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Abstract: The aim of this study is to analyse the Non-linear 

transient stability of finite oil journal bearing  including the 

effect of fluid inertia and bearing surface roughness. The inertia 

effect is usually ignored in view of its negligible contribution 

compared to viscous force.However,fluid inertia effect is to be 

taken in the analysis when modified Reynolds number is around 

one.This investigation deals with the stability of flexibly 

supported finite rough oil journal bearing with fluid film inertia 

effect using finite difference method.An attempt has been made 

to evaluate the critical mass parameter. A non-linear time 

transient method is used to simulate the journal centre 

trajectory to estimate the stability parameter,which is a function 

of speed. 

 

In the present work,a modified form of Reynolds equation is 

developed to include the combined influence of fluid inertia and 

surface roughness for the analysis of finite oil journal 

bearing.The modified average Reynolds equation considering 

inertia effect with flow simulation model of rough surfaces 

(Patir and Cheng [1, 2] is solved by a finite difference method 

with a successive over-relaxation scheme (Gauss-Siedel),while 

the equation of motion of both the journal and bearing are 

solved by the fourth-order Runge-Kutta method. The stability 

increases with the increase of eccentricity ratio and modified 

Reynold’s numbers. 
 

Keyword- Modified Reynolds number, stability, critical 

massparameter, Surface Roughness parameter,Fluid film inertia. 

 

I   INTRODUCTION 
 

Ever-increasing demand for the hydrodynamic journal 

bearing systems to operate under high speed and high 

eccentricity makes it imperative to design this class of 

bearings accurately.In such cases,the familiar assumptions of 

smooth surface can no longer be employed to accurately 

predict the performance of journal bearings systems as no 

machining surfaces are perfectly smooth. Therefore,it is 

imperative to include the influence of surface roughness and 

fluid inertia effects in the design and analysis of journal 

bearings 

 

In classical lubrication theory,the Reynolds equation has 

been used to provide an explanation for the process of 

hydrodynamic lubrication.TheNavier-Stokes equation is 

reduced to the Reynolds equation under the assumptions that 

the inertia forces of the lubricant is negligible and the flow is 

laminar.The validity of this conventional thin film theory is 

justified for small values of Reynolds 

number.Recently,owing to some practicalapplications,the 

need to include inertia effects has arisen because of the 

increasing number of lubrication problems which involve 

moderately large Reynold’s numbers.Such application 

include large size bearing operating with non-conventional 

lubricants,bearings and seals operating with non-

conventional lubricants such as liquid metals and water,the 

use of high speed bearings etc.In these cases,it is adequate to 

extend the Reynolds equation to include the inertial effects. 

 

The effect of fluid inertia has been studied by many 

researchers for turbulent flow using long and short bearing 

approximations.However,there are few publications which 

deal only with the intermediate regime for finite oil journal 

bearings.Reinhardt and Lund [19] studied the dynamic 

characteristics based on first-order perturbation solution 

starting from the Navier-stokes equation.Banerjee et al.[5] 

introduced an extended form of Reynolds equation to include 

the effect of fluid inertia adopting an iteration scheme. 

 

Kakoty and Majumdar [7- 9] carried out  a first order 

perturbation technique in modified Reynolds number as was 

done by Reinhardt and Lund [19], to study the stability of an 

oil journal bearing. 

The hydrodynamic lubrication theory of rough surfaces has 

been subject of growing interest as the bearing surfaces, in 
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practice are all rough.”Stochastic concept” introduced by 

Tzeng and Saibel [15] has fascinated many researchers and 

simulated a fair amount of work in this field.A theoretical 

analysis of the effect of surface roughness in a finite width 

bearing was done by Christensen et.al [16] based upon 

stochastic theory of hydrodynamic lubrication. A modified 

Reynolds equation considering combined effect of turbulence 

and surface roughness was derived by Hashimoto and Wada 

[18] to a high speed journal bearing .Majumdar and 

Ghosh[13] studied the stability of rigid rotors supported on 

finite rough oil journal bearings using  

perturbationmethod.Non-linear transient stability analysis has 

been  performed by R.Turaga et.al[2,6]to study the sub-

synchronous whirl stability of a rigid rotor supported on two 

symmetric hydrodynamic bearings with rough surfaces 

subjected to unidirectional constant load. Theoretical analysis 

to study the effect of support stiffness and damping on the 

transient response of flexibly supported rotor bearing 

systems,considering surface roughness effect was done by 

Ramesh,. J. et.al.[14]. 

