
SQLIJHS : SQL Injection Attack Handling System

Prof. Sumitra Pundlik

Assistant Professor

Computer Engineering Department

MITCOE,Pue 38

Rajnish Kumar

UG Student

Computer Engineering Department

MITCOE,Pue 38

Bhagyashree Gaikwad

UG Student

Computer Engineering Department

MITCOE,Pue 38

Aarti Aadhale

UG Student

Computer Engineering Department

MITCOE,Pune 38

Vaishali Waghmare

UG Student

Computer Engineering Department

MITCOE,Pune 38

ABSTRACT

The Database Security is major and

important part of any business. The

business must provide a non-vulnerable

interface and assurance of security of

customer’s data stored on their server.

SQL Injection is of the type of attack used

to access information illegally from stored

data. In this paper we have given in detail

description of SQL Injection attack. We

have proposed SQL Injection Handling

System (SQLIJHS) which will act as

middle ware between user and database.

SQLIJHS will help to Detect Mechanism,

Avoid Mechanism and Recover

Mechanism to secure database form theft.

1. Introduction

Data [1] is qualitative and quantitative

representation of real time information. It can be

used by storing in the form of database. The data

can be stored in the table as columns and rows

where column name indicates attribute and row

indicates values related to that attribute. The

Database Management System (DBMS) is

combination of database models, supportive data

structure, transaction and query processing

mechanisms.

The Structure Query language (SQL) [1] is a language, using

which we can perform operation on stored database. It allows

us to perform operations such as insert, update, delete, and

select on stored data which in the form of table.

Security [2] is concerned about protection of valuable

information from misuse or theft from illegal users or

resources. There are various types of security such as network

security, computing security, data security, and information

security etc. The Data security [2] is concerned about security

of stored data in the form of database. Now a day‟s data theft is

a serious issue for example theft of credit card information,

theft of bank‟s user id and password and perform illegal online

banking transaction etc.

The key of goal for moving toward database

systems are: reliability, higher availability and,

most importantly, the security that can be

implemented more effectively in a database

environment. With the increased deployment of

such database applications there has been an

increase in the number of attacks targeting such

applications. One class of attacks targeted by

database applications that is particularly dangerous

is SQL injection attack. The SQL injection attack

(SQLIJA)[3] is nothing but injection of malicious

information in the query by unauthorized person or

an attacker to change the data stored in the tables or

to retrieve secure data from the tables without any

permission. This could result in the attacker

gaining access to the backend database and

potentially sensitive information.[3]

In this paper we present a model handle SQL

injection in a database system. The section 2 is

about details of SQLIJ whereas section 3 is

discussing about on related work. We are also

giving in detail comparison of various tools which

useful for detection, avoidance and recovery from

SQLIJ attack in section 4.

2.1 The Basic Types of Attacks

2. Details of SQL Injection Attack

In this section we are discussing about various

types of SQL Injection attacks along with common

patterns.

2.2Common Patterns of attacks

The attacker can inject malicious information by using various

patterns. From various papers [4][5][6] we have observed

some common patterns discussed by various authors while

talking about SQLIJA. The patterns are as follows,

1. UPDATE users SET password=‟newpwd‟ WHERE

userName= ‟admin‟--‟ AND password=‟oldpwd‟

1873

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

2. SELECT status FROM users WHERE user name=‟‟ or

1=1 -- AND pass=‟‟

3. SELECT * FROM user WHERE username = 'admin'--'

AND password = „‟

4. SELECT * FROM users WHERE login=‟ ‟ UNION

SELECT password from user_info where user_name=‟abc‟--

AND pass= „ ‟ .

5. SELECT accounts FROM users WHERE login= 'doe'

AND pass=' '; SHUTDOWN;

6. SELECT accounts FROM users WHERE login=‟doe‟

AND pass=‟‟; drop table users --‟ AND pin=123

Sr.No. Name Of

Attack

Description Example

1 Tautology

attacks[6]

In tautology attack the conditional statement

is inserted in the query which will be true all

time i.e. 1=1

Select * from staff where st_no=9 or

1=1;

2 UNION

Attacks[6]

In union attack user can inject code by using

UNION key word in the query to perform

illegal operations in the database.

SELECT accounts FROM users

WHERE login=‟‟ UNION SELECT

cardNo from CreditCards where

acctNo=10032 -- AND pass=‟‟ AND

pin= ”

3 Logically

incorrect

query

attacks[6]

In this type of attack logically incorrect query

can be used to identify type of data or gather

overall information about the database or its

tables.

