
 
Fig. 1 Spring F-D curves. 
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Abstract—Nonlinear springs have nonlinear force-displacement 

relationships and wide applications in damping, suspension, 

vibration absorption and prosthetic systems. Conventional spring 

designs are mainly for linear springs and difficult to be used for 

nonlinear springs because of their customized nonlinear features. 

In this paper, a nonlinear spring is considered as a piece of elastic 

material and its configuration is defined by topology, shape and 

size. A systematic method is presented for synthesizing nonlinear 

springs. Topology of a synthesized nonlinear spring is controlled 

by the locations of input, output, intermediate and support nodes 

in the design domain. Shape of the synthesized nonlinear spring 

is decided by a set of spline curves that interpolate the input, 

output, intermediate and support nodes. Size of the nonlinear 

spring is described by in-plane widths that are perpendicular to 

the spline curves. The complete configuration of a synthesized 

nonlinear spring is defined by variable width spline curves which 

are controlled by their interpolation circles. The synthesis of a 

nonlinear spring is thus systematized as optimizing the control 

parameters of the interpolation circles. The presented method is 

demonstrated by the synthesis of a hardening nonlinear spring. 

Keywords—nonlinear spring; design; spline; variable width; 

control parameter; interpolation circle. 

I.  INTRODUCTION 

Springs are mechanical parts made from elastic materials 
and in particular configurations to provide a range of force over 
a significant deflection and/or to store and release potential 
energy. Springs are designed to provide a push, a pull or a twist 
force (torque), or to primarily store and release energy [1]. The 
performance of a spring is characterized by the force (F) 
applied to it and the deflection or displacement (D) which the 
applied force results. The slope of the F-D curve is the spring 
rate or stiffness denoted by k. If the slope of a spring is 
constant, the spring is linear. Otherwise, it is nonlinear. Linear 
springs obey the Hooke's Law, F = k D. Conventional spring 
designs are mainly for linear springs. The applied force in a 
nonlinear spring is not proportional to its deflection. Two 
typical F-D curves of nonlinear springs are progressive 
(hardening) and degressive (softening) curves, which are 
curves 1 and 3 in Fig. 1, respectively. Curve 2 shows a linear 
F-D relationship. 

A progressive nonlinear spring is a spring that gradually 
increases its spring rate as the spring deflection progresses, 
which provides a progressively hardening reaction as the spring 
gets compressed or extended. In contrast, a degressive 
nonlinear spring gradually decreases its spring rate as the 

spring deflection increases and provides a softening reaction. 
The F-D relationship of a nonlinear spring is usually based on 
its specific application and has its individual feature [2]. 
Because of the unique nonlinear characteristics, design 
methods for linear springs are difficult to apply, which makes 
designing nonlinear springs more challenging than linear 
springs. The motivation of this paper is to provide a systematic 
synthesis method for nonlinear springs. 

Mechanisms are mechanical devices used to transfer or 
transform motion, force or energy [3]. Conventional 
mechanisms are composed of rigid links that are connected by 
kinematic joints. In a rigid mechanism, a desired output motion 
in the output link is generated by a simple input motion 
(typically a rotation from a motor or an engine) in the input 
link through relative motions of connected links. Mechanism 
functions are realized in compliant mechanisms [4-5] by elastic 
deformations. The configuration of a compliant mechanism is 
usually a piece of elastic material without any rigid joint. The 
jointless configurations of compliant mechanisms offer them 
benefits including the elimination of backlash, friction, wear 
and lubrication, and the reduction of vibration and noise, 
manufacturing and assembly cost. The single-piece 
configuration of a compliant mechanism is commonly 
described its topology, shape and size. Topology is the 
overarching material layout of a compliant mechanism, and is 
the connectivity relationship among nodes in the compliant 
mechanism. A compliant mechanism has input, output, support 
and intermediate nodes. Its topology is the topology of the 
network formed by these nodes [6]. Its shape is the shape of the 
network, which is defined by the locations of nodes and the 
connection curves of nodes. Its size is the cross-sectional sizes 
of node connections [7]. Thus, the synthesis of a compliant 
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Fig. 2 Lagrange interpolation. 