An attempt is being made here to study the effect of fluid 

inertia and surface roughness effect on the stability of oil film 

journal bearings under unidirectional constant load.The 

governing equations are deduced starting from the Navier-

Stokes equation and flow continuity equations.These 

equations are identical (except for time dependent terms) to 

the ones developed by Constatinescu and Galetuse[3] which 

also include turbulent flow regime.In the present study the 

authors are particularly concerned with the laminar flow 

regime.Since closed-form solution is not possible,an attempt 

is made to solve the system of nonlinear partial differential 

equation using Gauss-Siedel iteration method in a finite 

difference scheme. 

A nonlinear time transient method is used to simulate the 

journal centre trajectory and thereby to estimate the stability 

parameters,which is a function of speed. 

II   BASIC THEORY 

A. Considering fluid Inertia Effect only 

The modified average Reynolds equation for fully lubricated 

surfaces is derived starting from the Navier-Stokes equations 

and the continuity equation with few assumptions. The non-

dimensional form of the momentum equations and the 

continuity equation for a journal bearing may be written as 

(Figure.1) 

 

Fig.1 The schematic diagram of flexibly 

supported oil Journal Bearing 
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The variation in the density with time is considered to be 

negligible. Since there is no variation in pressure across fluid 

film the second momentum equation is not used.  

The fluid film thickness can be given as    

cosech                                                                 (5)     

 cos1
_

h
        

(6) 

where, ,,
c

e

c

h
h 


  

After Constantinescu and Galetuse[ 3 ] the velocity 

components are approximated by the parabolic profiles. The 

velocity components may be expressed in non-dimensional 

form as follows: 
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Q and
zQ are dimensionless flow parameter in   and 

_

z

direction respectively. 

Substituting these two into momentum equations and 

integrating give 
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From continuity equation one can obtain the following form 

of modified Reynold’s equation in rotating coordinate system 

considering fluid inertia effect. 
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B. Considering surface roughness effect 
 

It has been reported by many researcher that the surface 

roughness patterns significantly influence the steady state and 

dynamic characterises of hydrodynamic bearings. Consider 

two real surfaces with normal film gap h  in the sliding 

motion. Local film thickness Th is defined to be of the form   

21   hhT      (14) 

Where h  is the normal film thickness (compliance) defined 

as the distance between levels of the two surfaces. 1 and

2  are the random roughness amplitudes of the two surfaces 

measured from their mean levels. 
 

We assume 1 and 2   have a Gaussian distribution of 

heights with zero mean and standard deviations 
1  and 2  

respectively.  

 
Fig. 2. Two rough surfaces in relative motion 
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The ratio of h  is an important parameter showing the 

effects of surface roughness.  

To study surfaces with directional properties the surface 

characteristic  can be used. The parameter   can be viewed 

as the length to width ratio of a representative asperity. There 

are mainly three sets of asperity patterns are identified purely 

1. Transverse roughness pattern  <1 

2. Isotropic roughness pattern   =1 

3. Longitudinal roughness pattern  >1 

Considering the bearing and journal surface are rough surface 

having random roughness amplitudes of the two surfaces  

Th can be written as  
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Where  f is the probability density function of composite 

roughness. Where 
21  and are the random roughness 

amplitudes of the two surfaces measured from their mean 

levels.  
21  and are the standard deviations.  

