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Abstract 
 

This work presents two state estimators for a class 

of isothermal tubular reactors involving sequential 

reactions for which the kinetics depends on the 

reactants concentrations only. These conceptions 

are performed by describing the model as infinite-

dimensional state-space system, with bounded 

observation. It is shown that the given observers 

ensure asymptotic state estimator with 

exponentially decay error, when measurements (a) 

of both the reactant and product concentrations 

and (b) of only the product concentration, are 

available at the reactor output. Simulation results 

are also presented showing the effectiveness of the 

proposed observers. 

 
Keywords:  Distributed parameter systems, state 

estimators, perturbed systems, tubular reactor, 0C -

semigroup. 

 

1. Introduction  
Although tubular reactors have been largely 

used in (bio)process industry for several decades, 

system analysis and design of state observers has 

taken an increasing importance over the past 

decades (see [1], [2], [3], [4], [5], [6], [7], [8] and 

the references within). 

For the system control, the exact and full 

knowledge of system's states is important. 

However, in the mathematical model of the tubular 

reactors, the states depend on spatial variable and 

that makes it not possible to have full information 

of the system's states due to the fact that installing 

necessary sensors for measurements may not be 

physically possible or the costs may become 

excessive. In such a case, the states can be 

estimated using state estimators (observers).  

The motivation of this paper is to investigate 

this issue and provide an observer, that ensures 

asymptotic state estimator with exponentially decay 

error, for the basic dynamical model of isothermal 

axial dispersion reactors involving sequential 

reactions for which the kinetics only depends on 

the reactants concentrations involved in the 

following chemical reaction: 

 

                       21 bCC                                (1) 

 

where 1C  is the reactant, 2C  the product, and 

0b  is the stoichiometric coefficient of the 

reaction. The dynamics of the process in a tubular 

reactor with axial dispersion are given, for all time 

0t  and for all ],0[ Lz  where L  is the reactor 

length, by mass balance equations (see [4]):      
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with the boundary conditions:  
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and the initial conditions:     

 

     
0

22

0

11 )0,(,)0,( xtzxxtzx        (4) 

 

where
ain Dtzxtzxtzx ,),,(),,(),,( 21  and r are the 

concentrations of 1C  and 2C )( lmol , the influent 

reactant concentration )( lmol   and the fluid 

superficial velocity )( sm , the axial dispersion 

coefficient )( 2 sm ,  and the reactant rate  

)( slmol . We assume that the kinetics depend only 

on the reactant concentration 1x  and we consider a 

reaction rate model of the form 10 xkr  , where 
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0k is the kinetic constant )( 1s .
0

2

0

1 , xx  are the 

initial states. The purpose of this work is to 

reconstruct the state variables initially unknown, 

when measurements may occur at the reactor 

output only, in the case (a) both reactant 

concentration and product concentration are 

measured and (b) only the product concentration is 

available for measurements. 

 

2.State-space system framework  
     Let consider the Hilbert space 

],0[],0[ 22 LLLLH  , endowed with the usual inner 

product defined by 

                   
22 212121 ,,,

LL
yyxxzz  ,  

for all Tyxz ),( 111  and Tyxz ),( 222  in H , and 

the induced norm defined by   

                    2
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 and  
2,

2 L
fff   .  

    In the dynamic model (2)-(4), inx is considered 

as the control at 0z .  In order to facilitate our 

study we have to carry out some transformations. If 

we extract the boundary controlled part, the basic 

model given by (2)-(3) and the unknown initial 

condition (4), when expended with an output 

equation, is given a description in terms of a linear 

differential equation on  H , viz., for all positive t 

and all initial conditions Txxx ),(: 0

2

0

10   in H , (see 

[4] and the references within),    
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where, x  stands for the time derivative of the state 
Ttxtxtx ))(.,),(.,()( 21 , and the linear operator A is 

defined by 
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The operator 
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
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A

A
A  is the infinitesimal 

generator of a 0C -semigroup 
0))(( tA tT  on H ,  

exponentially stable (see [4]), i.e.,  there exists 

constant 0M  such that,  
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The control operator B  is a bounded linear 

operator from 
2IR to H , which is defined by 

(.)
0











B , where )(z  is the Dirac delta 

distribution. The control )()( txtu in , and the 

output trajectory C  is a bounded linear operator.  

