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Abstract - Parkinson’s Disease (PD) which is considered as a 

progressive neurodegenerative disorder which affects the motor 

control and speech of the affected person. Speech signal analysis is 

considered as one of the promising non-invasive biomarkers for 

early PD diagnosis. However, the non-availability of accent 

specific datasets, for Indian-Accented Speech raises as an 

important limitation in developing rigorous diagnostic models for 

the prediction of PD. In this research work, we propose a synthetic 

dataset for speech signal for PD with Indian accent augmentation. 

This dataset is created without the necessity of real patient 

recordings. Healthy Indian-accented speech signals were 

generated using text-to-speech (TTS) systems and then they are 

transformed with pathology aware acoustic modifications to 

emulate characteristics pertaining to PD. The PD specific 

characteristics includes jitter, shimmer, reduced harmonics-to-

noise ratio (HNR), monopitch, vowel-space reduction and 

festination. The dataset includes several tasks such as sustained 

vowels, diadochokinetic sequences, numbers and read passages 

which are annotated with several levels of severity like mild, 

moderate, severe and transformation parameters. Experiments 

and validation suggested that the synthetic samples matched 

closely with the PD feature distribution like increased jitter and 

shimmer and also lowered HNR. This confirms the realism of the 

acoustic degradation. A basic SVM which is trained on MFCC and 

wavelet features produced an average classification accuracy of 

85.6% which demonstrates that the data set is discriminative 

between healthy and synthetic PD speech signals. The produced 

results is a resource for augmenting PD speech corpora and thus 

enabling a robust AI-driven diagnostic framework for Indian PD 

diagnosis in clinical application. 

Keywords : Parkinson’s Disease, Prediction, PSO, Disease 

Prediction, Adaptive SVM 

I. INTRODUCTION  

PD is found to be the second most prevalent 
neurodegenerative disorder that affects nearly 10 million people 
worldwide [1]. The major characteristic of PD is progressive 
degeneration of dopaminergic neurons in the substantia nigra. 
The progression in PD can be observed through both motor 
symptoms and non- motor symptoms. The motor symptoms 
include tremor, rigidity and bradykinesia. The non-motor 
symptoms include cognitive decline and speech impairment [2]. 

The speech impairments associated with PD is collectively 
termed as hypokinetic dysarthria which is observed to 90% of 
the patients during the progression of the disease [3]. Alteration 
in speech like reduced pitch variability, imprecise articulation, 
breathy voice, increased jitter and shimmer and abnormal 
prosody have been observed as the important non-inversive 
biomarkers for early diagnosis [4],[5].  

Recently researchers are tuning into speech signal analysis 
because of its cost-effectiveness and non-invasiveness for PD 
detection at early stages [6]. Machine learning (ML) and deep 
learning models are trained on features derived from speech 
signal like Mel-Frequency Cepstral Coefficient (MFCC), Linear 
Predictive Coding (LPC), jitter, shimmer and Harmonics-to 
Noise Ratio (HNR) have produced promising results in 
classifying PD patients from healthy controls [7],[8]. On the 
other hand, the major challenge in this field is the lack of large 
scale, diverse and accent specific datasets.  

The datasets which are available in public of PD speech 
signals have limited size and limited linguistic diversity. The 
most frequently used PC-GITA dataset has the Colombian 
Spanish Speech [9] while the other corpora represent Czech, 
Turkish and American English speech [10]. Even though these 
datasets are valuable, they fail to capture accentual variations 
that influences the acoustic correlates of the speech signal’s 
features [11]. In particular, for Indian populations, the scarcity 
of dataset is a critical gap in PD diagnosis. Notably, India is the 
fastest growing elderly population and also has raising PD 
patients [12]. Accent differences in intonation, prosody and 
articulation that leads to model bias with diagnostic frameworks 
that are trained on Western datasets and are applied to Indian 
speakers [13].  