For a Gaussian distribution, the normal probability function 

of    is 
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From equation (17) and (18) we have                                                                   
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Where,  is called surface roughness parameter. 
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C.   Pressure Flow Factors 
 

Patir and Cheng [1] and [2] introduced pressure flow factors 

x  and z  in circumferential and axial direction are obtained 

through numerical simulation. The pressure flow simulation 

factors are given by the empirical relation of the form: 

11    forCe rH

x
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11    forCH r

x              
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Where 


h
H  .The constants C and r are given as 

A functions of     in Table.1 

z is equal to 
x  value corresponding to the directional 

properties of the z profile. In functional form it is given as:  
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Table 1. Coefficients of equations (25), (26) for 
x  

          C         r Range 

1/9 1.48 0.42 H > 1 

1/6 1.38 0.42 H > 1 

1/3 1.18 0.42 H > 0.75 

1 0.90 0.56 H > 0.5 

3 0.225 1.5 H > 0.5 

6 0.520 1.5 H > 0.5 

9 0.870 1.5 H > 0.5 

 

D.  Shear Flow Factors 

Similar to the pressure flow factors, the shear flow factor is a 

function of the film thickness and roughness parameters only. 

However, unlike 
x which only depends on the statistics of 

the combined roughness  , and the shear flow factors 

depends on the statistical parameter of 
21  and separately 

.Therefore, 
s  is a function of h , the standard deviations  

21  and and the surface pattern parameters 1 and 2 of 

the two opposing surfaces. Through numerical 

experimentation, 
s is found to depend on these parameters 

through the functional form: 
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Where 
1rV and 

2rV  are the variance ratios given by:  

1

2

2
2'

2

1
1 1 rrr VVV 































                     (29) 

s is a positive function of  h and the surface pattern 

parameter of the given surface. 

The shear flow factor s is plotted as a function of h and 

  in [1, 2].starting with zero for purely longitudinal 

roughness   , the shear flow factor increases with 

decreasing   ,and retains highest value for purely transverse 

roughness  0  .Through numerical simulation and using 

nonlinear least square program they are of the form: 
2

321

1

HH

s eHA
 

 5H          
(30) 

Where H=h/.For extrapolation beyond H=5 the following 

relation should be used: 
H

s eA 25.0

2

 5H                                   (31) 

The coefficients 32121 ,,,, AA  are listed as functions 

of   in Table 2.  

Table 2: Coefficients of equations (26),(27) for s (range 

5.0H ) 

     A1        α1         α2       α3     A2 

1/9 2.046 1.12 0.78 0.03 1.856 

1/6 1.962 1.08 0.77 0.03 1.754 

1/3 1.858 1.01 0.76 0.03 1. 561 

1 1.899 0.98 0.92 0.05 1.126 

3 1.560 0.85 1.13 0.08 0.556 

6 1.290 0.62 1.09 0.08 0.388 

9 1.011 0.54 1.07 0.08 0.295 

Now introducing pressure flow factors zx and  with 

shear flow factors s we get modified Reynolds’s equations 

considering combined effect of fluid inertia and surface 

roughness in dimensionless form as: 
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(33) 

Where,  xI  and zI are same as equation (11) and (12) above, 

Boundary conditions for equation (33) are as follows  

1. The pressure at the ends of the bearing is assumed to be 

zero (ambient):  

  01, 


p  

2. The pressure distribution is symmetrical about the mid-

plane of the bearing: 

  00, 










z

p  

3. Cavitation boundary condition is given by: 

212 0,0, 



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The equations (9), (10), (11), (12) and (33) are first expressed 

in finite difference form and solved simultaneously using 

Gauss-Siedel method in a finite difference scheme.  

 

III   METHOD OF SOLUTION 

 

To find out steady-state pressure all the time derivatives are 

set equal to zero in Equations. (9), (10), (11), (12) and (33).  