The following Theorem will be needed in the 

sequel for the state observer conceptions. 

 

Theorem 2.1 ([9], p., 109)  Let A be the 

infinitesimal generator of a 0C -semigroup 

0))(( tA tT  and   D     is linear bounded operator on 

H . The operator DA  is the infinitesimal 

generator of a 0C -semigroup 
0))((  tDA tT which  

is the unique solution of the equation 

 

  
T

DADA dsxsDTstTxtTxtT
0

000 ,)()()()(  

 

For all Hx 0
. If in addition, t

A MetT )( , 

then             

                          
tDM

DA MetT
)(

)(


 


. 

 

2.1 State observer  
    Hereafter we consider measurements of the state 

vector )(tx  are available at the reactor output only. 

In this case, the output function (.)y  is defined as 

follows: we consider a (very small) finite interval at 

the reactor output ]1,1[   such that:       
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Where, 1)(]1,1[  a  if ]1,1[ a  and 

0)(]1,1[  a  elsewhere, with 10   is a 

small number. The observer operator  2: IRHC   

is linear bounded. For all 2, IRHyx  ,  

         22 ,,.)()(,
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The adjoint operator 
C of C is defined for all 

 IRtz ]1,0[),(  by:    
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Then,         
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A candidate observer for the system (2)-(4), is 

obtained as the output of the following dynamic 

system  
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with the boundary conditions:   
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and the initial conditions:    

 

      
0
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0
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ˆ)0,(ˆ,ˆ)0,(ˆ xtzxxtzx           (9)  

   

with  TCCC 21 defined by (6) and g  is a 

positive number. 

The system (7)-(9) can be written on its compact 

form  
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where,  Ttxtxtx ))(.,),(.,()( 21  is the state 

variable of (5)  and Ttxtxtx ))(.,ˆ),(.,ˆ()(ˆ 21 . The 

linear operator G  is the observer gain, satisfying 

gIG   with I is the identity operator of the 

Hilbert H . 

The initial state Txx ))0(),0(( 21
 of (5) is unknown 

while the initial state Txx ))0(ˆ),0(ˆ( 21
of the observer 

can be assigned arbitrarily. Thus, the estimation 

error is still an unknown quantity even if we know 
Txx ))0(ˆ),0(ˆ( 21

. 

 

2.2.  Full-order observer  
     In this section a full-order observer, when both 

the reactant concentration and the product 

concentration are available for measurements at the 

reactor output, is provided as an asymptotic state 

estimator with exponentially decay error. 

 

Proposition 2.1: Given the isothermal axial-

dispersion reactor basic dynamical model (2)-(4). 

Suppose that there exists a bounded linear operator 

gIG  , where G  is a positif number, such that 





aD
g

8

2

 , the dynamic system (7)-(9) is an 

exponential observer for the system (2)-(4). 

 

Proof 2.1 Let consider the linear operator gIG  , 

where g  is a positive number. The operator 

CGC is a bounded  linear operator on H , such 

that  gCGC  . 

On the other hand,  the 
0C -semigroup 

0))(( tA tT  

on  H , is exponentially stable,  such that 

 

            0),
4

exp()(
2

 tt
D

MtT
a

A

  

Thus,  

             0,
4

log)(log 2

 t
Dt

M

t

tT

a

A   

2835

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80802



  

  

 

 

  
 

There exists a time 
Mt such that, ,
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t

Mlog converges to zero). 

It follows,    
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Now, by the Theorem 2.1, the linear operator 

CGCA   is the infinitesimal generator of a 
0C -

semigroup 
0))((   tCGCA

tT satisfying, for all 

Mtt   :                 
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Let consider the dynamics (5) and (10), the 

evolution of the estimation error )()(ˆ)( txtxte  , 

given by   
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admits a unique mild solution on the interval 

[,0[   given by: )0()()( * etTte
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 , for all 

He )0(  and 0t  (see [10]). 

Hence, 
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It follows, if 



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8

2

 , the estimation error 

converges exponentially to zero. 

That means that the dynamic system  (7)-(9) is 

an exponential observer for the system (2)-(4). 

More precisely the reconstruction error )()(ˆ txtx   

satisfies, for all 
Mtt   
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The above proposition presents a "full-order" 

observer when both reactant concentration and 

product concentration are measured at the reactor 

output. In most cases it is not possible to have 

access to measure the reactant concentration, in 

such a case the states can be estimated using a 

"reduced-order" observer based on measurements 

at the reactor output of the product concentration 

only. 