 

 

Fig. 3 Spline interpolation 

mechanism is to decide its topology, shape and size.  

Springs usually have jointless configurations and utilize 
elastic deformations of materials to generate desired force-
displacement relationships. They are a special class of 
compliant mechanisms. The input and output nodes of a spring 
usually coincide. The design of linear springs has been 
systematized. The spring rate of a linear helical coil spring can 
be calculated by the following equation [1]. 

aND

Gd
k

3

4

8
     (1) 

In (1), d is the wire diameter, D is the mean coil diameter, 
Na the number of active coils, and G is the shear modulus of 
the spring material. The standard form of helical coil springs 
has constant coil diameter, constant pitch and constant spring 
rate. To make the spring rate of a coil spring variable, its coil 
diameter or pitch can be varied. A coil spring with varied coil 
diameter can have a conical, barrel or hourglass shape. 
However, the change of spring rate in such kinds of nonlinear 
springs is often limited. The springs synthesized in this paper 
are focused on translational springs in which desired nonlinear 
force and displacement relationships can be realized. A 
nonlinear spring is synthesized as a compliant mechanism by 
deciding its topology, shape and size. 

The remainder of the paper is organized as follows. The 
synthesis strategies on topology, shape and size of nonlinear 
springs are provided in section II. The optimization approach 
of spring parameters is presented in section III. Section IV is 
on the synthesis of a hardening spring using the synthesis 
method introduced in this paper. Conclusions are finally drawn 
in section V. 

II. FORMULATION OF SPRING SYNTHESIS 

The synthesis of a nonlinear spring is to decide its 
topology, shape and size. Topology is defined by the network 
of nodes in the spring, which are decided by nodes and node 
connections. Nodes in a spring can be input, output, support or 
intermediate nodes. Each connection has two end nodes plus 
one or more intermediate nodes. The more nodes a connection 
has, the more flexible the variation of its shape is. The shape of 
a connection is determined by the locations of its nodes and the 
connection curve of the nodes. Besides location parameters, 
each node can include one or more size parameters for the 
cross-section sizes of the connection. If a connection is 
regarded as a building block [8], a spring is then composed of 
one or more connections. If one connection can meet the needs, 
we use one connection. Otherwise, we gradually increase the 
number of connections. It is preferred for a spring to have 
fewer connections in order to simplify its structure and lower 
its cost. 

Connections are used as building blocks for spring 
synthesis in this paper. The shape of a connection is the curve 
that interpolates all nodes of the connection. If a connection has 
only two nodes, i.e. two end nodes, the shape of the connection 
is just a straight line segment that connects its two ends. If a 
curved connection is needed, it takes at least three nodes. A 
popular node interpolation is to use Lagrange interpolation. 
Given n+1 nodes (P0, P1,  Pn) with pairwise parameter 

values ( nt,,t,t,t 210 ), its Lagrange interpolation is given 

as follows. 
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)t(L j  in (3) is of degree n and has the following property. 
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jk  is the Kronecker delta. The above property assures that 

Lj has value of 1 at jtt   and vanishes at other parameter 

values. Although Lagrange interpolation is simple, it has the 
disadvantages that the individual Lagrange polynomials are 
complicated and depend on the location of the parameter 
values, and thus, all of them have to be recomputed whenever 
any one of the parameter values is modified. The degree of 
Lagrange polynomial is the total number of interpolation nodes 
minus 1, which becomes undesirably high when the number of 
interpolation nodes is not low. High degree polynomials have a 
strong tendency to oscillate [9]. Here is an example to show the 
undesirable oscillation from Lagrange interpolation. Function 

)x/(y 211   is interpolated on 55  x  at 7 equally 

spaced nodes along x axis. The 7 interpolation nodes are shown 
in Fig. 2. The solid curve is the desired curve from the given y 
function while the dotted curve is the curve from Lagrange 
interpolation that pass through the 7 interpolation nodes and 
has degree of 6. The undesirable oscillation is obvious in the 
Lagrange interpolation curve, especially near the left and right 
ends. Fig. 3 shows the spline interpolation curve from the same 
interpolation nodes as Fig. 2. The dotted curve has no 
oscillation and is very close to the desired solid curve. 

