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Abstract

This work presents two state estimators for a class
of isothermal tubular reactors involving sequential
reactions for which the kinetics depends on the
reactants concentrations only. These conceptions
are performed by describing the model as infinite-
dimensional state-space system, with bounded
observation. It is shown that the given observers
ensure  asymptotic  state  estimator  with
exponentially decay error, when measurements (a)
of both the reactant and product concentrations
and (b) of only the product concentration, are
available at the reactor output. Simulation results

reactions for which the kinetics only depends on
the reactants concentrations involved in the
following chemical reaction:

C, > bC, (€]

where C, is the reactant, C, the product, and

b >0 is the stoichiometric coefficient of the
reaction. The dynamics of the process in a tubular
reactor with axial dispersion are given, for all time

t >0 and for all z<[0,L] where L is the reactor
length, by mass balance equations (see [4]):

2
are also presented showing the effectiveness of the Ky 0% —1)%— (X, %,)
proposed observers. ot 2 572 oz 12l
0 0° o) @
Keywords: Distributed parameter systems, state X2 _ D, XZZ —v S +br(x;,x,)
estimators, perturbed systems, tubular reactor, C,, - ot oz Z
semigroup. with the boundary conditions:
. OX
1. Introduction a 871(Z =0,t) —ux, (2 =0,t) =—vx;, (1),
Although tubular reactors have been largely z
used in (bio)process industry for several decades, D %(z —0,t)—ux,(z=0,)=0 3
system analysis and design of state observers has * oz ' 2 ’ ’

taken an increasing importance over the past
decades (see [1], [2], [3]., [4]. [5]. [6]. [7]. [8] and
the references within).

For the system control, the exact and full
knowledge of system's states is important.
However, in the mathematical model of the tubular
reactors, the states depend on spatial variable and
that makes it not possible to have full information
of the system's states due to the fact that installing
necessary sensors for measurements may not be
physically possible or the costs may become
excessive. In such a case, the states can be
estimated using state estimators (observers).

The motivation of this paper is to investigate
this issue and provide an observer, that ensures
asymptotic state estimator with exponentially decay
error, for the basic dynamical model of isothermal
axial dispersion reactors involving sequential

OoX.
D, —2(z=L,t)=0,
oz

and the initial conditions:
x(zt=0)=x, %(zt=0=x; (4

where X, (z,t), X, (z,t), X;,(z,t),0, D, and r are the

concentrations of C, and C, (mol/l), the influent
reactant concentration (mol/I) and the fluid
superficial velocity (m/s), the axial dispersion
coefficient (m?/s), and the reactant rate
(mol/I's) . We assume that the kinetics depend only
on the reactant concentration X; and we consider a

reaction rate model of the form r =Ky X, , where
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K, is the kinetic constant (s,l)_xlo,xg are the

initial states. The purpose of this work is to
reconstruct the state variables initially unknown,
when measurements may occur at the reactor
output only, in the case (a) both reactant
concentration and product concentration are
measured and (b) only the product concentration is
available for measurements.

2.State-space system framework
Let consider the Hilbert space
H = L?[0, L]x L?[0, L], endowed with the usual inner

product defined by

(21,2,) =X X0 2o + <Y1 Ya) 2
for all z, =(x,y,)"and z,=(x,,y,)" in H, and
the induced norm defined by

H(Xl,XZ)T H: HXIHE +HX2HE '

forall (x,,x,)" € H, where

(.0 =, f(@a(@dz and |f|, = [(F, ), -

In the dynamic model (2)-(4), X;,is considered

as the control at z=0. In order to facilitate our
study we have to carry out some transformations. If
we extract the boundary controlled part, the basic
model given by (2)-(3) and the unknown initial
condition (4), when expended with an output
equation, is given a description in terms of a linear

differential equation on H , viz., for all positive t
and all initial conditions x, := (x?,x?)" in H, (see
[4] and the references within),

