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Abstract  
 

This paper presents speed control of a DC Motor 

using Fractional order Proportional Derivative 

control. Fractional order Proportional Derivative 

control and Fractional Order Proportional Integral 

Derivative control has wide range of applications. 

Many analysis and design methods has been 

proposed for fractional order controllers. Here, a 

new tuning method for fractional order proportional 

and derivative ( FO-PD) controller is used for speed 

control of a Permanent Magnet DC motor. Tuning is 

performed in such a manner that the given gain 

crossover frequency and phase margin is fulfilled 

and  the phase derivative with respect to the 

frequency is zero making the closed loop system 

robust to gain variations. Tuned Fractional order 

Proportional Derivative Controller is compared with 

conventional controller PID controller. Real-time 

results show that the FOPD controller exhibits better 

response compared to a PID controller.  

. 

1. Introduction   

 
The DC motor is a power actuator, which converts 

direct current electrical energy into rotational 

mechanical energy. The DC motors are still widely 

used in industry and in numerous control 

applications, robotic manipulators and commercial 

applications such as disk drive, tape motor as well. 

Nowadays different methods for speed control are 

available based on the application. The DC Motor 

setup is shown in Fig.1. It consists of a DC Motor 

with an optical encoder attached to the shaft of the 

DC Motor. PID controllers were normally used for 

DC Motor Speed Control due to their advantages like 

less overshoot, no steady state error etc. But here we 

employ a nonconventional control technique which is 

known as a fractional-order control. Mentioned 

technique was developed during last few decades and 

there are various practical applications as for example 

flexible spacecraft attitude control , car suspension 

control , temperature control , motor control, etc. 

Clearly, for closed-loop control systems, there are 

four situations: (1) integer order (IO) plant with IO 

controller; (2) IO plant with fractional-order (FO) 

controller; (3) FO plant with IO controller, and (4) 

FO plant with FO controller. In control practice, the 

fractional-order controller is usually more common, 

because the plant model can be obtained as an 

integer-order model in the classical sense.  Improving 

or optimizing the performance is the major concern 

as well as the primary target. Hence, our objective is 

to apply the fractional-order control (FOC) to 

enhance the (integer order) dynamic system control 

performance.  

In most cases, our objective of using fractional 

calculus is to apply the FOC to enhance the system 

control performance. The fractional order controllers 

can be  realized using analogue circuits. A PI𝞴D𝞵 

controller can be used in a wide variety of 

applications and it also exhibits better control 

performance when compared with the classical 

proportional–integral–differential (PID) controller 

because of extra real parameters 𝞴 and 𝞵 involved. In 

general, there is no systematic way for setting the 

fractional order parameters 𝞴 and 𝞵. However, we 

may be able to get practical and simple FOC 

parameters tuning methods for certain specific plants. 

In this paper, design method of fractional order PD𝞵 

for typical second-order plant is discussed. Aiming at 

the specific class of second-order plants, the major 

contributions of this paper are that the new FO-PD 

tuning method proposed is simple, practical, 

systematic, and can achieve favorable dynamic 

performance as well as robustness. The fractional 

order proportional and derivative controller FO-PD 

has the following form of transfer function: 

 

C(s) = Kp( 1+Kds𝞵 )   (1) 

 

Where,  𝞵 ∈ (0,1).  Clearly, this is a specific form 

of the most common controller which involves an 

integrator of order 𝞴 ( equal to 0, in this paper) and a 

differentiator of order 𝞵 . The derivative action 

increases the stability of the system and tends to 

emphasize the effects of noise at high frequencies. In 

the time domain a decrease in overshoot and the 

settling time is observed. In the complex plane , the 

derivative action produces a displacement of the root 
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locus of the system towards the left half-plane. In the 

frequency domain, this action produces a constant 

phase lead of 𝞹/2 rad and an increase of 20 dB/dec in 

the slopes of the magnitude curves. Proper selection 

of the value of 𝞵 helps to attain better control as 

compared to the conventional control schemes.    

 

Figure.1 DC Motor Setup 

The remaining part of this paper is organized as 

follows. In Section 2, the system is described briefly 

with functional block diagram and mathematical 

modeling. In Section 3, a new tuning method for 

FOC design is proposed for a class of second-order 

plants. Implementation of the FOPD controller and 

PID controller with their comparison is given in 

Section 4. Finally, conclusion is presented in Section 

5. 