In spring synthesis, synthesizers are normally interested in 
smooth and tight interpolation curves that path through all 
interpolation nodes in order. Spline interpolation can meet the 
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Fig. 4 The interpolation circles of a variable width spline curve. 

 

 

Fig. 5 The variable width spline curve defined by the five 
interpolation circles 

needs. A cubic spline interpolation curve is a set of 
polynomials of degree 3 that are smoothly connected at given 
interpolation nodes. The slope and curvature at internal nodes 
are continuous between two adjacent polynomials. At the two 
end nodes, their conditions can be chosen differently which 
include natural end conditions (two end curvatures are set as 
zero), not-a-knot end conditions (the third derivative is 
continuous at both the first and last internal nodes) or clamped 
end conditions (two end slopes are specified). 

Given n+1 nodes (P0, P1,  Pn) with pairwise parameter 

values ( nt,,t,t,t 210 ), its piecewise cubic spline 

interpolation is given by n cubic polynomials between each 
successive pair of nodes as follows [10]. 
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Pj in (7) can be any coordinate of node j. (6) and (7) can be 
used for any of X, Y or Z coordinate. For different coordinates, 
coefficients in (7) are different. Mj can be solved as follows. 

DAM      (9) 
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The above equations are for natural end conditions. Related 
equations for other end conditions can be similarly established. 

The shape of a connection is defined by its cubic spline 
curve that passes through all interpolation nodes. The spline 
curve depends on the locations of the nodes. At each node, one 
or more size parameters can be added to define the cross-
sectional sizes of the connection. (6) to (8) are also applicable 

to interpolate cross-section sizes. A spline curve with its 
perpendicular width is called a variable width spline curve in 
this paper. A connection in a nonlinear spring can then be 
described by a variable width spline curve. For a 2D variable 
width spline curve, each node has 3 interpolation parameters: 2 
location parameters and 1 width parameter. The 3 parameters 
can be represented as a circle that is called interpolation circle 
in the paper. The center of the circle is the location of the node 
and its diameter represents the width. Then, a variable width 
spline curve is defined by a set of interpolation circles. Fig. 4 
shows 5 ordered interpolation circles. The centers of every two 
successive circles are connected by a chord. The chord length 
is used as interpolation parameter t. The variable width spline 
curve shown in Fig. 5 is from the interpolation circles of Fig. 4. 
Both the center spline curve and the variable width spline curve 
are smooth in Fig. 5. 

The locations of the 5 interpolation circles in Fig. 6 are 
exactly the same as those in Fig. 4, but two right interpolation 
circles have larger diameters than their corresponding ones in 
Fig. 4. The variable width spline curve from these 5 
interpolation circles is shown in Fig. 7. Although the center 
spline curve is smooth and has no cusp, the variable width 
spline curve is unsmooth and has a cusp, which is undesirable 
since it is a source of stress concentration. To avoid cusp, the 
curvature radius of the center spline curve at any point has to 
be greater than half of the perpendicular width at that point. 
When the following constraint is satisfied, cusp will not 
happen. 
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Fig. 6 The interpolation circles with two larger diameters. 

 

Fig. 7 The variable width spline curve with an unsmooth cusp 

 

Fig. 8 The F-D curve of the synthesized spring. 

In (16), )t(R  is the curvature radius and )t(w  is the width 

at point t of the center spline curve. 

