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Abstract—This paper discussed the underlying mechanism for 
a kind of sampling errors for directional samples in gridded wave 
fields. We demonstrated that these sampling errors are periodic 
signals with seesaw like waves; their fundamental frequencies 
and dominated frequencies are functions of the sampling 
directions. When this kind of sampling errors act on directional 
periodogram, their modulation effects can be approximately 
predicted. Related results can be used to identify the source of 
unusual periodogram spikes in the wave identification analysis.  

Keywords—Gridded wave fields; spectrum; periodogram; 
directional sampling; discretization; sampling errors; spatial wave 
image; modulation effect.  

I.  INTRODUCTION  

Spatial signal data often comes in the form of values plus 
spatial coordinates. For example, regularly sampled spatial data 
usually are organized as arrays, for which each dimension 
corresponds to grid or lattice coordinate of the spatial points. In 
many cases, irregularly sampled data could also be transformed 
into their discrete version through gridding the spatial 
coordinates and aggregating observation values. Gridded data 
can simplify the problem and is suitable for spectral analysis 
[1, 2], therefore it is common to see in engineering, acoustics, 
physical oceanography, astronomy, climate change [3, 4], 
oceans waves alarm and many other application fields.  

In this paper, we focus on the situations in which spatial 
signal data are collected on a pre-defined set of grid points, i.e., 
gridded wave fields. Since the spatial coordinates of data are 
fixed in advance, it caused some special issues that it may not 
be a problem when data can be re-aggregated and the grid can 
be re-defined. Sampling error for data samples on the lines 
along a given direction is one of such issues. Usually we have 
to deal with difference frequencies of oscillations along the 
sampling line. Unit speed along the line generates frequency 
along x and along y. Their spectral space is the superposition of 
these different frequencies. Those signals, noises, and related 
sampling error effects make wave surface complicated. Here 
we will provide an analytical formula to describe the sampling 
errors’ spectrum for directional samples on gridded wave field; 
then the phase modification effects of sampling errors on the 
periodogram of directional samples will also be discussed.  

II.  SAMPLING ERRORS FOR DIRECTIONAL SAMPLES 

Suppose a wave field is defined on the grid G = {(x, y)}, 
where x = 1, 2, …, dx, y = 1, 2, …, dy; dx and dy are integers. 
Don’t lose generality, we assume that the data values are 
observed on grid points, i.e., the regular sampling intervals of 
wave signals are all 1 unit on both x and y direction. Then, the 
observations for the combination effects of a group of spatial 
waves W = {wu (x, y)} on G can be represented by a data array 
D with dimension (dx, dy); the effects of background noises, 
which are limited to homogeneous Gaussian Noises in this 
paper, should also be included in array D, i.e., D represents the 
gridded wave field on G.  

Now we are interested in checking the periodogram for data 
series ordered along a given direction θ. Assume for any 
sinusoid wave wu(x, y) in W, wu(x, y) is wide-sense stationary 
on grid G. It means that wu(x, y) has the same distributions for 
frequency and direction on the gridded wave field. Therefore, a 
data series on a line along angle θ is a directional sample of the 
gridded wave field. In general cases, the sampling line does not 
necessarily pass through the grid points of the wave field; 
therefore we have to replace the real wave values with 
observations on the nearest grid points. The differences for the 
coordinates of data values are the sampling errors for 
directional samples on the gridded wave field. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Sampling errors along sampling direction θ 
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Definition 1: For a sampling line along direction angle θ in 
the gridded wave field D, its sampling errors on D are: 

e(θ; t) = tan(θ)t - round (tan (θ) t ), from y direction   (1a) 

e(θ; t) = t /tan (θ) - round (t /tan (θ)), from x direction (1b) 

where round(.) is the rounding function; t∈Z, t is the index 
of points on the sampling line. 

There are two feasible ways to define the sampling errors. 
For sampling errors from perspective along y direction, we can 
take t = x + x0; otherwise, t = y + y0. Here x0 and y0 are the 
coordinate for the sampling line intersect with the axis. We 
often need only select one of them to use in practice. As 
illustrated in Fig. 1, if the red circles are gridded samples on 
the line, the intersections with grid lines along x or y direction 
can be chosen as the real wave values, corresponding to Eq. 1a 
and 1b, respectively. For perspective along y direction, the 
highest absolute values of the rounding errors appear in the 
middle of line segment OA; but usually it is less than half of 
the grid interval. The sampling errors usually are a periodic 
movement with zero mean and can be approximated as: 

e(t) ≈ Σm = 1 to M  em(t) = Σm = 1 to M Am sin(2πfmt + φm)     (2) 

Here t can be viewed as the sampling steps on direction θ. 
Next, we will show that the frequencies of the major 
components of e(t), denoted by fm in Eq. 2, are only related to 
direction θ. 