To address this problem, synthetic data set generation has 
emerged as a promising alternative. Recent development in text-
to-speech (TTS) synthesis, voice conversion and other 
generative models like GANs, VAEs, diffusion models have 
enabled the creation of more realistic speech signals that can 
augment limited clinical datasets [14]. Moreover, speech 
transformations informed by clinical literature that allows the 
emulation of PD – specific need for extensive patient 
recruitment [15] 
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In this proposed research work, a synthetic speech signal 
dataset for PD with Indian accent augmentation. Priorly 
developed datasets are entirely synthetic built by synthesizing 
healthy Indian accented speech and applying pathology aware 
acoustic modifications that replicates PD related characteristics.  

This research works concentrates on three things. Firstly  a 
synthetic dataset for PD speech analysis  which is contemplated 
to Indian accent addressing the lack of accent specific corpora. 
Secondly, design of a PD speech transformation pipeline which 
incorporates clinically validated acoustic markers like jitter, 
shimmer, HNR reduction, monopitch, vowel space reduction 
and festination. Finally this developed dataset is validated 
through both objective feature level analysis and baseline 
classification experiment thus demonstrating its usage of PD vs. 
Healthy speech discrimination.  

This paper is structured as follows. Section 2 reviews related 
work on PD speech datasets and synthetic speech generation. 
Section 3 describes the methodology for dataset creation and 
section 4 outlines the validation and experimental setup. Section 
5 provides the results and interpretation.  

II. PREVIOUS WORKS 

The anthology in this area is classified into PD speech dataset, 
Accent variation in speech technology, Synthetic speech 
generation and data augmentation.  

A. Parkinson’s Disease Speech Dataset  

Speech signal has recognized as a possible biomarker for PD 
for quiet a long time. Also, several speech corpora have been 
developed to elevate the research in this area. The PC-GITA 
corpus is a widely accepted and commonly used PD dataset 
which consists of Colombian Spanish speech recordings from 
PD patients and healthy controls. This dataset covers sustained 
vowels, diadochokinetic tasks and other reading passages [9]. 
Very similarly, the Czech PD corpus which includes recordings 
of Czech speakers with early – stage PD patients and provides 
quantitative acoustic measurements of speech degradation [10]. 
Similar other dataset includes Turkish [16], German [17] and 
American English speech corpora [18]. 

Moreover, UCI PD dataset provides a sustained vowels 
phonation with pre-computed acoustic features like jitter, 
shimmer and harmonic – to – noise ratio [5]. Though this data 
set is considered valuable and more commonly used, it lacks raw 
audio signals thus limiting the applicability for deep learning or 
generative modeling. Collectively, these datasets have initiated 
progress in PD speech analysis but they remain smaller in size, 
they are linguistically narrow and accent specific to Western or 
European languages and hence their generalizability is limited.  

B. Accent Variation in speech technology 

The accent of the speech signal influence the processing of 
speech signal. Several studies have shown that the accent 
variation severely influences the acoustic properties of speech 
signal. This often degrades the performance of automatic speech 
recognition (ASR) and speech based machine learning systems 
[11],[13]. Considering PD, the subtle acoustic cues are very 
much required. Diagnostic errors are amplified in the deployed 

environment due to accent mismatches. As of Indian accent 
dataset, there are no publicly available datasets. This creates the 
gap that abstains the development of localized diagnostic 
frameworks.  

C. Synthetic Speech Generation and Data Augmentation  

In recent years, the advances in speech synthesis and 
generative modelling have opened new possible areas for data 
augmentation. TTS systems like Tacotron, WaveNet and 
Transformer-based architectures can produce natural sounding 
speech with high fidelity [14]. In addition, voice conversion and 
GANs are employed to produce pathological voice conditions 
for research purposes [19]. In the field of medical technologies, 
synthetic datasets are increasingly used to bridge the gap of data 
scarcity. Augmentation techniques have been applied in 
dysarthric speech [20] and in simulating articulatory 
impairments [8]. Several signal-level transformations like pitch 
flattening, noise injection or formant modification, researchers 
have reproduced acoustic degradations observed in clinical 
populations. However, there are no dataset created in line with 
Indian accent.  

