC/DC converter is used to inject Ac ripple 

voltage. Digital signal Processing tools are used to measure 

the impedance. This test is performed over the entire SOC 

range. The Measured impedance along with instantaneous 

values of input voltage and phase shift between voltage and 

current is fed to an ANN. A database model is thus created to 

estimate SOC. 

Due to charge and discharge cycles, battery impedance 

increases as battery capacity fades. If EIS measurements are 

carried out in real time battery ageing effects can be 

incorporated in SOC prediction [5].In [5], online estimation 

using EIS as current battery model decades with time. The 

excitation frequency of the Ac input is varied and impedance 

for a wide frequency is observed. This is plotted in Nyquist 

plot. This is used to parameterize the ECM and further used 

for estimating SOC.  

D. Kalman Filter  

A Kalman Filter is a state estimation Algorithm. It is used 

where a system state cannot be measured directly. In context 

to Battery SOC, KF is used to find the best estimate of internal 

state SOC from an indirect measurement of voltage and 

battery current. KF is known to eliminate noises from different 

sensors as well as to reduce the effect of process noise. KF is 

based on state space representation. It works on assumption 

that both process and sensor noise are gaussian in nature. 

 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

Building a mathematical model of the real system. When a 

known input is applied to this model. An estimated output is 

obtained. But, since mathematical model is only an 

approximation of your real system, actual output and 

estimated output do not match.  The goal of KF is to minimize 

this difference. It controls the error difference. Batteries are 

modelled using ECM. KF is generally used in combination 

with ECM. KF is a recursive two-step process [15]. 

 

Initialization: 

𝑥0
^+ = 𝐸[𝑥0] 

𝑃0
^+ = 𝐸[(𝑥 − 𝑥0)(𝑥 − 𝑥0)𝑇] 

 

 
Figure 2: Kalman Filter Algorithm 

Prediction:  

Here the system model is used to calculate a priori state 

estimate 𝑥0
^+and error covariance matrix 𝑃0

^+ 

 

Update:  

Uses the priori estimate and priori error covariance along 

with current measurement to obtain the Posterior estimate. KG 

is calculated such that it minimizes the error covariance. 

 Where,  𝑥0
^+ =initial state of the system 

𝑃0
^+ = Initial error covariance 

𝑥𝑘
^− = Priori state estimate 

𝑃𝑘
^− = priori error covariance 

A= state matrix 

B= input matrix 

C= observation matrix 

Q= process error covariance 

𝑥𝑘
^+ = Posterior state estimate  

𝐾𝑘 = Kalman Gain 
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𝑃𝑘
^+= posterior error covariance 

R= measurement error covariance 

𝑦𝑘= measurement at k 

KG is the measure of how heavily the posterior estimate 

depends on measurement or on the model prediction. 
 

E. Extended Kalman Filter 

In real, no system is completely linear and KF is defined 

for linear systems only. In such a system, the state function 

or the observation function or both may be nonlinear [16]. 

Nonlinear state space system is as follows 

 
𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 

 

𝑤𝑘~𝑁(0, 𝑄) and 𝑣𝑘~𝑁(0, 𝑅) 

 

𝐴 =  
𝜕𝑓(𝑥𝑘−1, 𝑢𝑘)

𝜕𝑥𝑘−1

 

 

𝐵 =
𝜕𝑓(𝑥𝑘−1, 𝑢𝑘)

𝜕𝑢𝑘

 

 

𝐶 =
𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

 

 

𝐷 =
𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑢𝑘

 

 

Nonlinear functions f and g are linearized locally at each 

time step using Taylor series expansion and considering only 

first order terms known as Jacobians. A & B are first partial 

derivatives of function f w.r.t  𝑥𝑘−1 and 𝑢𝑘.Matrices C and D 

are first partial derivatives of function g w.r.t  𝑥𝑘−1 and 

𝑢𝑘[17]. The Algorithm for Extended Kalman filter remains 

the same as that of Kalman filter. The Only difference lies 

with calculation of matrices.  