 

2. System Description 

 
2.1 Functional Block Diagram 

 

Figure.2 Functional Block Diagram 

The functional block diagram of a DC Motor is 

shown in Fig.2. Analog output voltage generated by 

the DAQ is given to the driver circuit. The driver 

circuit generates a PWM signal, which is fed to the 

DC Motor, which in turn controls the speed of the 

DC Motor. The Motor speed is monitored by an 

optical encoder which is attached to the shaft of the 

DC Motor. Encoder output which is in the form of 

pulses is given to the DAQ.   

 
2.2 Mathematical Modelling 

 

 

Figure.3 General Model of a DC Motor 

   General model of a DC Motor is shown in Fig.3. 

The speed of a D.C motor is directly proportional to 

armature voltage and inversely proportional to the 

flux in the field winding. This speed control system is 

electro mechanic system. The electrical system 

consists of armature and field excited by a constant 

voltage. 

Let, Ra-Resistance of the armature(Ω). 

        La- Inductance of the armature(H). 

        T-Torque developed(N\m). 

        J- Moment of inertia(Kg\m2). 

        Ia - Armature current(A). 

        Va- Armature voltage(V). 

        Eb-Back emf(V). 

        f0-viscous friction. 

The back emf is proportional to angular displacement 

and is given by, 

 Eb= Kbω(s)                                     (2) 

The difference equation of armature is,  

                             (3) 

   By taking Laplace transform of the above equation, 

it gives     

       

  (4)                      

Torque equation is, 

      (5)

          

From Equ(4), 

Ia =      (6)    

From Equ(5), 
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ω=         (7)  

                                                

Substitute (6) in (7) 

ω=     (8)  

              
On solving the equ(8) gives 

   (9)      

  

Equ(9) gives the transfer function of the DC motor. 

     The DC motor rating used here is 12 volt, 

1.5A,1500rpm.The DC motor parameters obtained 

through experiments are  

        R= 8.8 Ω  

        L=3.005mH 

        Kb = 0.0777 V.sec/rad 

        Kt = 0.0777 Nm/A 

        J = 0.000132 kg.m
2
. 

    The transfer function of the DC motor is obtained 

by substituting the values given above in equ (9) and 

can be written as: 

 

G(s)=  (10) 

 

3. Fractional Order Control 

 
3.1 Introduction 

 

    Fractional order(non-integer order) controllers 

have a better control performance when compared to 

classical PID control because of extra parameters  𝞵 

and 𝞴 .This helps in disturbance rejection. An integer 

order control is expressed by: 

 

Gc(s) =Kp+ Tis
-1 

+ Td   (11) 

 

  Whereas in a fractional order we have additional 

parameters 𝞵 and 𝞴 and can be given as: 

 

Gc(s) =Kp+ Tis
-
 𝞴

 
+ Tds 𝞵   (12) 

 

Clearly, this is a specific form of the most common 

controller which involves an integrator of order 𝞴 ( 

equal to 0, in this paper) and a differentiator of order 

𝞵. The derivative action increases the stability of the 

system and tends to emphasize the effects of noise at 

high frequencies. Proper selection of the value of 𝞵 

helps to attain better control as compared to the 

conventional control schemes 
 

 
Figure.4 Parameter Allocation Region 

When 𝞴=0 and 𝞵=1, we obtain a PD controller. 

When 𝞴=1 and 𝞵=0, we obtain a PI controller. When 

𝞴=1 and 𝞵=1, we obtain a PID controller. Fractional 

order region lies in the yellow region as shown in 

Fig.4. In a Fractional Order Proportional and 

Derivative control, the transfer function has the 

following form: 

 

C(s) = Kp(1+Kds𝞵)   (13) 

 

The controller block diagram is shown in Fig.5. The 

advantages of the controller are: 

 No- steady state error 

 Robustness to high  frequency Noise 

 Robustness to variation in the gain of the 

plant 

 Good output disturbance rejection due to 3 

tuning parameters 

 

 

Figure.5 Controller Block Diagram 

 
3.2 Controller Design 

 
For the design of the FOC PD𝞵 

controller, three 

interesting specifications which need to be met was 

proposed. Depending upon phase margin and gain 

crossover frequency specification we obtain the 

following : 