D. The Research Gap 

There are several studies that proved the utility of PD speech 
datasets in Machine learning [7],[9] and synthetic augmentation 
in other speech related disorders [20]. The unison of accent 
specific speech synthesis and PD pathology emulation still 
remains unexplored. The absence of Indian-accent corpora is a 
major barrier as accent-specific prosody and articulation 
patterns are very important for diagnostic robustness. This is the 
motivation behind the development of synthetic speech signal 
dataset for PD with Indian accent augmentation. This combines 
neural TTS based Indian accent synthesis with pathology aware 
acoustic transformation like jitter, shimmer, HNR reduction, 
monopitch, vowel-space reduction and festination.  

III. PROPOSED METHODOLOGY  

The proposed methodology aims to generate a synthetic 

speech dataset that mimics tha acoustic manifestation of PD 

specially crafted for Indian population. Initially, the Indian 

accent speech signal is synthesized through text-to-speech 

(TTS) system. Then, the preprocessing is done to ensure the 

signal consistency. Nextly, the acoustic features are extracted 

that characterizes the generated speech signals. Once after this,  

a series of clinically motivated transformations are applied to 

the generated speech signals that would emulate the symptoms 

of hypokinetic dysarthria which is directly associated with PD. 

These transformations are categorized into various severity 

levels of the PD. This allows to generate mild, moderate and 

severe PD variants. The generated results are compiled into a 

structured dataset with the associated metadata.  

A. Indian Accent Speech Synthesis  

Accent of a speech signal is an important parameter in 

speech signal analysis. Most models which are trained on 

Western-accented corpora usually fails to generalize the Indian 

speakers because of the variations in prosody, articulation and 
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vowel format structures. In this work, to ensure the accentual 

fidelity, an Indian accented speech signals using multiple TTS 

engines was performed. Google TTS (gTTS) was configured 

with the .co.in domain to capture Indian accent patterns, 

Mircosoft Edge TTS voices like en-IN-Neerjaneura were also 

incorporated to provide more natural prosody and Coqui TTS 

was employed as an alternative for offline reproducibility. 

These speech signals concentrated on the tasks which are 

commonly used in clinical assessment of PD which is the 

sustained vowel phonation (/a/), diadochokinetic sequences 

(“pa-ta-ka”) also counting from 1-20, recitation of days of the 

week, short conversational phrases and reading passages. These 

tasks were selected because they capture both phonatory and 

articulatory impairments with the sustained vowels thus 

highlighting perturbations like jitter, shimmer while the 

connected speech tasks reflects the prosodic and articulatory 

degradation.  Also, to simulate the inter-speaker variability, the 

synthetic speakers were generated by varying the pitch and rate 

of speech of the TTS engine in accordance with the Gaussian 

distribution perturbations in semitones and tempo. 

Mathematically the synthetic speakers’s utterance is 

represented as in eqn. 1.  

 

  𝑥𝑠𝑝𝑒𝑎𝑘𝑒𝑟(𝑡) =  𝑃𝑖𝑡𝑐ℎ𝑆ℎ𝑖𝑓𝑡∆𝑓(𝑇𝑖𝑚𝑒𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝛼(𝑥𝑏𝑎𝑠𝑒(𝑡)))             (1)    

 

B. Preprocessing  

All the synthesized speech signals were to be preprocessed 

inorder to ensure uniformity. The generated audio signals were 

resampled to 16KHz, 16 bit PCM and are converted to mono 

channel to maintain the uniform consistency across the entire 

dataset. The amplitude normalization technique was applied to 

scale the signals within the range of [-1,1] [1,1]. This may be 

expressed as in eqn. 2.  

     𝑥′[𝑛] =  
𝑥[𝑛]

max (|𝑥[𝑛]|)
                             (2) 

Moreover, the silence removal operation was also performed 

using short time energy analysis where the energy of a frame is 

given by eqn. 3. 

                          𝐸[𝑛] =  
1

𝑁
∑ 𝑥2[𝑘]𝑁

𝑘=1                               (3) 

Frames with energy below a predefined threshold 𝜃  were 

discarded. This ensured  that only active speech segments 

were retained for feature analysis and transformation. 

 

C.  Feature Extraction   

            Summary of previous works on PD detection 

 
Study Dataset Feature

s 

Feature 

Selectio

n 

Classifie

r 

Accurac

y (%) 

Moro-

Velázque

z et al. 