%(t) = AX(t) + Bu(t) )
y(t) = Cx(t), x(0) = X,

where, X stands for the time derivative of the state
x(t) = (¢ (1), %, () and the linear operator A is
defined by

d2. d.
Ax R 0 [xxt)J
bko i d. X, (1)

% dz? Y4
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on its domain

X=(x,%,)" €eH :X,%e Hare absolutely
z

2
D(A) = continuous,?j X

e H,Da%(oyux, (0)=0,

X yoo, for =12
dz

The operator A :— A0 is the infinitesimal
0 A,

generator of a C,-semigroup (T,(t)).., on H,

exponentially stable (see [4]), i.e., there exists
constant M > O such that,

2
T )] <M exp(—%t), Vt>0

a

The control operator B is a bounded linear

operator from IR%*to H, which is defined by

B:(Ujﬁ_), where §(z) is the Dirac delta
0

distribution. The control u(t) =x, (t), and the

output trajectory C is a bounded linear operator.
The following Theorem will be needed in the
sequel for the state observer conceptions.

Theorem 2.1 ([9], p., 109) Let Abe the
infinitesimal  generator of a C,-semigroup
(T,o(t))so and D s linear bounded operator on
H . The operator A+ D is the infinitesimal
generator of a C,-semigroup (T, (t)).., Which
is the unique solution of the equation

)
Taio % =TOX, + [ T(t=5)DT,,5(5)%,0s,

For allx, € H . If in addition, |T,(t)|<Me™,
then
[Tao ()] < Me@™IPD",

2.1 State observer

Hereafter we consider measurements of the state
vector X(t) are available at the reactor output only.
In this case, the output function y(.) is defined as

follows: we consider a (very small) finite interval at
the reactor output[1— @,1] such that:
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y© = (©00)
= .[:Z[l—m,l](a)x(a,t)da, vt e IR* (6)

Where, y, ,,(@=1 if ac[l-»l] and
Xt o] (@) =0 elsewhere, with 0<w<1 is a

small number. The observer operator C:H — IR?
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with C=(C, C,) defined by (6) and g is a
positive number.
The system (7)-(9) can be written on its compact

(1) = AR +Bu®) +GCCOX® -2V (10

y(®) =Cx(1), x(0) =X,

is linear bounded. For all x,y € H x IR?,

(X Y) e = Mo (BX(@ )R, V)

= J.Ol< x(a,.), Ao @y R2 da

The adjoint operator C*of C is defined for all

(z,t) e[01]x IR by:

Cy)(2) = -0 (2)y

Forallx e H,

< o[ X" = |

Then,
c'C

‘Sw

C X[ = [ (@[, 210 (@)X(a,) )2

A candidate observer for the system (2)-(4), is
obtained as the output of the following dynamic

system

R _p 0% %

ko, + 0K, (0

ot ? 072
+ gcl* (Clxl - Cl)A(l) (7)
%, %%,  oR% .
22 _D 2 _p—2+bk,X
ot * oz? o o
+ gC;(szz -C,%,)
with the boundary conditions:
. %(z =0,t) — 0%, (2 = 0,t) = —ux,, (1),
2% N (8)
D, 6222 (z=0,t)—0v%,(z=0,t) =0,
15,8
D, —*2(z=L,t) =0,
oz
and the initial conditions:
% (z,t=0)=%, X, (z,t=0)=%> 9)
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where,  Xx(t) = (x,(.,t), X, (,t))T is the state
variable of (5) and R(t) = (% (.,t),%,(.,t))". The
linear operator G is the observer gain, satisfying
G =gl with 1|is the identity operator of the
Hilbert H .

The initial state (x,(0), x,(0))" of (5) is unknown
while the initial state (& (0), X,(0))" of the observer

can be assigned arbitrarily. Thus, the estimation
error is still an unknown quantity even if we know

(%,(0), %,(0))" -

2.2. Full-order observer

In this section a full-order observer, when both
the reactant concentration and the product
concentration are available for measurements at the
reactor output, is provided as an asymptotic state
estimator with exponentially decay error.