In this case attacker can take advantage if

error messages for further injection.

SELECT accounts FROM users

WHERE login=‟‟ AND pass=‟‟ AND

pin= convert (int,(select top 1 name

from sysobjects where xtype=’u’))

4 Piggy Back

attack[6]

The injected query is added to the original

query.

SELECT accounts FROM users

WHERE login=‟doe‟ AND pass=‟‟;

drop table users -- ’ AND pin=123

3. Related Work
Various authors handled different types of SQL Injection

attacks. They have proposed detection, avoidance and recovery

approaches to handle SQL Injection attack. The author [6]

discussed about SCMAS is an architecture for

Distributed hierarchical multi-agent system for

blocking attacks to databases. This strategy helps

to detect and prevent SQL injection attacks

consisting of a multi-agent based architecture.

SCMAS presents a hierarchical structure and this

hierarchical structure distributes roles and tasks for

the detection and prevention of SQL injection

attacks. A Solution based on Multi-agent System.

The agents handle capacities such as autonomy,

social abilities, reasoning, learning, and mobility,

among others. One of the main features of agents is

their ability to carry out cooperative and

collaborative work when they are grouped into

multi-agent systems to solve problems in

distributed manner.

The authors Xing Wang et.al. [7] proposed

detection methods based on hidden web crawling.

They have implemented an algorithm for purpose

of raising web page coverage and enhance it as web

scanner to detect SQL Injection attack where as

various methods such as Query Tokenization [8] by

query parser method, recurrent neural network

trained by back propagation through time algorithm

[9], obfuscation-based analysis [10] for static and

dynamic analysis of submitted queries, Sunday

pattern matching algorithm to implement data

security gateway [11], Detection Defense Log

model for client server technology[12], Encoding

techniques and finger prints of SQL queries [13],

AIIDA-SQL using code Based Reasoning

[14],SQL Query removal method using combined

static and dynamic analysis[15],Firewall for

Anomaly detection[16] proposed to detect

SQLIJA.

The Signature based Method proposed by [17] used

Hirschberg algorithm, Finite state automata and

SQL graph representation[18], Hybrid Encryption

(PSQLIA-HBE) for authentication scheme[19],

protective adaptive shell located between

application and backend database[20] to prevent

system from SQLIJA. The recovery approach is

proposed by [21] as reconstruction using network

recording solutions. So there is need to propose a

system which can help to perform all three

operations to provide more security to the data.

4. Tools Comparison:

In this section we are discussing about the

comparison of available tools which are handling

SQLIJA as shown in Table 3.1.

1874

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

We have considered parameters such as open

source, able to perform detection, recovery and

avoidance/prevention from SQLIJA for comparison

of tools. From above comparison we conclude that

Pangolin [22], Havij [22] are able to perform

detection, avoidance and recover for web

application and those are open source also. But as

we are considering SQLIJA at query level i.e. at

database level where user is firing queries from

SQL prompt. This an extension for DBCrypto [23]

which is doing data security at query level by using

encryption and decryption algorithm.

5. Proposed Model

In this we have proposed SQLIJ Handling System

(SQLIJHS) as a middleware in between application

(normal query window, web application etc.) and

database as shown in Figure 5.1 .It will handle SQL

injection attack patterns. The SQLIJHS will have

three mechanisms

1. Avoidance Mechanism

2. Detection Mechanism

3. Recovery Mechanism

Table 3.1. Comparison of SQLIJA Handling Tools

Name of tools Features Open

source

Detection Prevention Recovery

Pangolin[26] Its goal is to detect and take advantage of SQL

injection vulnerabilities on web applications.

yes Yes Yes yes

Havij[26] This tool that helps penetration testers to find and

exploit SQL Injection vulnerabilities on a web page.

yes Yes Yes yes

Sqlninja[26] Sqlninja is a tool targeted to exploit SQLInjection

vulnerabilities on a web application

No Yes Yes partially

CANDID[26] CANDID's natural and simple approach turns out to

be very powerful

No Partially partially Partially

WAVES[26] The tool identify all points a web application that

can be used to inject SQLIAs.

No Partially partially Partially

JDBC-

Checker[26]

It was not developed with the intent of detecting and

preventing general SQLIAs

No Partially partially partially

SecuriFly[26] SecurityFly tries to sanitize query strings that have

been generated using tainted input

Yes partially partially partially

WebS

SARI[26]

WebS SARI [use static analysis to check taint

flowsagainst preconditions for sensitive functions.