[19] 

Multiple 

(English

, 

Spanish) 

Cepstral, 

prosodic 

N/A SVM 88.4 

Orozco-

Arroyave 

et al. [20] 

Spanish 

vowels 

& words 

MFCC, 

LPCC 

N/A k-NN 90.1 

Cai et al. 

[27] 

UCI PD 

dataset 

MFCC, 

LPC 

PSO SVM 91.2 

Gupta et 

al. [30] 

UCI PD 

dataset 

MFCC CSO SVM 92.5 

Tabares-

Soto et al. 

[31] 

UCI PD 

dataset 

MFCC, 

LPCC, 

PLP 

PSO ASVM 94.3 

IV. PROPOSED METHODOLOGY  

In this research work, a dedicated framework is proposed for 

early detection and prediction of PD. This framework integrates 

time-frequency signal transformation, cepstral feature 

extraction, naturally inspired feature selection and an adaptive 

classification. The overall architrecture of the framework is 

given in Figure 1. It has the following stages (i) Speech signal 

acquisition (ii) Signal transformation using DWT, (iii) cepstral 

feature extraction (iv) feature selection using PSO and (v) 

classification using  ASVM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed Methodology for the framework  

A. Dataset Description 

In the proposed work, the USI Parkinson’s Disease Dataset 
is used. This is a publicly available dataset which consists of 
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sustained phonation recordings of vowels from PD patients and 
also health controls. The recordings consists of 26 biomedical 
voice measurements which includes jitter, shimmer and other 
multiple HNR measures along with cepstral coefficients. The 
data comprises of 195 speech samples out of which 147 belong 
to PD patients and 48 belong to healthy subjects [18]. The 
dataset was created by Little et.al. The recordings of the data set 
was generated under controlled conditions using more sensitive 
microphone and the sampling rate of 44.1 kHz which is followed 
by down sampling and signal pre processing to maintain 
uniformity. All the considered subjects were age-matched to 
minimize demographic variability and their diagnosis were 
clinically confirmed. 

B. Pre-Processing of Speech Signal 

 confirm  Scalar In most cases, speech signals are non 
stationary and are more prone to contamination with noises. 
Hence it is necessary to perform preprocessing before the feature 
extraction. In this case, several preprocessing steps are 
performed. Initially, pre-emphasis filtering is done where a first 
order high pass filer was applied to amplify the higher 
frequencies and to balance for the natural spectral tilt of the 
speech given by (1) 

         𝑦(𝑛) = 𝑥(𝑛) − 𝛼𝑥(𝑛 − 1), 0.9 ≤ 𝛼 ≤ 0.97        (1) 

C. Discrete Wavelet Transform for Signal Transformation 

In order to obtain a multi resolution representation of the 
speech signal DWT is employed. This obtains both transient and 
stationary components which makes it suitable for analyzing the 
subtle speech variations of PD patients. The transform of a 
discrete time signal s(t) is given by  (2) 

                   𝑊𝑠(𝑎, 𝑏) =  
1

√|𝑎|
∑ 𝑠(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
)𝑡                        (2) 

Where a and b denotes the scale and the translation 
parameters. ψ(t)  is the mother wavelet. For this research work, 
Daubechies-4 (db4) wavelet was chosen as it has already proven 
record in speech signal applications [26]. To balance the 
temporal and spectral resolution, a decomposition level of three 
was chosen. The DWT isolates the speech signal to 
approximations which are of low frequency and detail which are 
of high frequency coefficients. The relevant frequency band for 
PD detection are retained for further analysis.  

D. Cepstral Feature Extraction 

Once after the DWT transformation is done, the cepstral 
feature set is to be extracted which represents both vocal and 
tract configuration. These features are MFCC derived from the 
log Mel-spectrum which model the perceptual frequency scale 
of human hearing.  

                 𝑀𝑒𝑙 (𝑓) = 2595 log_10 (1 + 𝑓/700)            (3) 

Next is LPC and LPCC which models the speech signal as 
an autoregressive process and to provide cepstral representations 
respectively. PLP includes psychoacoustic models, Bark-scale 
frequency wrapping and equal loudness pre-emphasis. Finally 
RASRA-CEPS which applies a band-pass filter in the log 
spectral domain which suppresses the slow varying components 
and distortions in the channel. Totally 21 features are secured 

from each cepstral feature type which results in a very high 
dimensional feature vector.  