Proposition 2.1: Given the isothermal axial-
dispersion reactor basic dynamical model (2)-(4).
Suppose that there exists a bounded linear operator
G =gl , where G is a positif number, such that

2
g<-—2, the dynamic system (7)-(9) is an
8D, w

a

exponential observer for the system (2)-(4).

Proof 2.1 Let consider the linear operator G = gl ,
where g is a positive number. The operator

GC'Cis a bounded linear operator on H, such
that |[GC'C| < go-

On the other hand, the C,-semigroup (T, (1)),
on H , is exponentially stable, such that

2
[Ta)] <M exp(—4U—Dat), Vt>0

Thus,

log|[T, (1)] _logM _ v°
t Tt 4D

a

, Vt=0
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There exists a time t,, such that, 109M _ v* for

t 4D’

a

all t>t,, (since log M converges to zero).
t
It follows,

2
RGIE exp(—SUE), vt >t,,

Now, by the Theorem 2.1, the linear operator
A—GC’C is the infinitesimal generator of a C, -

semigroup (T, .. (1)), satisfying, for all
t>t,,

Mo cec ®) a@«—;i+-ecc)o

UZ

8D

IN

exp (-5 +9o)t)

a

Let consider the dynamics (5) and (10), the
evolution of the estimation error e(t) = X(t) — x(t) .

given by

{é(t) =(A—GC'C)e(t)

e(O) = )A(o — X

admits a unique mild solution on the interval
[0+ given by: e(t) =T, ... (1)e(0), for all
e(0) e H and t >0 (see [10]).

Hence,

le®[ < [T, g-c ®[le©@)], vt=0

2
It follows, if gSUi, the estimation error
8D,w
converges exponentially to zero.
That means that the dynamic system (7)-(9) is
an exponential observer for the system (2)-(4).
More precisely the reconstruction error X(t) — x(t)

satisfies, for all t > t,,

(1) — x()| <

X(0) ~ X(O)xp(( g+ geo)t)

The above proposition presents a "full-order"
observer when both reactant concentration and
product concentration are measured at the reactor
output. In most cases it is not possible to have
access to measure the reactant concentration, in
such a case the states can be estimated using a
"reduced-order" observer based on measurements
at the reactor output of the product concentration
only.
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2.3. Reduced-order observer

In this section, we will present an observer in
the case where only the product concentration is
available for measurements. Let consider the
dynamic

%, %%, % .
—L_ —v—L—k
ot ? oz? oz O
+ 0K, (1), (11)
K, . 0%, %,

—=2=D, 4
ot 0z° 0z
+ gC;(CZXZ -C,X%,)

with the boundary and initial conditions (8)-(9).

Proposition 2.2 Given the isothermal axial-
dispersion reactor basic dynamical model (2)-(4).
Suppose that there exists a bounded linear operator
G =gl with gis a positif number, such that

2

v then the dynamic system (11) and (8)-(9)

Sil
9 8D, w

is an exponential observer for the system (2)-(4).
Proof 2.2 It is proved in the previous section that

there exists a time tM such that the C,-semigroup

(TA(t)). satisfies forall t>t,, ,

U2
T®<M exp(—at).

Thus, forall t > 1,,

2

o <esptg5-0

Ir. 0] =ont-gi-o.

where (I—Ai(t))tzo and (TAz(t))IZO are the Co_

semigroup generated respectively by A and A,.
Let consider the linear operator

(5 e
G= =gl
0 G,

where g is a positive number, and C :(o CZ)T.