No Yes Yes yes

V1p3R

[27](„Viper”)

Used for Web application Penetration testing No Yes No No

1875

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

6.Algorithm:
6.1.1 Exact Matching

Input : T, P

Output: Safe Query, Attack Alarm I

[a] match_count b 0;

[b] For i= 1 to n do

Begin

[d] If (P=Ti) then {

- Add 1 to match_count;

- Declare „Safe Query‟;

- Exit; }

[e] End if;

[f] End For Loop;

[g] If (match_count=0) then {

- Declare „Attack Alarm I‟;

- Call Approximate Matching; }

[h] Stop;

6.1.2 Approximate Matching:

Input : T, P, W

Output: Safe Query, Attack Alarm Final

[a] k = element_count(P);

[b] For i = 1 to n do {

[c] For j = 1 to k do {

[d] If (P[j] c T[i][j]) then

[e] D[i] b D[i] + 1 ;

[f] Enf if ; } }

[e] Edit_Distance b 0 ;

[f] F

or i = 1 to n do {

[g] Edit_Distance = MIN (D[i]); }

[h] If (Edit_Distance < W) then {

- Declare „Safe Query‟ ;

- Execute P; }

[h] Else {

[i] - Declare „Attack Alarm Final‟ ;

[j] - Block P; }

[k] End if;

[l] Stop;

6.2 Steps for implementing various pattern

There are different implementation algorithm for
different patterns. So we used total 6 algorithm for
6 different types of injection which is given below:

1 .tautology

2. piggy backing

3. union attack

4. stored procedure

5. logically incorrect query

6.2.1 Steps for tautology

1. Capture Query as String. Ex.:

query1;query2;query3

2. Split the queries by segregating the “;” as

separator

if n is number of “;” then no of queries is

n+1

3. for each query split the words by

removing white spaces and store in string

array

4. get index of “=” in the array of words. If

index of “=” is I

5. separate the strings at positions I-1 and

I+1 from the array

6. perform equality check on the two strings

separated

7. if found equal the result = “Tautology

Detected” else “Valid query”

8. Repeat steps 3 to 6 for the next query till

all queries are verified for Tautology

6.2.2 Steps for piggy backing

 1.take a array variable
 2.split query into subparts by ; and store all the
query into array variable

 3.Use for loop from 0 to n(no of queries)

 a. convert it into lowercase and store it into
another variable
 b. then check in each query 1

st
 word should be

1876

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

either drop table or shut down for piggy backing
attack.
 c. if yes then return true else return false

6.2.3 Steps for union attack

1. Split the queries by searching the
keyword ‘UNION’.

2. Search the ‘ALL’ keyword in the query. If
found remove ‘ALL’ keyword it will give
us only query.

3. Search for ‘SELECT’ keyword in the query
if not found then mark as ‘UNION’ attack.

4. If ‘SELECT’ keyword found in all queries
then separated the column list from each
query. i.e. The string after ‘SELECT’ and
before ‘FROM’.

 5. From the column list separate each column
by splitting string by commas.

 6. Compare the no. of on each query. If not
equal then mark it as ‘UNION’ be set.

7. If no. of columns also same then compare
each column from the column list.

If no. of columns does not match then it is ‘UNION’
be set otherwise it is valid query.

6.2.4 Steps for Stored procedure

 1. start , declare the two variables actualQ,
execQuery as null

 2. Convert query into lowercase

 3. If create procedure or alter procedure are
there in query then check there is exec or
execute command or not

 4. It checks after calling procedure there is
tautology or not

 5. If true then detected stored procedure attack

 6. Else this is valid query

 7. End

6.2.5 Steps for Logically incorrect logic

1. When we fire logically incorrect query, it checks
that with all the patterns that we have
implemented.

2. If that query is not found in that patterns then it
is valid query for our application.

3. If query is valid then it is submitted to MYSQL
database.

4. MYSQL returns the result of the user & user gets
the idea about the table of our database.

5.But before user gets that result our application
detects that is logically incorrect query pattern
attack.

7.Result

7.1 tautology

7.2. piggy backing

7.3. union attack

1877

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

7.4 Stored procedure

7.5 logically incorrect query

8. Conclusion

SQL injection is a common technique hackers

employ to attack these web-based applications. In

this paper we have discussed various types of SQLI

Attacks and different common patterns. We have

also discussed about various approaches proposed

by authors and comparison of working tools. We

have discussed about our proposed SQLIJ handling

system will be used to detect, avoid and recover

injected query.