E. Feature Selection using PSO 

 As the data set is of large dimensions from the extracted 
feature, the process of feature selection was more essential to 
remove the irrelevant traits or redundant attributes to enhance 
the classification accuracy. The PSO algorithm was selected for 
this process due to its competency in finding the optimal 
solutions through probabilistic exploration and exploitation of 
search space. In the PSO, each of the features corresponds to a 
node in a constructed graph. Swarm traverse the graph to 
construct subsets of features with the probability of selecting 
feature fi  which is given in (4).  

                             𝑃𝑖𝑗 =  
𝜏𝑗

𝛼.𝜂𝑗
𝛽

∑ 𝑆𝑖𝜏𝑘
𝛼

𝑘𝜖𝐹 𝑛𝑘
𝛽

.
                                            (4) 

After each iteration, swarm levels are updated as: 

                       𝜏𝑗(𝑡 + 1) = (1 − 𝜌𝜏𝑗(𝑡) + ∑ Δ𝜏𝑖𝑗
𝑚
𝑖=1 )            (5) 

F. ASVM for Classification 

Once after feature optimization, the reduced feature vector 
obtained from PSO is classified using ASVM which is an 
enhancement of conventional Support Vector Machine (SVM). 
The ASVM optimizes the kernel parametres very specifically 
the penalty parameter CC and the kernel width parameter γ for 
the Radial Basis Function (RBF) which is based on the feedback 
from validation performance.  

 Given a set of training samples, {(𝑥𝑖 , 𝑦𝑖)}𝑖 = 1, 𝑛 , SVM 
solves  

                        min
𝑤,𝑏,𝜀

1

2
||𝑤2|| + 𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1                             (6) 

Subject to 

                  𝑦𝑖[𝑤. 𝜙(𝑥𝑖) + 𝑏] ≥ 1 − 𝜀𝑖 , 𝜀𝑖 ≥ 0                  (7) 

V. MATHEMATICAL MODELLING 

The proposed framework of PD detection and prediction is 
modelled in five stages: (i) Signal Transformation (ii) Cepstral 
Feature Extraction (iii) Feature Selection (iv) Classification  

A. Signal Transformation using DWT 

The speech signal which is of discrete-time in nature is 
represented as  

                               𝑠[𝑛], 𝑛 = 0,1,2 … … 𝑁 − 1                        (8) 

 

In the proposed method, the DWT, deciphers s[n] in to several 
approximation sets and detail the coefficients at every stage. The 
wavelet coefficient 𝑊𝑠(𝑎, 𝑏) at scale a and translation b is given 
in (9) 

                    𝑊𝑠(𝑎, 𝑏) =  
1

√|𝑎|
∑ 𝑠[𝑛]𝜓∗ (

𝑛−𝑏

𝑎
)𝑁−1

𝑛=0                    (9) 

Where,  𝜓(𝑡) is the parent wavelet and 𝜓∗(𝑡) is the complex 
conjugate.  
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For a discrete wavelet decomposition, filter bank representation 
is used as in (10) 

   𝐴𝑗[𝑛] =  ∑ 𝐴𝑗−1[𝑘]. 𝑔[2𝑛 − 𝑘], 𝐷𝑗[𝑛] = ∑ 𝐴𝑗−1[𝑘]. ℎ[2𝑛 − 𝑘]𝑘  𝑗              (10) 

Where 𝐴𝑗[𝑛] are the approximation coefficients at level j. and 

𝐷𝑗[𝑛] are the detail coefficients, and g[n] and h[n] are the low 

pass filter and high pass filter respectively. To choose the 
wavelet function 𝜓(𝑡) is critical. Hence in this research work, 
Daubechies-4 (db4) wavelet was employed for the perfectionitis 
in speech signal as it has compact support and frequency 
localization properties.  

B. Cepstral Feature Extraction 

  Once after the DWT transformation is complete, the next 
step is to extract the cepstral features which are used to represent 
the vocal tract and excitation characteristics.  

