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Abstract - Parkinson’s Disease (PD) which is considered as a
progressive neurodegenerative disorder which affects the motor
control and speech of the affected person. Speech signal analysis is
considered as one of the promising non-invasive biomarkers for
early PD diagnosis. However, the non-availability of accent
specific datasets, for Indian-Accented Speech raises as an
important limitation in developing rigorous diagnostic models for
the prediction of PD. In this research work, we propose a synthetic
dataset for speech signal for PD with Indian accent augmentation.
This dataset is created without the necessity of real patient
recordings. Healthy Indian-accented speech signals were
generated using text-to-speech (TTS) systems and then they are
transformed with pathology aware acoustic modifications to
emulate characteristics pertaining to PD. The PD specific
characteristics includes jitter, shimmer, reduced harmonics-to-
noise ratio (HNR), monopitch, vowel-space reduction and
festination. The dataset includes several tasks such as sustained
vowels, diadochokinetic sequences, numbers and read passages
which are annotated with several levels of severity like mild,
moderate, severe and transformation parameters. Experiments
and validation suggested that the synthetic samples matched
closely with the PD feature distribution like increased jitter and
shimmer and also lowered HNR. This confirms the realism of the
acoustic degradation. A basic SVM which is trained on MFCC and
wavelet features produced an average classification accuracy of
85.6% which demonstrates that the data set is discriminative
between healthy and synthetic PD speech signals. The produced
results is a resource for augmenting PD speech corpora and thus
enabling a robust Al-driven diagnostic framework for Indian PD
diagnosis in clinical application.
Disease, PSO, Disease

Keywords Parkinson’s Prediction,

Prediction, Adaptive SVM

I. INTRODUCTION

PD is found to be the second most prevalent
neurodegenerative disorder that affects nearly 10 million people
worldwide [1]. The major characteristic of PD is progressive
degeneration of dopaminergic neurons in the substantia nigra.
The progression in PD can be observed through both motor
symptoms and non- motor symptoms. The motor symptoms
include tremor, rigidity and bradykinesia. The non-motor
symptoms include cognitive decline and speech impairment [2].
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The speech impairments associated with PD is collectively
termed as hypokinetic dysarthria which is observed to 90% of
the patients during the progression of the disease [3]. Alteration
in speech like reduced pitch variability, imprecise articulation,
breathy voice, increased jitter and shimmer and abnormal
prosody have been observed as the important non-inversive
biomarkers for early diagnosis [4],[5].

Recently researchers are tuning into speech signal analysis
because of its cost-effectiveness and non-invasiveness for PD
detection at early stages [6]. Machine learning (ML) and deep
learning models are trained on features derived from speech
signal like Mel-Frequency Cepstral Coefficient (MFCC), Linear
Predictive Coding (LPC), jitter, shimmer and Harmonics-to
Noise Ratio (HNR) have produced promising results in
classifying PD patients from healthy controls [7],[8]. On the
other hand, the major challenge in this field is the lack of large
scale, diverse and accent specific datasets.

The datasets which are available in public of PD speech
signals have limited size and limited linguistic diversity. The
most frequently used PC-GITA dataset has the Colombian
Spanish Speech [9] while the other corpora represent Czech,
Turkish and American English speech [10]. Even though these
datasets are valuable, they fail to capture accentual variations
that influences the acoustic correlates of the speech signal’s
features [11]. In particular, for Indian populations, the scarcity
of dataset is a critical gap in PD diagnosis. Notably, India is the
fastest growing elderly population and also has raising PD
patients [12]. Accent differences in intonation, prosody and
articulation that leads to model bias with diagnostic frameworks
that are trained on Western datasets and are applied to Indian
speakers [13].

To address this problem, synthetic data set generation has
emerged as a promising alternative. Recent development in text-
to-speech (TTS) synthesis, voice conversion and other
generative models like GANs, VAEs, diffusion models have
enabled the creation of more realistic speech signals that can
augment limited clinical datasets [14]. Moreover, speech
transformations informed by clinical literature that allows the
emulation of PD - specific need for extensive patient
recruitment [15]
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In this proposed research work, a synthetic speech signal
dataset for PD with Indian accent augmentation. Priorly
developed datasets are entirely synthetic built by synthesizing
healthy Indian accented speech and applying pathology aware
acoustic modifications that replicates PD related characteristics.