III. OPTIMIZATION OF SPRING PARAMETERS 

The configuration of a nonlinear spring is modeled as one 
or more variable width spline curves in this paper. Each 
variable width spline curve is defined by its interpolation 
circles. The synthesis of a nonlinear spring is thus systematized 
as optimizing the parameters of the interpolation circles that 
define the spring. 

The control parameters of interpolation circles of a 
synthesized nonlinear spring are optimized in this paper by 
using Global Optimization Toolbox of MATLAB [11-12]. 
Global Optimization Toolbox gives methods that search for 
optimal solutions to problems that have multiple maxima or 
minima. Global Search Solver in MATLAB’s Global 
Optimization Toolbox is used in the paper to optimize 
parameters. This solver is to find a global solution and has an 
efficient local solver, fmincon. 

The performance of a synthesized nonlinear spring is 
evaluated by finite element analysis software ANSYS [13-14]. 
Providing the parameters of a set of interpolation circles, the 
force, displacement and stress of the related nonlinear spring 
are analyzed by ANSYS. An ANSYS batch file is created in 
MATLAB on elements, material properties, boundary 
conditions and input information. ANSYS is then called from 
MATLAB to execute the batch file. After preprocessor, 
processor and postprocessor stages, ANSYS generates an 
output file on the performance information of the synthesized 
spring. MATLAB reads the ANSYS output file and calculates 
the objective and constraint functions for optimization. ANSYS 

Parametric Design Language is used in the paper as a 
communication tool between MATLAB optimization and 
ANSYS finite element analysis. 

IV. SYNTHESIS OF A HARDENING SPRING 

A hardening spring is a nonlinear spring that gradually 
increases its spring rate as the spring displacement progresses. 
The displacement and force ranges of the synthesized spring 
are from 0 to 20 mm and from 0 to 20 N, respectively. The F-D 
relationship is defined by 5 desired (D, F) target points: (D0, 
F0), (D1, F1), (D2, F2), (D3, F3) and (D4, F4). The displacement 
range of 20 mm is divided into 5 equal-distance points, i.e. 

432105 ,,,,j,jD j  . F0 and F4 correspond to the two end 

points of the force range, so that F0 = 0 and F4 = 20 N. The 3 
internal force points are set to F1 = 0.04F4, F2 = 0.17F4 and F3 
= 0.48F4 [2]. The spline curve that interpolates the 5 target 
points is shown in Fig. 8. The design domain is 100 mm x 100 
mm which is shown Fig. 9. The input node is marked by a 
crossed circle and is at the middle point of the top edge of the 
design domain with input displacement upward. The potential 
support nodes are marked by filled circles and are on the 
bottom edge of the design domain. The material for the spring 
is engineering plastic with yield strength of 71 MPa and 
modulus of elasticity of 2200 MPa. The out-of-plane thickness 
is set at 4 mm. The in-place width is varied from 1.0 mm to 3.0 
mm. The spring is symmetric to the vertical line that passes the 
input node, and is composed of two connections. Each 
connection is modelled as a variable width spline and is 
defined by 5 interpolation circles (P0 to P4 in Fig. 9). Only the 
right variable width spline curve is lettered because of the 
symmetry. The support node can be chosen from two different 
locations (corner and middle points), so there are two available 
solutions. Parameters to be optimized are the locations and 
diameters of the interpolation circles. The two end circles have 
fixed locations, but their diameters are variable. Thus, there are 
totally 11 parameters to be optimized, which are represented as 
a design variable vector X. 


433322

21110

wwPPwP

pwppwX

yxx

xyx
    (18) 

The spring is synthesized to minimize the error between the 
actual force from the spring and the desired force when a 
certain displacement is input to the spring. This error is 
measured by the average deviation at the 4 target 
displacements (D1 to D4) as follows. 
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Fig. 9 The design domain of the synthesized spring. 