 

F. Artificial Neural Networks 

An Artificial Neural Network is an information 

processing algorithm that works similarly to the biological 

neurons in human brain. Neural Networks are characterized 

by their ability to model non-linear systems and their self-

learning capability. A typical ANN consists of an input layer, 

one more hidden layer and an output layer. Each neuron in 

every layer is connected to each other neuron in succeeding 

layer. Depending, on the complexity and precision required, 

number of hidden layers vary. At input layer, battery 

parameters – terminal voltage, battery current both in past and 

present are used as input variables. Output is SOC [6]. In 

order to train the network, data sets are fed to the network. 

In [6] NN was implemented using the software 

MathWorks MATLAB®. In addition to present values of 

terminal voltage and battery current, their past values are also 

used as input variables. As previous time inputs are 

considered, a better understanding is provided to the Neural 

Network. SOC is dependent on its previous value as well as 

external inputs. 

Back- propagation is used to train the network. To perform 

under dynamic conditions, a varying battery current data set is 

considered. In [7], EKF in combination with NN is used and 

concluded that EKF-NN provides better results than EKF or 

NN alone. A battery with hysteresis is modeled and SOC 

estimated from EKF is fed to NN as input. In [9], a simple NN 

having 2 inputs, 1 hidden layer and 1 output layer is used. Back 

propagation algorithm is used.  Voltage and current are inputs 

while SOC is output. 

 

G. Fuzzy Logic 

Fuzzy Logic describes fuzziness of the system. It is a 

multi-valued logic that allows intermediate values to be 

defined. Fuzzy logic is an extension of Boolean logic where 

there is no absolute truth but uncertainty. It is widely used to 

model nonlinear systems with high accuracy.  

• FL uses the following 4 steps: 

1) Fuzzification: It is the process of making a Boolean 

quantity into a fuzzy value and this is achieved by 

different membership functions. These functions 

define the degree of fuzziness. 

2) Fuzzy Rule base: Fuzzy rules (If-then rules) are built 

according to system knowledge. 

3)  Interference: All the fuzzy rules are converted into 

fuzzy output variables. 

4)  De-fuzzification: It is the process of converting 

fuzzy back to a scalar value. 

FL can be used where battery SOC in terms of high or low 

is enough rather than the precise SOC. In [10] two RC circuit 

model is used. All the model parameters are extracted 

experimentally. SOC and temperature are input variables for a 

FL controller and output is battery voltage. FL is used to build 

a battery model and this model is used in other SOC estimation 

techniques [11]. Cheng et al. in [12] is used to adjust the error 

covariance matrix in KF algorithm. In [13] FL is not directly 

used to estimate SOC but used to calculate polarization 

resistance. Where as in [14] SOC is directly estimated from 

FL controller. 

 
III. CONCLUSION 

SOC estimation is a complex task involving various factors 

such as battery modelling, temperature, effects, capacity fade 

due to cycling, sensor and measurement noise. Among all the 

SOC estimation methods discussed above, one or more 

methods can be combined according to user specific 

requirements to attain desired accuracy in SOC estimation. 

All the methods are summarized in the below table 1.
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Table 1: Summary of SOC Estimation Techniques 

Method Advantages Disadvantages 

OCV • Easy method 

• Useful to determine 

SOC at extreme ends. 

• Long rest time 
required 

• Offline method 

• Not applicable to all 
battery types 

Coulomb 

Counting 
• Relatively easy 

computation 

• Online 

• Accuracy affected 

due to drift 

• Sensor error cannot 
be rectified. 

ANN • Applicable to all 

battery types 

• Online 

• No battery 

mathematical model 
required 

• Data driven model 

required 

• Huge data set for 

training the network 

EIS • Can be online 

• SOH information also 

available 

• External 

instrumentation 

required 

KF /EKF • Online • Large computational 
capacity required. 

• Battery model is 

required. 

• Works on 

assumptions 

Fuzzy logic • Online 

• Applicable to all 
battery chemistries. 

• High 

computational cost. 
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ABBREVIATIONS 

ANN- Artificial Neural Network 

BMS- Battery Management System 

CC- Coulomb Counting 

EIS- Electro-chemical Impedance Spectroscopy 

EKF- Extended Kalman filter 

EVs- Electric Vehicles 

FL- Fuzzy Logic 

HEVs- Hybrid Electric Vehicles. 

KF- Kalman Filter 

OCV- Open Circuit Voltage. 

SOC- State of Charge 

SOH- State of Health 
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