This research works concentrates on three things. Firstly a
synthetic dataset for PD speech analysis which is contemplated
to Indian accent addressing the lack of accent specific corpora.
Secondly, design of a PD speech transformation pipeline which
incorporates clinically validated acoustic markers like jitter,
shimmer, HNR reduction, monopitch, vowel space reduction
and festination. Finally this developed dataset is validated
through both objective feature level analysis and baseline
classification experiment thus demonstrating its usage of PD vs.
Healthy speech discrimination.

This paper is structured as follows. Section 2 reviews related
work on PD speech datasets and synthetic speech generation.
Section 3 describes the methodology for dataset creation and
section 4 outlines the validation and experimental setup. Section
5 provides the results and interpretation.

II. PREVIOUS WORKS

The anthology in this area is classified into PD speech dataset,
Accent variation in speech technology, Synthetic speech
generation and data augmentation.

A. Parkinson’s Disease Speech Dataset

Speech signal has recognized as a possible biomarker for PD
for quiet a long time. Also, several speech corpora have been
developed to elevate the research in this area. The PC-GITA
corpus is a widely accepted and commonly used PD dataset
which consists of Colombian Spanish speech recordings from
PD patients and healthy controls. This dataset covers sustained
vowels, diadochokinetic tasks and other reading passages [9].
Very similarly, the Czech PD corpus which includes recordings
of Czech speakers with early — stage PD patients and provides
quantitative acoustic measurements of speech degradation [10].
Similar other dataset includes Turkish [16], German [17] and
American English speech corpora [18].

Moreover, UCI PD dataset provides a sustained vowels
phonation with pre-computed acoustic features like jitter,
shimmer and harmonic — to — noise ratio [5]. Though this data
set is considered valuable and more commonly used, it lacks raw
audio signals thus limiting the applicability for deep learning or
generative modeling. Collectively, these datasets have initiated
progress in PD speech analysis but they remain smaller in size,
they are linguistically narrow and accent specific to Western or
European languages and hence their generalizability is limited.

B. Accent Variation in speech technology

The accent of the speech signal influence the processing of
speech signal. Several studies have shown that the accent
variation severely influences the acoustic properties of speech
signal. This often degrades the performance of automatic speech
recognition (ASR) and speech based machine learning systems
[11],[13]. Considering PD, the subtle acoustic cues are very
much required. Diagnostic errors are amplified in the deployed

environment due to accent mismatches. As of Indian accent
dataset, there are no publicly available datasets. This creates the
gap that abstains the development of localized diagnostic
frameworks.

C. Synthetic Speech Generation and Data Augmentation

In recent years, the advances in speech synthesis and
generative modelling have opened new possible areas for data
augmentation. TTS systems like Tacotron, WaveNet and
Transformer-based architectures can produce natural sounding
speech with high fidelity [14]. In addition, voice conversion and
GANSs are employed to produce pathological voice conditions
for research purposes [19]. In the field of medical technologies,
synthetic datasets are increasingly used to bridge the gap of data
scarcity. Augmentation techniques have been applied in
dysarthric speech [20] and in simulating articulatory
impairments [8]. Several signal-level transformations like pitch
flattening, noise injection or formant modification, researchers
have reproduced acoustic degradations observed in clinical
populations. However, there are no dataset created in line with
Indian accent.

D. The Research Gap

There are several studies that proved the utility of PD speech
datasets in Machine learning [7],[9] and synthetic augmentation
in other speech related disorders [20]. The unison of accent
specific speech synthesis and PD pathology emulation still
remains unexplored. The absence of Indian-accent corpora is a
major barrier as accent-specific prosody and articulation
patterns are very important for diagnostic robustness. This is the
motivation behind the development of synthetic speech signal
dataset for PD with Indian accent augmentation. This combines
neural TTS based Indian accent synthesis with pathology aware
acoustic transformation like jitter, shimmer, HNR reduction,
monopitch, vowel-space reduction and festination.

ITII. PROPOSED METHODOLOGY

The proposed methodology aims to generate a synthetic
speech dataset that mimics tha acoustic manifestation of PD
specially crafted for Indian population. Initially, the Indian
accent speech signal is synthesized through text-to-speech
(TTS) system. Then, the preprocessing is done to ensure the
signal consistency. Nextly, the acoustic features are extracted
that characterizes the generated speech signals. Once after this,
a series of clinically motivated transformations are applied to
the generated speech signals that would emulate the symptoms
of hypokinetic dysarthria which is directly associated with PD.
These transformations are categorized into various severity
levels of the PD. This allows to generate mild, moderate and
severe PD variants. The generated results are compiled into a
structured dataset with the associated metadata.