(i) Phase margin specification  

Arg[G(j𝟂c)]=Arg[C(j𝟂c)P(j𝟂c)]=-𝞹+𝟇m (14) 

(ii) Robustness to variation in gain of the plant 

( )=0   (15) 

(iii) Gain crossover frequency specification 
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     |G(j𝟂c)|dB = |C(j𝟂c)P(j𝟂c)| dB = 0 (16) 

 

  According to Specification (i) about the phase of 

G(s) , the relationship between and can be established 

as follows: 

Kd =  tan[  + 𝟇m + tan
-1

(0.18𝟂c) - 

]Χ    

-                                                    (17) 

According to Specification (ii) about the robustness 

to gain variations in the plant, we can establish an 

equation about in the following form: 

Kd =                                                         (18) 

Where 

C = -2A   + 𝞵  +        

 

D =    

E =  

A =   

B = 2A   -   

According to Specification (iii), we can establish an 

equation about Kp: 

    |G(j𝟂c)|=  = 1 

                                                                       (19) 

The design procedure is given as follows: It can be 

observed from (17) and (19) that 𝞵, Kd can be 

obtained jointly. Fortunately, a graphical method can 

be used as a practical and simple way to get 𝞵 and Kd 

because of the plain forms about (17) and (19). The 

procedures to tune the PD𝞵 fractional order controller 

are as follows: 

1) Given 𝟂c, the gain crossover frequency; 

2) Given 𝟇m , the desired phase margin; 

3) Plot the curve 1, Kd w.r.t 𝞵 , according to (17); 

4) Plot the curve 2, Kd w.r.t 𝞵 , according to (18); 

5) Obtain 𝞵 and Kd from the intersection point of the 

above two curves 

6) Calculate Kp the from (19). 

     Here gain crossover frequency was set as 10 

rad/sec, and the desired phase margin as 70
o.
 

According to the numerical method given above, the 

following values were obtained 

 Kp=0.22 

 Kd= 0.87 

 𝞵=0.525 

  

4. Real-time Implementation 

 
4.1 FOPD Controller Implementation 

 

 

Figure.6 LabVIEW Block Diagram-FOPD Control 

 

 
Figure.7 LabVIEW Front Panel-FOPD Control 

      For FOPD Simulation rationalization of the 

irrational term s𝞵 has to be done. For that Oustaloup 

approximation algorithm is used. Taking 𝞵=0.525 

,wl=0.001,wh=1000 we get approximation of 

fractional function as: 

s  =  

Kp, Kd & 𝞵 values obtained by tuning are 
substituted to the respective blocks. The LabVIEW 

Block diagram and Front Panel for an FOPD 

controller is shown in Fig.6 and Fig.7 respectively 

. 
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4.2 PID Controller Implementation 

 

   For PID control implementation the Kp, Ki & Kd 

values obtained by tuning are substituted into the 

respective blocks to constitute a PID Controller.The 

LabVIEW Block diagram and Front Panel for an PID 

controller is shown in Fig.8 and Fig.9 respectively. 

        

 
Figure.8 LabVIEW Block Diagram-PID Control 

 

 
Figure.9 LabVIEW Front Panel-PID Control 

 
4.3 Results 

 
In Real-time FOPD Controller exhibits impeccable 

performance when compared to PID controller. The 

FOPD controller is faster than PID and settles very 

fast. The overshoot is less when compared to a PID 

controller. The Integral Absolute Error is also very 

less for a FOPD controller. Comparison of  the two   

controllers is shown in Table I. 

 

Table.1 Controller Comparison 

Characteristics FOPD PID 

Rise time 1s 1.5s 

Settling time 4s 5s 

Overshoot Less More 

IAE 212 407 

 

 

 

5. Conclusion & Futurework 

 
   In this paper, a fractional order proportional 

derivative controller was tuned using a new tuning 

method and controller parameters were obtained. 

Tuning is done such that the given gain crossover 

frequency and phase margin is fulfilled. Real-time 

implementation of the controller was done and the 

FOPD controller exhibits better performance than 

PID controller in real-time.A FO[PD] and FO-

MRAC Controller can be implemented for the speed 

control of a DC Motor. Both the controllers 

mentioned above will definitely exhibit better 

responses than the conventional controllers. A 

distributed motion control system can be also built in 

which multiple systems can communicate with one 

another using networking features of LabVIEW. 
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