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FE is the average force error. j,aF  is the actual force 

generated by the spring when target displacement Dj is input to 

the spring while j,dF  is the desired spring force and equals 

target force Fj. 

The synthesis result is shown in Fig. 10 when the two 
support nodes are at the corners. The design variable vector X 
for this solution is 


591731037739250418556

66902144138919612

......

.....X 
    (20) 

In this solution, the desired and actual spring forces at 5 
targets are: (0, 0), (0.80, 1.57), (3.40, 4.37), (9.60, 9.67) and 
(20, 20.00). The spline curves that interpolate the two sets of 
spring forces are shown in Fig. 11. The blue spline is from the 
desired target forces while the red one interpolates the actual 
spring forces. When the spring displacement is over 15 mm, 
the actual spring force is almost the same as the desired force. 
The maximum stress in the spring is 55.29 MPa, which 
happens when the spring has displacement of 20 mm. 

Fig. 12 shows the undeformed and deformed beam 
elements of the spring, which is from ANSYS with the input 
displacement of 20 mm. 

 

 

Fig. 10 The spring with corner supports. 

 

Fig. 11 The desired and actual F-D curves of the spring. 

 

 

Fig. 12 The deformed spring with corner supports. 

 

When spring force and stress are analyzed in ANSYS, the 
input displacement of 20 mm is divided into 4 even load steps 
and geometric nonlinearity command “NLGEOM” is turned 
on. The spring is discretized into beam elements and modeled 
by BEAM188 that allows tapered beam cross-sections. 

When the two support nodes coincide at the middle bottom 
point in Fig. 9, the synthesis result is shown in Fig. 13. The 
design variable vector X for this solution is 


481471767160213428650

554013113322027132

......

.....X 
    (21) 

In this solution, the desired and actual spring forces at 5 
targets are: (0, 0), (0.80, 1.98), (3.40, 4.85), (9.60, 9.67) and 
(20, 20.00). The actual F-D curve of this spring solution is 
close to that in Fig. 11 and is thus not included here. The 
maximum stress in the spring is 51.35 MPa when the spring 
has the displacement of 20 mm. The deformed spring of this 
solution is shown in Fig. 14. 

Two alternative spring solutions are shown here that 
generate close F-D functions, but have different locations of 
support nodes in the design domain. One spring solution can be 
chosen from them based on the spring application. 
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Fig. 13 The spring with middle support. 

 

 

Fig. 14 The deformed spring with middle support. 

 

V. CONCLUSIONS 

A systematic synthesis method of nonlinear springs is 
presented in the paper. A nonlinear spring is modeled as an 
elastic piece of material and synthesized as a special compliant 
mechanism. The topology of a synthesized nonlinear spring is 
on the connectivity of a network of nodes. The network is 
formed by input, output, support and intermediate nodes of the 
spring. The shape of the synthesized spring is on the shape of 
the node network, which is decided by the locations of the 
nodes and their connections. The size of the synthesized spring 
is on the cross-sectional sizes of the node connections. Each 
connection is modeled in the paper as a variable width spline 
curve and controlled by its interpolation circles. A spring is 
then composed of a set of variable width spline curves and 

controlled by the parameters of interpolation circles. The 
synthesis of a spring is thus systematized as the optimization of 
control parameters of interpolation circles. 

MATLAB’s Global Optimization Toolbox is used in the 
paper for the optimization of control parameters of synthesized 
nonlinear springs. The deviation between the desired force-
displacement function and the actual force-displacement 
function is minimized. The deviation is measured by the 
differences between desired spring forces and actual spring 
forces under certain spring displacements. The maximum stress 
in the spring is constrained below the yield strength of the 
spring material. The spring force and stress of a synthesized 
spring is analyzed using ANSYS. The communication between 
MATLAB and ANSYS is based on ANSYS Parametric Design 
Language. A hardening nonlinear spring is synthesized in the 
paper to verify the effectiveness of the presented synthesis 
method. 
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