A. Indian Accent Speech Synthesis

Accent of a speech signal is an important parameter in
speech signal analysis. Most models which are trained on
Western-accented corpora usually fails to generalize the Indian
speakers because of the variations in prosody, articulation and
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vowel format structures. In this work, to ensure the accentual
fidelity, an Indian accented speech signals using multiple TTS
engines was performed. Google TTS (gTTS) was configured
with the .co.in domain to capture Indian accent patterns,
Mircosoft Edge TTS voices like en-IN-Neerjaneura were also
incorporated to provide more natural prosody and Coqui TTS
was employed as an alternative for offline reproducibility.
These speech signals concentrated on the tasks which are
commonly used in clinical assessment of PD which is the
sustained vowel phonation (/a/), diadochokinetic sequences
(“pa-ta-ka”) also counting from 1-20, recitation of days of the
week, short conversational phrases and reading passages. These
tasks were selected because they capture both phonatory and
articulatory impairments with the sustained vowels thus
highlighting perturbations like jitter, shimmer while the
connected speech tasks reflects the prosodic and articulatory
degradation. Also, to simulate the inter-speaker variability, the
synthetic speakers were generated by varying the pitch and rate
of speech of the TTS engine in accordance with the Gaussian

distribution  perturbations in semitones and tempo.
Mathematically the synthetic speakers’s utterance is
represented as in eqn. 1.

Xspeaker (t) = PitchShiftys(TimeStretchy (Xpgse (t))) )

B. Preprocessing

All the synthesized speech signals were to be preprocessed
inorder to ensure uniformity. The generated audio signals were
resampled to 16KHz, 16 bit PCM and are converted to mono
channel to maintain the uniform consistency across the entire
dataset. The amplitude normalization technique was applied to
scale the signals within the range of [-1,1] [1,1]. This may be
expressed as in eqn. 2.

xl[n] — x[n]

@

max (|x[n]])

Moreover, the silence removal operation was also performed
using short time energy analysis where the energy of a frame is
given by eqn. 3.

Eln] = ~¥i_, x?[k] (3)
Frames with energy below a predefined threshold 6 were

discarded. This ensured that only active speech segments
were retained for feature analysis and transformation.

C. Feature Extraction

Summary of previous works on PD detection

Study Dataset | Feature | Feature Classifie | Accurac
S Selectio r y (%)
n
Moro- Multiple | Cepstral, | N/A SVM 88.4
Velazque | (English | prosodic
z et al |,
[19] Spanish)
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Orozco- Spanish MFCC, N/A k-NN 90.1
Arroyave | vowels LPCC

et al. [20] & words

Cai et al. | UCI PD | MFCC, PSO SVM 91.2
[27] dataset LPC

Gupta et | UCI PD | MFCC CSO SVM 92.5
al. [30] dataset

Tabares- UCI PD | MFCC, PSO ASVM 94.3
Soto et al. | dataset LPCC,

[31] PLP

IV. PROPOSED METHODOLOGY

In this research work, a dedicated framework is proposed for
early detection and prediction of PD. This framework integrates
time-frequency signal transformation, cepstral feature
extraction, naturally inspired feature selection and an adaptive
classification. The overall architrecture of the framework is
given in Figure 1. It has the following stages (i) Speech signal
acquisition (ii) Signal transformation using DWT, (iii) cepstral
feature extraction (iv) feature selection using PSO and (v)
classification using ASVM

‘ Speech Signal ‘ ‘ Other Features ‘
T T c
| Input features (¥, . . ) | Q
g
=
| Preprocessing of Data | &
=
8
‘ Handle Missing Values H Mean Imputation ‘ =,
W
o
; o
J Normalize Features MinMaxScaler S
|0 o
@
-

‘ Encode Categorial Features to numerical Features ‘

Xy Xy Xz X Xs Xs Xy Xz Xp Xpp Xp Xz

Initialize Particle Population Q
Objective 1: Minimize the 'Ei'_
Update velocity and Position number of selected 3
Features N~
jai]
~+
‘ Selection based on Objective Functions ‘ 6
3
Objective 2: Maximize c
‘ Evaluate Fitness using Fitness Function ‘ Classification Efficiency w,
3J
oo
‘ Optimal Feature subset ‘ a
o]