Mel Frequency Cepstral Coefficient (MFCC) 

The Mel scale transformation is defined as in (11) 

                         𝑀𝑒𝑙(𝑓) = 2595. log10 (1 +
𝑓

700
)                   (11) 

The process of computation of MFCC involves the following 
process: initially framing and windowing of speech signal which 
is followed by applying Discrete Fourier Transform (DFT) 
which is given in (12)   

                           𝑋[𝑘] =  ∑ 𝑠[𝑛]. 𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0                        (12) 

Nextly, the spectrum is passed through a bank of M triangular 
filters spaced on Mel scale. Finally taking the logarithm of filter 
bank energies as in (13) 

                           𝐸𝑚 =  log ∑ |𝑋[𝑘]|2𝐻𝑚[𝑘]𝑘                               (13) 

At last, the Discrete Cosine Transform (DCT) is applied to 
decorrelate the coefficients.  

 𝐶𝑝 =  ∑ 𝐸𝑚. 𝑐𝑜𝑠𝑀
𝑚=1 [

𝜋𝑝

𝑀
(𝑚 − 0.5] , 𝑝 = 1,2, … 𝑃               (14) 

Linear Predictive Coding (LPC) and Linear Predictive Cepstral 
Coefficients (LPCC)  

 LPC models the speech signal as an autoregressive process: 

 

                   𝑠[𝑛] =  − ∑ 𝑎𝑘𝑠[𝑛 − 𝑘] + 𝐺𝑒[𝑛]
𝑝
𝑘=1                   (15) 

where ak are LPC coefficients, G is the gain, and e[n] is the 
excitation signal. 

LPCC coefficients are derived recursively from LPC 
coefficients 

             𝑐𝑚 = 𝑎𝑚 + ∑
𝑘

𝑚
𝑐𝑘𝑎𝑚−𝑘, 𝑚 ≥ 2𝑚−1

𝑘=1                             (16) 

Perceptual Linear Prediction (LPC) 

  The PLP would change the short-term spectrum to approximate 
human auditory perception. This includes Bark-scale frequency 
wraping, equal-loudness pre-emphasis and intensity-loudness 
compression before applying LPC analysis to obtain cepstral 
coefficients.  

RASTA-CEPS 

 The RASTA filter applies a band-pass characteristic in the log-
spectral domain to suppress slow channel variations and very 
rapid changes, thereby improving robustness to recording 
conditions. 

C. Feature Selection using PSO 

Let the extracted feature set be as in (17) 

                               𝐹 = {𝑓1, 𝑓2, 𝑓3, … . . 𝑓𝑁}                                   (17) 

In PSO, every feature corresponds to a note in the solution 
graph. Particle i will construct a subset 𝑆 ⊂ 𝐹  based on a 
probabilistic rule as in (18) 

                             𝑃𝑖𝑗 =
𝜏𝑗

𝛼.𝜂𝑗
𝛽

∑ 𝑘∈𝐹\𝑆𝑖𝜏𝑗
𝛼.𝜂

𝑗
𝛽                                                (18) 

Where,  

• τj is the positional value associated with feature fj 

• ηj is the heuristic desirability of fj, defined based on 
mutual information or relevance score 

• α and β control the influence of pheromone and 
heuristic, respectively. 

After constructing all solutions, position values are updated as 
in (19) 

                  𝜏𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑗(𝑡) + ∑ ∆𝜏𝑖𝑗
𝑚
𝑖=1                 (19) 

where ρ is the evaporation rate and:  

                                      Δ𝜏𝑖𝑗 =
𝐴𝑐𝑐(𝑆𝑖)

𝑀𝑎𝑥(𝐴𝑐𝑐)
                                         (20) 

D. ASVM for Classification 

 Given a set of n labeled training samples {(𝑥𝑖 , 𝑦𝑖)} where 

𝑦𝑖 ∈ {−1, +1} and 𝑥𝑖 ∈ ℝ𝑑, the SVM solves (21) 

                             min
𝑤,𝑏,𝜀

1

2
||𝑤||2 + 𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1                                 (21) 

subject to: 

                     𝑦𝑖(𝑤. ∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖 , 𝜀 ≥ 0                       (22) 

 

The kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) =  𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)  will map the 

inputs into a higher dimensional space. The proposed ASVM 
adjusts the kernel parameters dynamically using a grid search or 
evolutionary tuning based on the validation accuracy until 
convergency.  

