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Abstract: The Restricted Three Body Problem Is Generalised To 

Include The Effects Of An Inverse Square Distance Radiation 

Pressure Force On The Infinitesimal Mass Due To The 

Primaries, Which Are Both Radiating. In This Paper We 

Investigate The Stability Of Coplanar Equilibrium Points, 

Based On Equations In Variations. We Have Found The 

Characteristic Equation For The Complex Normal Frequencies 

Which Is A Sixth Order Polynomial .Thus We Conclude That 

Coplanar Equilibrium Points Are Unstable Due To Positive 

Real Part In Complex Roots.  
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I. INTRODUCTION 

Radzievskii (1950) showed that in the restricted 

photogravitational three body problem, allowing for the 

gravitational attraction and light pressure of primaries, 

coplanar equilibrium points (L6, L7) exist in addition to three 

collinear and two triangular ones. Chernikov(1970) described 

the photogravitational restricted three body problem. 

Perezhogin (1976) discussed the stability of coplanar 

equilibrium points in the absence of a repulsive force from 

the smaller of the primaries. An investigation of the stability 

of collinear and triangular solutions in this problem was 

made by Kunitsyn and Tureshbaev (1983), (1985). A.T. 

Tureshbaev (1986) investigated the stability of the relative 

equilibrium positions (coplanar libration points) for a particle 

in a gas-dust cloud subject to the gravitational field and 

radiation pressure of a binary star. Luk’yanov (1987) 

obtained regions of stability for libration points L6 and L7 for 

any values of three parameters ( , 1q , 2q ). Perezhogin and 

Tureshbaev (1989) showed that stability for the majority of 

initial conditions and formal stability occur almost 

everywhere in the domain of first order stability of coplanar 

libration points. 

Sharma, R.K. and Subba Rao, P.V. (1976) discussed the 

three dimensional restricted three body problem with 

oblateness. C.N. Douskos and V.V. Markellos (2006) found 

the existence of non-planar equilibrium points in the three 

dimensional restricted three body problem with oblateness.                                                      

Hence, we thought to examine the stability of equilibrium 

points L6, L7 in the generalised photogravitational coplanar 

restricted three body problem. Both the primaries are 

radiating and smaller primary is supposed to be an oblate 

spheroid.   

We linearise the equations of motion. We have found the 

characteristic equation. The partial derivatives are evaluated 

at the equilibrium point L6. We have found the roots of 

characteristic equation. We conclude that due to positive real 

part in complex roots, the out-of-plane equilibrium points are 

unstable. 

II. STABILITY OF EQUILIBRIUM POINTS 

The equations of motion (1) of the infinitesimal mass are 

given by Douskos and Markellos(2006).  
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The equilibrium point   L6   is given by Ishwar et.al(2010) 

(using Mathematica) 

We transfer the origin to equilibrium point (x0, z0) for 

examining the linear stability of the out-of-plane  point    L6  .   

We linearise the equations of motion (1). We obtain 
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where the partial derivatives are evaluated at the equilibrium 

point and  .xzzx   

The characteristic equation is given by 
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The values of co-efficients  a, b and c  of equation (3) are 

(using Mathematica) 
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 Substituting in characteristic equation (3), we find six roots 

(using Mathematica).

 

Solution of equation 024  cba6
is given 

as (using Mathematica) 
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We may examine the stability of other equilibrium point  L7 

in the same manner as L6 . We will find that L7 is also 

unstable. Thus we conclude that non-planar equilibrium 

points are unstable in linear sense due to positive real part  in 

complex roots.   

III.   CONCLUSION 

We conclude that equilibrium points are unstable due to 

positive real part in  complex roots when they are out of 

plane. 
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