‘ ASVM Classifier H Probabilistic Model

GUI Display

Fig. 1. Proposed Methodology for the framework

A. Dataset Description

In the proposed work, the USI Parkinson’s Disease Dataset
is used. This is a publicly available dataset which consists of
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sustained phonation recordings of vowels from PD patients and
also health controls. The recordings consists of 26 biomedical
voice measurements which includes jitter, shimmer and other
multiple HNR measures along with cepstral coefficients. The
data comprises of 195 speech samples out of which 147 belong
to PD patients and 48 belong to healthy subjects [18]. The
dataset was created by Little et.al. The recordings of the data set
was generated under controlled conditions using more sensitive
microphone and the sampling rate of 44.1 kHz which is followed
by down sampling and signal pre processing to maintain
uniformity. All the considered subjects were age-matched to
minimize demographic variability and their diagnosis were
clinically confirmed.

B. Pre-Processing of Speech Signal

confirm Scalar In most cases, speech signals are non
stationary and are more prone to contamination with noises.
Hence it is necessary to perform preprocessing before the feature
extraction. In this case, several preprocessing steps are
performed. Initially, pre-emphasis filtering is done where a first
order high pass filer was applied to amplify the higher
frequencies and to balance for the natural spectral tilt of the
speech given by (1)

y(n) =x(n) —ax(n—1),09 <a <097 (1

C. Discrete Wavelet Transform for Signal Transformation

In order to obtain a multi resolution representation of the
speech signal DWT is employed. This obtains both transient and
stationary components which makes it suitable for analyzing the
subtle speech variations of PD patients. The transform of a
discrete time signal s(t) is given by (2)

Wi(a,b) = T=Ses@w' (57) )

Where a and b denotes the scale and the translation
parameters. y/(2) is the mother wavelet. For this research work,
Daubechies-4 (db4) wavelet was chosen as it has already proven
record in speech signal applications [26]. To balance the
temporal and spectral resolution, a decomposition level of three
was chosen. The DWT isolates the speech signal to
approximations which are of low frequency and detail which are
of high frequency coefficients. The relevant frequency band for
PD detection are retained for further analysis.

D. Cepstral Feature Extraction

Once after the DWT transformation is done, the cepstral
feature set is to be extracted which represents both vocal and
tract configuration. These features are MFCC derived from the
log Mel-spectrum which model the perceptual frequency scale
of human hearing.

Mel (f) = 2595 log_10 (1 + £/700) 3)

Next is LPC and LPCC which models the speech signal as
an autoregressive process and to provide cepstral representations
respectively. PLP includes psychoacoustic models, Bark-scale
frequency wrapping and equal loudness pre-emphasis. Finally
RASRA-CEPS which applies a band-pass filter in the log
spectral domain which suppresses the slow varying components
and distortions in the channel. Totally 21 features are secured
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from each cepstral feature type which results in a very high
dimensional feature vector.

E. Feature Selection using PSO

As the data set is of large dimensions from the extracted
feature, the process of feature selection was more essential to
remove the irrelevant traits or redundant attributes to enhance
the classification accuracy. The PSO algorithm was selected for
this process due to its competency in finding the optimal
solutions through probabilistic exploration and exploitation of
search space. In the PSO, each of the features corresponds to a
node in a constructed graph. Swarm traverse the graph to
construct subsets of features with the probability of selecting
feature f; which is given in (4).

T‘?‘.ng
Pi _ ]

j=
ZkeFSiTﬁnf-

“)

After each iteration, swarm levels are updated as:
it +1) = (1 - pr;(t) + X124 Atyj) %)

F. ASVM for Classification

Once after feature optimization, the reduced feature vector
obtained from PSO is classified using ASVM which is an
enhancement of conventional Support Vector Machine (SVM).
The ASVM optimizes the kernel parametres very specifically
the penalty parameter CC and the kernel width parameter y for
the Radial Basis Function (RBF) which is based on the feedback
from validation performance.