9. Future Scope

In future this mechanism can be used for

distributed environment to handle injection from

internet user, web applications etc. It can be

implement in various places such as banking

sector, airline reservation etc. to avoid illegal theft

of data.

1878

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

Figure 5.1 Proposed Diagram for SQL IJA handling system

10. References

[1] Korth Henry F., Siberschatz Avi, Sudarshan S.,

Database System Concepts 5th Edition

[2] Stallings William Cryptography and Network Security

[3] Evaluation of Anomaly Based Character Distribution

Models in the Detection of SQL Injection Attacks.

[4] A Survey On Sql Injection: Vulnerabilities, Attacks,

And Prevention Techniques By Diallo Abdoulaye Kindy

and Al-Sakib Khan Pathan Department of Computer

Science, International Islamic University Malaysia,

Malaysia

[5] J. M. Corchado, M. Glez-Bedia, Y. De Paz, J. Bajo and

J. F. De Paz, Replanning Mechanism for Deliberative

Agents in Dynamic Changing Environments.

Computational Intelligence, vol.24, pp.77-107, 2008.

[6] A. Damba and S. Watanabe, Hierarchical Control in a

Multiagent System, International Journal ofInnovative

Computing Information and Control, vol.4, no.12, pp.3091-

3100, 2008

[7] Xin Wang, Luhua Wang, Gengyu Wei, Dongmei

Zhang, Yixian Yang, HIDDEN WEB CRAWLING FOR

SQL INJECTION DETECTION Proceedings of IC-

BNMT20 10

[8] NTAGWABIRA Lambert, KANG Song Lin, Use of

Query Tokenization to detect and prevent SQL Injection

Attacks.

[9] Jaroslaw Skaruz, Franciszek Seredynski, Recurrent

neural networks towards detection of SQL attacks.

[10] Raju Halder, Agostino Cortesi, Obfuscation-based

Analysis of SQL Injection Attacks.

[11] Xu Ruzhi, Guo jian, Deng Liwu, A Database Security

Gateway to the Detection of SQL Attacks, 2010 3rd

International Conference on Advanced Computer Theory

and Engineering (ICACTE)

[12] Qian XUE, Peng HE, On Defense and Detection of

SQL SERVER Injection Attack.

[13] Elisa Bertino, Ashish Kamra, James P. Early, Profiling

Database Application to Detedct SQL Injection Attacks

[14] AIIDA-SQL: An Adaptive Intelligent Intrusion

Detector Agent for Detecting SQL Injection Attacks

[15] Jeom-Goo Kim, Injection Attack Detection using the

Removal of SQL Query Attribute Values.

[16] Ke Wei, M. Muthuprasanna, Suraj Kothari, Preventing

SQL Injection Attacks in Stored Procedures.

[17] Jaroslaw Skaruz, Franciszek Seredynski, Recurrent

neural networks towards detection of SQL attacks.

[18] Ke Wei, M. Muthuprasanna, Suraj Kothari, Preventing

SQL Injection Attacks in Stored Procedures.

[19] Indrani Balasundaram, E. Ramaraj, An Authentication

Scheme for Preventing SQL Injection Attack Using Hybrid

Encryption (PSQLIA-HBE), European Journal of Scientific

Research ISSN 1450-216X Vol.53 No.3 (2011), pp.359-

368.

Query

Avoidance

Mechanism (Future

Work)

Detection

Mechanism (In

Progress)

Recovery

Mechanism

(Future Work)

MY SQL

Database

SQLIJ Handling System

1879

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

[20] Li Shan, Dong Xiaorui, Rao Hong, An Adaptive

Method Preventing Database from SQL Injection Attacks,

2010 3rd International Conference on Advanced Computer

Theory and Engineering(1CACTE)

[21] Allen Pomeroy and Qing Tan, Effective SQL Injection

Attack Reconstruction Using Network Recording, 2011

11th IEEE International Conference on Computer and

Information Technology.p

[22] Atefeh Tajpour, Maslin Masrom, Mohammad Zaman

Heydari, Suhaimi Ibrahim, SQL Injection Detection and

Prevention Tools Assessment

 [23] Asavari deshpande (2012), ‟DBCrypto: A Database

Encryption System using Query Level Approach ‟

1880

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60347