 

2.3.  Reduced-order observer  
     In this section, we will present an observer in 

the case where only the product concentration is 

available for measurements. Let consider the 

dynamic 
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with the boundary and initial conditions (8)-(9). 

 

Proposition 2.2 Given the isothermal axial-

dispersion reactor basic dynamical model (2)-(4). 

Suppose that there exists a bounded linear operator 

gIG   with g is a positif number, such that 
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 , then the dynamic system (11) and (8)-(9) 

is an exponential observer for the system (2)-(4). 

Proof 2.2 It is proved in the previous section that 

there exists a time Mt such that the 
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where 
0))((

1 tA tT  and 
0))((

2 tA tT  are the 
0C -

semigroup generated respectively by 
1A  and 

2A . 

Let consider the linear operator 
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where g  is a positive number, and  TCC 20 . 

The operator CGC is a bounded  linear operator 

on H , such that     
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By the Theorem 2.1, the linear operator 
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  is the infinitesimal generator of a   
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Let now consider the dynamics (5) and (10),  the 

evolution of the estimation error )()(ˆ)( txtxte  , 

given by 
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It follows that, if 




aD
g

8

2

 , the estimation errors 

converge exponentially to zero, and that mains that 

the dynamic system (11) and (8)-(9) is an 

exponential observer for the system (2)-(4). 

 

Commentaire 2.1 In this section, we have 

described two different exponential observers for 

the isothermal Axial-Dispersion reactor basic 

dynamical model. The first one (eq. (7)-(9)) 

improves the convergence rate of the concentration 

error by reintroducing a measurement of both the 

reactant and product concentrations. The second 

one (eq. (11) and (8)-(9)) shows that an exponential 

observer can be constructed even if the reactant 

concentration is not measured. The Proposition 2.2  

provides a simple conception of observer but less 

effective than that given by Proposition 2.1, since 

the dynamic of the state error on the reactant 

concentration remains dependent on the system's 

dynamic. 

 

2.4.  Simulation result  
 

     In order to test the performance of the proposed 

observers, numerical simulations will be given with 

the following set of parameter values (see [7,6]):         
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 The measurements are taken on the length interval 

],43[ LL  i.e., 43 L , and the process model 

has been arbitrary initialized with the constant 

profiles 0),0(ˆ,0),0(,1),0( 121  zxzxzx ,  and 

1),0(ˆ
2 zx .  In order to response to the 

assumptions of the Propositions 2.1 and 2.2, we set 





aD
g

16

2


for the observer design parameter.  

     Figure 1. shows the time evolution of the 

estimation error Teee ),( 21  related to the 

exponential observer (7)-(9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Evolution in time and space of the 

estimation error Teee ),( 21 . 

      

 

      Figures (a), (b) and (c) show respectively the 

time evolution of the estimation error at the 

positions 3*L/4,  2*L/4 and L/4, for the case where 

only the product concentration is measured (the 

plot '- -') i.e the exponential observer (11) and (8)-

(9), and for the case where both the reactant and the 

product concentrations are measured with the 

exponential observer (7)-(9). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Estimation error at z=0.9L 
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            (b)    Estimation error at z=0.5L 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

      

                    (c) Estimation error at 0.1L  

 

    

      It is seen as expected that the product 

concentration error related to the exponential 

observer (7)-(9) is faster than the one related to the 

exponential observer (11) and (8)-(9). 

 

3. Conclusions and prospects 

   
     In this paper we present two observers to 

estimate the state variables initially unknown of 

isothermal tubular reactor models, namely axial 

dispersion reactors involving sequential reactions 

for which the kinetics only depends on the reactants 

concentrations involved in the reaction. The 

proposed observers are based on measurements 

available at the reactor output only, and performed 

by a simulation study in which the parameters can 

be tuned by the user to satisfy specific needs in 

terms of convergence rate. It is shown in the 

theoretical setting and in the simulations that the 

"Full-order" observer is effective relatively to the 

convergence time. However, the "Reduced-order" 

observer is more satisfactory since it answers to 

difficulties of the reactant concentration 

measurements for a wide range of (bio)-chemical 

reactor. 
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