Given a set of training samples, {(x;, v;)}i = 1,n, SVM
solves

in<||w? noe
min [lw?l| + C Xy & ©)

Subject to
yilw.¢(x) +b] 21—, =0 (7)

V. MATHEMATICAL MODELLING

The proposed framework of PD detection and prediction is
modelled in five stages: (i) Signal Transformation (ii) Cepstral
Feature Extraction (iii) Feature Selection (iv) Classification

A. Signal Transformation using DWT

The speech signal which is of discrete-time in nature is
represented as

s[n],n=0,1,2..... N-1 (8)

In the proposed method, the DWT, deciphers s/n/ in to several
approximation sets and detail the coefficients at every stage. The
wavelet coefficient W (a, b) at scale a and translation b is given
in (9)

Wi(a,) = 7= 5h=d sty (%=2) ©

Where, (t) is the parent wavelet and *(t) is the complex
conjugate.
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For a discrete wavelet decomposition, filter bank representation
is used as in (10)

Aj[n] = ZjAj—l[k]-g[zn — k], Dj[n] =k Aj—l[k]- h[2n — k]

(10)

Where A;[n] are the approximation coefficients at level j. and
D;[n] are the detail coefficients, and g/n/ and h[n] are the low
pass filter and high pass filter respectively. To choose the
wavelet function 1 (t) is critical. Hence in this research work,
Daubechies-4 (db4) wavelet was employed for the perfectionitis
in speech signal as it has compact support and frequency
localization properties.

B. Cepstral Feature Extraction

Once after the DWT transformation is complete, the next
step is to extract the cepstral features which are used to represent
the vocal tract and excitation characteristics.

Mel Frequency Cepstral Coefficient (MFCC)

The Mel scale transformation is defined as in (11)

(11)

The process of computation of MFCC involves the following
process: initially framing and windowing of speech signal which
is followed by applying Discrete Fourier Transform (DFT)
which is given in (12)

X[k] =

Mel(f) = 2595.logy, (1 + =)

700

N-15[n]. e—Jj2mkn/N

(12)

Nextly, the spectrum is passed through a bank of M triangular
filters spaced on Mel scale. Finally taking the logarithm of filter
bank energies as in (13)

Ep = log X |X[K]|?Hp [K] (13)

At last, the Discrete Cosine Transform (DCT) is applied to
decorrelate the coefficients.

(14)

Linear Predictive Coding (LPC) and Linear Predictive Cepstral
Coefficients (LPCC)

LPC models the speech signal as an autoregressive process:

Cp = Ym=1Em.cos [% (m— O.5],p =12,..P

sln]l = — Xh_, axsln — k] + Ge[n] (15)

where a, are LPC coefficients, G is the gain, and e/n] is the
excitation signal.

LPCC coefficients are derived recursively from LPC
coefficients
Cm = G + P = Clyger M 2 2 (16)

Perceptual Linear Prediction (LPC)

The PLP would change the short-term spectrum to approximate
human auditory perception. This includes Bark-scale frequency
wraping, equal-loudness pre-emphasis and intensity-loudness
compression before applying LPC analysis to obtain cepstral
coefficients.
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RASTA-CEPS

The RASTA filter applies a band-pass characteristic in the log-
spectral domain to suppress slow channel variations and very
rapid changes, thereby improving robustness to recording
conditions.

C. Feature Selection using PSO

Let the extracted feature set be as in (17)

F={fifofz - fn} (17)

In PSO, every feature corresponds to a note in the solution
graph. Particle i will construct a subset S € F based on a

probabilistic rule as in (18)
‘r‘?‘.n[.g
Pj=—2"1— (18)
> keF\SiT;?‘.nj
Where,
e 7, is the positional value associated with feature f;

e y; is the heuristic desirability of f;, defined based on
mutual information or relevance score

e o and B control the influence of pheromone and
heuristic, respectively.

After constructing all solutions, position values are updated as
in (19)

gt +1) = (1= p).75(0) + B, Aty (19)
where p is the evaporation rate and:
_ Acc(Si)
ATij = —Max(ACC) (20)

D. ASVM for Classification

Given a set of n labeled training samples {(x;, y;)} where
y; € {—1,+1} and x; € R%, the SVM solves (21)

o2y

.1
min-||w||?+CYL, &
w,b,¢e 2
subject to:

yi(w.(b(xi) + b) >1- £, €2 0 (22)

The kernel function K (xi,xj) = ¢p(x)"P(x;) will map the
inputs into a higher dimensional space. The proposed ASVM
adjusts the kernel parameters dynamically using a grid search or
evolutionary tuning based on the validation accuracy until
convergency.

E. Performance Matrices

The evaluation matrices like accuracy, precision, Recall
(sensitivity) and F1-Score are defined (23), (24), (25), (26)
respectively.