E. Performance Matrices  

The evaluation matrices like accuracy, precision, Recall 
(sensitivity) and F1-Score are defined (23), (24), (25), (26) 
respectively. 

Accuracy,  

                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                        (23) 

Precision,  
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                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (24) 

Recall (sensitivity),  

                                      𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (25)   

F1-Score,  

                                 𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
                         (26) 

The Receiver Operating Characteristics – Area Under Curve 
(ROC-AUC) is computed by integrating the True Positive Rate 
(TPR) versus False Positive Rate (FPR) curve as in (27) 

                            𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0
                    (27) 

VI. RESULTS AND INTREPRETATION 

This chapter provides the experimental results obtained 
through the proposed methodology. The UCI Parkinson’s 
dataset was used to evaluate the proposed framework where 
preprocessing, DWT, Cepstral Feature extraction, Ant Colony 
Optimization based feature selection with optimization and 
finally Adaptive Support Vector Machine classification was 
applied in sequence. The results were classified in terms of 
feature distribution analysis, feature selection effectiveness, 
classification performance, comparative analysis with other 
classifiers and system usability. 

A. Feature Distribution Analysis 

Initially, the results focused on the difference between 
healthy control’s speech signals and PD patients’ speech signals. 
The cepstral features like MFCC, LPC, LPCC, PLP and 
RASRA-CEPS were analyzed for separability. Fig. 2 portrays 
the distribution of the first two MFCC coefficients between 
healthy controls. It is observed that the PD patients possess 
higher variability in MFCC values which is directly related to 
the impaired articulatory control. Table 2 summarizes the 
statistical characteristics like mean and standard deviation of the 
key features from the dataset. 

TABLE I.  SUMMARY OF KEY FEATURES FOR PD VS HEALTHY CONTROLS 

Feature PD 

Patients 

(n=147) 

Healthy 

Controls 

(n=48) 

p-

value 

(t-

test) 

Interpretation 

MFCC-1 12.43 ± 

2.19 

9.87 ± 

1.92 

< 

0.01 

PD voices 

show elevated 

cepstral energy 

LPC-3 0.76 ± 

0.11 

0.63 ± 

0.08 

< 

0.05 

PD alters vocal 

tract dynamics 

LPCC-5 4.92 ± 

0.73 

3.41 ± 

0.66 

< 

0.01 

Higher LPCC 

in PD reflects 

irregular 

harmonics 

PLP-4 1.21 ± 

0.17 

0.96 ± 

0.13 

< 

0.01 

Psychoacoustic 

differences 

detected 

RASTA-

CEPS-2 

0.83 ± 

0.15 

0.67 ± 

0.10 

< 

0.05 

Channel-robust 

differences 

present 

 

B. Effectiveness of feature selection using PSO 

 To compare the performance of PSO in optimizing the 
relevant features, the iterations were done with and without the 
process of feature selection. Table 3 informs the dimensionality 
reduction achieved by using PSO along with the classification 
accuracy.  

TABLE II.  DIAMENSIONALITY REDUCTION AND CLASSIFICATION 

ACCURACY BEFORE AND AFTER PSO 

Feature 

Set 

No. of 

Features 

Accuracy 

(%) 

F1 

Score 

(%) 

Interpretation 

Full 

feature set 

105 88.23 86.80 Redundant 

features reduce 

accuracy 

After PCA 

(baseline) 

40 90.48 89.12 Linear 

reduction helps 

but less 

effective 

After PSO 

(proposed) 

28 94.65 94.185 Optimal 

features boost 

accuracy 

 

 

Fig. 2. Scatter plot of MFCC-1 Vs MFCC-2 for PD and Healthy 

 

Fig. 3. PSO Convergence for best accuracy over the iterations 
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C. Comparative Analysis over other Classifiers 

The proposed ASVM framework was compared with 

conventional SVM, Random Forest, k-NN, and CNN-based 

models using the same dataset. Table 5 shows the comparative 

performance. 
 