For  2.00   the pressure distribution and flow parameters 

Q and 
zQ are evaluated from inertia less ( 0Re*  ) 

solution, i.e., solving classical Reynold’s equation. These 

values are then used as initial value of flow parameters to 

solve Eqs.(9) and (10) simultaneously for Q and 
zQ Using 

Guss-Siedel method in a finite difference scheme. Then 

update xI &
zI and then calculate Q and zQ for use to solve 

Eq.(33) with particular surface roughness pattern   and 

surface roughness parameter   for new pressure p  with 

inertia effect by using a successive over relaxation scheme. 

The latest values of Q , zQ and p  are used iteratively to 

solve the set of equations until all variables converges. The 

convergence criterion adopted for pressure is 

5
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  oldnew

pp and also same criterion for Q

and zQ .  For higher eccentricity ratios  2.00  the initial 

values for the variables are taken from the results 

corresponding to the previous eccentricity ratios. Very small 

increment in  is to be provided as 
*Re increases. The 

procedure converges up to a value of 5.1Re*  which should 

be good enough for the present study. Since the bearing is 

symmetrical about its central plane (

_

z =0),only one half of 

the bearing needs to be considered for the analysis. 
 

A. Fluid film forces 
 

The non-dimensional fluid film forces along line of centers 

and perpendicular to the line of centers are given by  
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(35) 

where 1  and 2  are angular coordinates at which the fluid 

film commences and cavitates respectively. 

  

B. Steady state load 
 

The steady state non-dimensional load and attitude angle are 

given by  
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(37) 

Since the steady state film pressure distribution has been 

obtained at all the mesh points, integration of equations (34) 

and (35) can be easily performed numerically by using 

Simpson’s 1/ 3 rd. rule to get rF


and 



F .  The steady state 

load 0



W  and the attitude angle  0  are calculated using 

equations (36) and (37). 
 

C. Equation of Motion 

The equation of motion for a rigid rotor supported on four 

identical flexibly supported bearings are given by, 
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Fig. 4: Hydrodynamic fluid film forces 

in circumferential & radial direction 
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(41) 

The relation between rotor & bearing motion are given by, 

SineXX br                                                     (42) 

CoseYY br                                                     (43) 

 

The above two equations are substituted in equations of 

motion. Finally the equations of motion are expressed in non-

dimensional form as follows, 
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D.   Solution Scheme: 

 

For stability analysis, a non-linear time transient analysis is 

carried out using the equations of motion to compute a new 

set of 
bb YX ,,, & their derivatives for the next time step 

for a given set of. 
_

0 ,,/,*,Re MDL  (Mass parameter) for a 

particular roughness parameter, . The forth order Runge-

Kutta method is used for solving the equations of motion. 

The hydrodynamic forces are computed for every time step 

by solving the partial differential equation for pressure 

satisfying the boundary conditions. 

 

 

E.   Stability Analysis 

To study the combined effect of fluid inertia and surface 

roughness on journal centre trajectory of flexibly supported 

bearings a set of trajectories of journal centre and bearing has 

been studied and it is possible to construct the trajectories for 

numbers of complete revolution of the journal the plots 

shows the stability of the journal when the trajectory of 

journal and bearing centre ends in a limit cycle. Critical mass 

parameter for a particular eccentricity ratio, slenderness ratio, 

modified Reynold’s number, surface roughness parameter 

and roughness pattern is found when the trajectories ends 

with limit cycle (Fig. 9& Fig.10) or it changes its trend from 

stable to unstable. 
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IV  RESULTS AND DISCUSSIONS 
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Figure 5.Variation of Critical mass parameter with ecentricity ratio 

including fluid inertia and surface roughness effect and different 

modified Reynolds number 
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Figure 6.Variation of Critical mass parameter with ecentricity ratio 

including fluid inertia and surface roughness effect for difeerent 

modified Reyolds number
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A Effect of Modified Reynold’s Number (Re*)with 

eccentricity ratio 

 