Accuracy,

TP+TN

Accur = —
CCUTACY = TP TN+FP+FN

(23)

Precision,
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TP

Precision = (24)
TP+FP
Recall (sensitivity),
Recall = —=~ (25)
TP+FN
F1-Score,
F1=2. Prec.is.ion.Recall (26)
Precision+Recall

The Receiver Operating Characteristics — Area Under Curve
(ROC-AUC) is computed by integrating the True Positive Rate
(TPR) versus False Positive Rate (FPR) curve as in (27)

AUC = [ TPR(FPR)d(FPR) 27)

VI. RESULTS AND INTREPRETATION

This chapter provides the experimental results obtained
through the proposed methodology. The UCI Parkinson’s
dataset was used to evaluate the proposed framework where
preprocessing, DWT, Cepstral Feature extraction, Ant Colony
Optimization based feature selection with optimization and
finally Adaptive Support Vector Machine classification was
applied in sequence. The results were classified in terms of
feature distribution analysis, feature selection effectiveness,
classification performance, comparative analysis with other
classifiers and system usability.

A. Feature Distribution Analysis

Initially, the results focused on the difference between
healthy control’s speech signals and PD patients’ speech signals.
The cepstral features like MFCC, LPC, LPCC, PLP and
RASRA-CEPS were analyzed for separability. Fig. 2 portrays
the distribution of the first two MFCC coefficients between
healthy controls. It is observed that the PD patients possess
higher variability in MFCC values which is directly related to
the impaired articulatory control. Table 2 summarizes the
statistical characteristics like mean and standard deviation of the
key features from the dataset.

TABLE L. SUMMARY OF KEY FEATURES FOR PD VS HEALTHY CONTROLS
Feature | PD Healthy | p- Interpretation
Patients | Controls | value
m=147) | n=48) | (-
test)
MFCC-1 | 1243 £ | 987 + | < PD voices
2.19 1.92 0.01 show elevated
cepstral energy
LPC-3 076 + | 0.63 =+ | < PD alters vocal
0.11 0.08 0.05 tract dynamics
LPCC-5 | 492 + | 341 +|< Higher LPCC
0.73 0.66 0.01 in PD reflects
irregular
harmonics
PLP-4 121 £]096 =+ | < Psychoacoustic
0.17 0.13 0.01 differences
detected
RASTA- | 083 + | 0.67 + | < Channel-robust
CEPS-2 0.15 0.10 0.05 differences
present
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B. Effectiveness of feature selection using PSO

To compare the performance of PSO in optimizing the
relevant features, the iterations were done with and without the
process of feature selection. Table 3 informs the dimensionality
reduction achieved by using PSO along with the classification
accuracy.

TABLE II. DIAMENSIONALITY REDUCTION AND CLASSIFICATION
ACCURACY BEFORE AND AFTER PSO
Feature No. of | Accuracy | F1 Interpretation
Set Features | (%) Score
(%)
Full 105 88.23 86.80 Redundant
feature set features reduce
accuracy
After PCA | 40 90.48 89.12 Linear
(baseline) reduction helps
but less
effective
After PSO | 28 94.65 94.185 | Optimal
(proposed) features boost
accuracy
FPCA projection of features (test set)
4 . L ] ® Healthy
° o PD
5
°
2 °
*
.
~ 1 7
<
&
0
-1 ®
[ ]
-2
” 5 ; ; ;
PCA-1

Fig. 2. Scatter plot of MFCC-1 Vs MFCC-2 for PD and Healthy
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Fig. 3. PSO Convergence for best accuracy over the iterations
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C. Comparative Analysis over other Classifiers

The proposed ASVM framework was compared with
conventional SVM, Random Forest, k-NN, and CNN-based
models using the same dataset. Table 5 shows the comparative

performance.

Confusion Matrix (ASVM)

-0.50

-0.25

0.00

0.50

True

0.75

1.00

1.25

1.50 T T T
-0.50 -0.25 0.00 0.25 050 0.75 1.00 1.25 1.50

Predicted

Fig. 4. Confusion Matrix of ASVM

ROC Curve (ASVM)
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2 -~
[ P
1’/
0.24 e
L
t/’
-
0.0