The operator GC*C is a bounded linear operator
on H, such that

le.c.c,| < g

By the Theorem 2.1, the linear operator
A, —G,C,"C, is the infinitesimal generator of a

C,-semigroup (I'AszC;c2 (1)) 0
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satisfying, for all t >t,,

2

HTAZ—GQ(:;‘CZ (t)H <exp «_SUE +go)t)

Let now consider the dynamics (5) and (10), the
evolution of the estimation error e(t) = X(t) — x(t) ,

given by

{el t)= Ale1 (t), € 0)= >A(1 0)- )A(l 0)
&,(t)=(A,—gC,C,)e, (), €,(0)=%,(0)—x,(0)

Admits a unique mild solution on the interval
[0,+od given for all (g (0),e,(0))" € H by:
(& ().&,(1)" = (Ta(1)e,(0), Tacec (e, (0))",

For all t > 0. That implies,

le.@®]  =<|Ta®fle. O]
le.0] <7 Je. ()

A-G,C5C (t)‘
Hence, forall t >t,,

£,(0) =%, O] <

%,(0) =X, (0)exp(~, T-1)

%,(0) =%, (0] <

%, (0)—x(0)Hexp((—8%+ go)t)

U2

8D, w
converge exponentially to zero, and that mains that
the dynamic system (11) and (8)-(9) is an
exponential observer for the system (2)-(4).

It follows that, if g< , the estimation errors

Commentaire 2.1 In this section, we have
described two different exponential observers for
the isothermal Axial-Dispersion reactor basic
dynamical model. The first one (eq. (7)-(9))
improves the convergence rate of the concentration
error by reintroducing a measurement of both the
reactant and product concentrations. The second
one (eqg. (11) and (8)-(9)) shows that an exponential
observer can be constructed even if the reactant
concentration is not measured. The Proposition 2.2
provides a simple conception of observer but less
effective than that given by Proposition 2.1, since
the dynamic of the state error on the reactant
concentration remains dependent on the system's
dynamic.

2.4. Simulation result

In order to test the performance of the proposed
observers, numerical simulations will be given with

the following set of parameter values (see [7,6]):
D, =0.167m?/s, ©=0.025m/s, L=1m,

k, =10°s7", X, =0.02, b=2mol/l.
The measurements are taken on the length interval
[3#L/4,L] i.e., @=3%L/4, and the process model
has been arbitrary initialized with the constant
profiles  x (0,z) =1,x,(0,z) =0,%,(0,2) =0, and
%,(0,2) =1. In order to response to the
assumptions of the Propositions 2.1 and 2.2, we set

v®  for the observer design parameter.

T 16D,

Figure 1. shows the time evolution of the
estimation error e=(e,e,)’ related to the
exponential observer (7)-(9).

Figurel: Evolution in time and space of the
estimation error e = (g,,e,)" .

Figures (a), (b) and (c) show respectively the
time evolution of the estimation error at the
positions 3*L/4, 2*L/4 and L/4, for the case where
only the product concentration is measured (the
plot '- -") i.e the exponential observer (11) and (8)-
(9), and for the case where both the reactant and the
product concentrations are measured with the
exponential observer (7)-(9).

t

(a) Estimation error at z=0.9L
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oar

ozt

o5 1 1.5

(b) Estimation error at z=0.5L

0.5 1 15

(c) Estimation error at 0.1L

It is seen as expected that the product
concentration error related to the exponential
observer (7)-(9) is faster than the one related to the
exponential observer (11) and (8)-(9).

3. Conclusions and prospects

In this paper we present two observers to
estimate the state variables initially unknown of
isothermal tubular reactor models, namely axial
dispersion reactors involving sequential reactions
for which the kinetics only depends on the reactants
concentrations involved in the reaction. The
proposed observers are based on measurements
available at the reactor output only, and performed
by a simulation study in which the parameters can
be tuned by the user to satisfy specific needs in
terms of convergence rate. It is shown in the
theoretical setting and in the simulations that the
"Full-order" observer is effective relatively to the
convergence time. However, the "Reduced-order”
observer is more satisfactory since it answers to
difficulties of the reactant concentration
measurements for a wide range of (bio)-chemical
reactor.
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