Figure 5 and 6 shows the variations of stability at different 

values of Re*(0.5,1.0 and 1.5) and L/D (1.0 and 2.0).From 

the figure  smaller L/D ratio gives better stability in the case 

of inertialess solution for all eccentricity ratios. 
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Figure 7.Variation of Critical mass parameter with surface roughness parameter for 

different  roughness pattern parameter
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B Effect of Roughness Pattern (γ) with Surface roughness 

Parameters 

 

 

Figure 7 shows the variation of mass parameter with surface 

roughness parameter for various roughness pattern 

parameters.It is seen that stability is better for transversely 

oriented roughness pattern. 
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Figure 8.Variation of critical mass parameter with surface roughness 

parameter for different variance ratio.
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C Effect of variance ratio (Vr) with Surface roughness 

Parameter 

 

Figure 8 shows the variation of mass parameter with surface 

roughness parameter for different variance ratio.when the 

journal surface is rough and the bearing surface is smooth 

 0.11 Vr ,the stability is seen to decrease sharply for small 

values of   .3 On the other hand, when the journal 

surface is smooth and the bearing surface is rough (i.e.,

01 Vr ),the bearing is highly stable for small roughness 

parameter  .3 A bearing having identical roughness 

structure (i.e., 01 Vr .5) gives intermediate values of 

stability. 

 

 

 
Fig. 9. Journal centre Trajectory of flexibly supported finite oil journal 

bearing with fluid inertia and surface roughness effect. 
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Fig. 10.Bearing centre Trajectory of flexibly supported finite oil journal 

bearing with fluid inertia and surface roughness effect 

 

V  CONCLUSIONS 

1.The effect of inertia on the stability is affected considerably 

at higher L/D ratios and eccentricity ratios (Figure 5 and 

6).The probable reason may be that higher L/D ratios and 

eccentricity ratios,the circumferential component of flow will 

be overtaking the axial flow.The inertia effect of the 

circumferential flow will possibly add more stiffness in the 

film,thereby improving the stability.It  is also noted  that  

higher Re* means higher surface speed of the shaft (when 

other parameter remain constant).This will further increase 

couette flow which is a part of circumferential flow.One can 

see this particular effect for L/D=2.0 and for 5.0 (Figure 

6). 

 

2. When the journal surface is very rough  3 and the 

bearing is smooth,the stability decreases drastically. 

 

3. When the bearing surface is very rough  3 and the 

journal is smooth,the stability improves significantly. 

 

4.The stability can be improved by employing higher L/D 

ratio. 
 

NOMENCLATURE 
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 = Density of the lubricant (kg m-3) 

  = Angular velocity of journal(rad s-1) 

p  = Angular velocity of whirl (rad s-1) 

  = Whirl ratio,


 p
 

  = Absolute viscosity of lubricating  

film (N s m-1) 

  = Attitude angle 

Q  = Dimensionless flow parameter in  direction 

zQ  = Dimensionless flow parameter in 

_

z  

direction 

_

Q  = Dimensionless side leakage  

21,   = Angular coordinates at which film  

commences and cavitates. 

 

  = Surface pattern parameter 

  = Roughness Parameter,


c  

H  = h  

x , 
s  = Pressure flow factors 

s  = Shear flow factor 

  = Composite r.m.s roughness,=
2

2

2

1    

1 , 2  = Standard deviation of  1 and 2  

1 , 2  = Random roughness amplitudes (heights) of  

  surfaces. 

  = Combined roughness [m],   = 1  + 2  
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Vr  = Variance ratio,  
2

2

2

1 2,1 




















VrVr  

bX
 = 

Coordinate of bearing centre in x-direction 

bY
 = 

Coordinate of bearing centre in y-direction 

rX
 = 

Coordinate of rotor centre in x-direction 

rY
 = 

Coordinate of rotor centre in y-direction 

rM
 = 

Mass of rotor or journal 

bM
 = 

Mass of bearing 

r

b

M

M
m 

 

Mass ratio 

O

r

W

cM
M

2_ .. 
 Critical Mass Parameter 

kbK 
_

 
Bearing support stiffness coefficient 

bbB 
_

 Bearing support damping coefficient 
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