T T
0.4 0.6
False Positive Rate

0.8 1.0

Fig. 5. ROC Curve for ASVM
D. Usability through GUI Framework

of

The final stage of the proposed work was the development
a GUI-based framework that allows clinicians and

researchers to interact with the system. The GUI accepts input
speech, extracts features, applies PSO-based selection, and
classifies the input using ASVM. Table 6 summarizes usability
aspects.
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TABLE III. COMPARISON OF CLASSIFIERS ON PARKINSON’S DATASET
Classifier Accuracy Precision Recall F1
(%) (%) (%) Score
(%)
Conventional 91.2 89.5 90.8 90.1
SVM
Random Forest 90.6 88.9 89.3 89.1
k-NN 88.7 87.1 86.9 87.0
CNN (shallow) 92.3 91.4 91.0 91.2
Proposed ASVM | 94.5 933 95.1 94.1
Calibration Curve (ASVM)
1.0 4
0.8 1
g 06
g
3
g 0.4
[
0.2
0.0 4
0.0 02 04 0.6 08 10
Predicted probability
Fig. 6. Callibration Curve for ASVM
Top-15 Features by Mutual Information
PPE
spreadl
MDVP:Flo(Hz)
MDVP:Jitter(Abs)
MDVP:Fo(Hz)
MDVP:APQ
NHR
spread2
Shimmer:APQ3
MDVP:PPQ
MDVP:RAP
Shimmer:DDA
MDVP:Shimmer(dB)
Shimmer:APQ5
Jitter:DDP
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Mutual Information
Fig. 7. 15 Features by Mutual Information
TABLE IV. USABILITY EVALUATION OF GUI

Aspect

Observation

Response time

~1.3 sec/sample

Hardware
usage

resource

Low (Raspberry Pi 4 compatible)

User interaction

Record/Upload — Analyze — Result

Result display

Class (PD/Healthy) with confidence
score

Suitability

Point-of-care and telemedicine
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Precision-Recall Curve (ASVM)
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Fig. 8. Precision-Recal Curve for ASVM

Learning Curve (ASVM)
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o
L
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cv
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Fig. 9. Learnning Curve for ASVM

The observed results proves that the proposed framework achieves good
performance in PD detection while compared to several baseline models. The
DWT provides more accurate time-frequency representation of speech signal,
and the cepstral features acquired both phonatory and articulatory aspects of
vocal impairment. The PSO integration considerably improved the
classification accuracy by selecting the optimal features thereby reducing the
dimensionality and minimizing the effects of noises. Finally, ASVM
outperforms traditional SVM and other classifiers due to its adaptive kernel
tuning, achieving an accuracy of 94.5%, recall of 95.1%, and an F1 score of
94.1%. These findings confirm that speech can serve as a robust biomarker for
early detection of PD. The GUI implementation further enhances the practical
applicability of the framework, enabling its deployment in telemedicine and
clinical screening settings.

VII. CONCLUSION

The proposed work combines advanced speech signal
processing, biologically inspired optimization and adaptive
machine learning. Other conventional diagnostics which fail to
detect PD until more of dopaminergic neurons have already been
degenerated, the proposed method uses a non-invasive
biomarker of speech for earlier identification of the disease. The
framework uses DWT for decomposition of speech signal. PSO

IJERTV 151 S020020

was used for feature optimization and finally ASVM which
dynamically tunes its kernel parameters to achieve optimal
separation between PD and healthy subjects. Experiments were
conducted using UCI PD dataset demonstrated that the proposed
method outperformed the baseline models like SVM, Random
Forest, k-NN and shallow CNN classifiers. The proposed
method achieved an accuracy of 94.5%, precision of 93.3%,
recall of 95.1%, F1 score of 94.1% and ROC-AUC of 0.962.
Overall, this research provides a novel, accurate, and
computationally efficient diagnostic framework that addresses
the critical challenge of early PD detection. The system’s ability
to process speech—a simple and universally available
biomarker—positions it as a viable candidate for large-scale
screening programs, particularly in resource-constrained
settings where access to imaging facilities is limited.

Future work will focus on expanding the dataset to include
multilingual and spontaneous speech samples, integrating deep
learning architectures with metaheuristic optimization for
further performance gains, and developing lightweight
embedded implementations for wearable health monitoring
devices. Additionally, longitudinal studies will be pursued to
evaluate the framework’s robustness in tracking disease
progression over time.

In conclusion, the proposed framework represents a
significant advancement in the field of non-invasive
neurological diagnostics, demonstrating that nature-inspired
optimization coupled with advanced speech signal processing
can provide reliable early detection of Parkinson’s Disease,
thereby contributing to improved patient outcomes and broader
accessibility in clinical practice.
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