 

Fig. 4. Confusion Matrix of ASVM 

 

Fig. 5. ROC Curve for ASVM 

D. Usability through GUI Framework 

The final stage of the proposed work was the development 

of a GUI-based framework that allows clinicians and 

researchers to interact with the system. The GUI accepts input 

speech, extracts features, applies PSO-based selection, and 

classifies the input using ASVM. Table 6 summarizes usability 

aspects. 

TABLE III.  COMPARISON OF CLASSIFIERS ON PARKINSON’S DATASET 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Conventional 

SVM 

91.2 89.5 90.8 90.1 

Random Forest 90.6 88.9 89.3 89.1 

k-NN 88.7 87.1 86.9 87.0 

CNN (shallow) 92.3 91.4 91.0 91.2 

Proposed ASVM 94.5 93.3 95.1 94.1 

 

 

Fig. 6. Callibration Curve for ASVM 

 

Fig. 7. 15 Features by Mutual Information 

TABLE IV.  USABILITY EVALUATION OF GUI 

Aspect Observation 

Response time ~1.3 sec/sample 

Hardware resource 

usage 

Low (Raspberry Pi 4 compatible) 

User interaction Record/Upload → Analyze → Result 

Result display Class (PD/Healthy) with confidence 

score 

Suitability Point-of-care and telemedicine 
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Fig. 8. Precision-Recal Curve for ASVM 

 

Fig. 9. Learnning Curve for ASVM 

The observed results proves that the proposed framework achieves good 

performance in PD detection while compared to several baseline models. The 

DWT provides more accurate time-frequency representation of speech signal, 

and the cepstral features acquired both phonatory and articulatory aspects of 

vocal impairment. The PSO integration considerably improved the 

classification accuracy by selecting the optimal features thereby reducing the 

dimensionality and minimizing the effects of noises. Finally, ASVM 

outperforms traditional SVM and other classifiers due to its adaptive kernel 

tuning, achieving an accuracy of 94.5%, recall of 95.1%, and an F1 score of 

94.1%. These findings confirm that speech can serve as a robust biomarker for 

early detection of PD. The GUI implementation further enhances the practical 

applicability of the framework, enabling its deployment in telemedicine and 

clinical screening settings. 

VII. CONCLUSION  

 The proposed work combines advanced speech signal 
processing, biologically inspired optimization and adaptive 
machine learning. Other conventional diagnostics which fail to 
detect PD until more of dopaminergic neurons have already been 
degenerated, the proposed method uses a non-invasive 
biomarker of speech for earlier identification of the disease. The 
framework uses DWT for decomposition of speech signal. PSO 

was used for feature optimization and finally ASVM which 
dynamically tunes its kernel parameters to achieve optimal 
separation between PD and healthy subjects. Experiments were 
conducted using UCI PD dataset demonstrated that the proposed 
method outperformed the baseline models like SVM, Random 
Forest, k-NN and shallow CNN classifiers. The proposed 
method achieved an accuracy of 94.5%, precision of 93.3%, 
recall of 95.1%, F1 score of 94.1% and ROC-AUC of 0.962. 
Overall, this research provides a novel, accurate, and 
computationally efficient diagnostic framework that addresses 
the critical challenge of early PD detection. The system’s ability 
to process speech—a simple and universally available 
biomarker—positions it as a viable candidate for large-scale 
screening programs, particularly in resource-constrained 
settings where access to imaging facilities is limited. 

 Future work will focus on expanding the dataset to include 
multilingual and spontaneous speech samples, integrating deep 
learning architectures with metaheuristic optimization for 
further performance gains, and developing lightweight 
embedded implementations for wearable health monitoring 
devices. Additionally, longitudinal studies will be pursued to 
evaluate the framework’s robustness in tracking disease 
progression over time. 

 In conclusion, the proposed framework represents a 
significant advancement in the field of non-invasive 
neurological diagnostics, demonstrating that nature-inspired 
optimization coupled with advanced speech signal processing 
can provide reliable early detection of Parkinson’s Disease, 
thereby contributing to improved patient outcomes and broader 
accessibility in clinical practice. 
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