Proposition 1: For a sampling line along direction θ (0 ≤ θ 
≤ π) on grid G = {(x, y)}, x ϵ Z, y ϵ Z, suppose | tan (θ) | = a /b, 
a ϵ N, b ϵ N, a and b don’t have common factors; then the 
fundamental frequency for the sampling errors on direction θ is 
1/b. 

Proof: The proof is straightforward. For perspective along 
y direction, since b is integer, if we starting from a grid point O 
on the x-axis, for where sampling error is zero, after each b 
steps along θ we will end in another grid point with zero 
sampling error. Thus b steps should be one period of e (t), i.e., 

e ( t + k·b )  =  e (t), for all k ϵ Z.          (3) 
In fact, there doesn’t exist a period c > b, c ≠ k·b, k ϵ Z. 

Otherwise, it will conflict with the condition | tan (θ) | = a/b. 
Therefore, 1/b is the fundamental frequencies of e(t). Similarly, 
Proposition 1 is also true for sampling errors from the 
perspective of x direction. 

 
Fig. 2. Sawtooth waves of sampling errors along direction atan(5/16) 

Based on Proposition 1, we can see that 1/b, 2/b, …, a /b all 
are possible frequencies for fm in Eq. 2. Also, φm are the same 
constant for all m = 1, ..., M. 

    e(t) ≈ Σm = 1 to M em(t) = Σm = 1 to M Am sin(2π·m·t /b+φ)     (4)  

It would be useful in practice if we can know in advance 
the dominate frequency of e(t), or say, which part of e(t) has 
the most power or the largest Am. 

Proposition 2: For a sampling line along direction θ (0 ≤ θ 
≤ π) on grid G = {(x, y)}, x ϵ Z, y ϵ Z, if | tan (θ) | = a /b, a ϵ N, 
b ϵ N, a and b don’t have common factors. Suppose f* has the 
largest power among all the frequency components for 
sampling errors along direction θ, then f* can be decided as 
following: 

E (f*) = min(|tan(θ)|, 1–|tan(θ)|), from y direction     (5a) 

E (f*) = min(1/|tan(θ)|, 1–1/|tan(θ)|), from x direction (5b) 

Proof: We first check the sampling errors from perspective 
along y direction, as showed in Fig. 1. Considering the zero-
crossings of the sampling error e(t), it can only happen when 
the sampling line crosses the line of y = 0.5k, k ϵ Z. If a / b < 
0.5, for each time the sampling line crosses the line of y = 0.5k, 
e (t) changes its sign. Thus e(t) has 2a zero-crossings in b steps 
of one period, including the zero value on the starting point. 

For  0.5 ≤ a / b < 1, one “step” may cross more than one line 
of y = 0.5k, k ϵ Z. So it is not easy to count the zero-crossings. 
But we can consider the flowing two series: (a/b)k and (1– 
a/b)k, k = 2, ..., b-1. The first is the sampling series itself, while 
the later is the difference between sampling line of direction 
π/4 and θ. The rounding errors for these two series changes at 
the same time, or say, they have the same zero-crossings signal. 
In fact, we can rewrite the sampling errors e (t) as following: 

e (k) = round (ka/b) – ka/b = k – ka/b + round (ka/b) – k 
≡ (1 – a /b)·k + round ( k ·a  /b – k ), if -0.5 ≡ 0.5 for e (t) 

= (1 – a /b)·k – round ((1 – a /b) ·k )        (6) 

It means the rounding errors of series (a/b)k is actually the 
negative of rounding errors of series (1 – a/b)k, k = 2, ..., b-1. 
The condition in this equation can also be 1≡ 0 or -1≡ 0. Since 
(1 - a/b) < 0.5, following the inference of previous paragraphs 
for a / b < 0.5, we can conclude that e (t) changes its signs for 
2(1 – a /b) times from point O to A in Fig. 1. 

Summarizing two situations, frequency component of a/b 
decides the zero-crossings of e(t). Now we can use the zero-
crossings to detect the “pitch” of the sampling error signal. The 
condition is 1) no noise, and 2) the wave shape of the signal is 
clear. Basically, the sampling errors are sawtooth waves of 
period of b/a plus a smaller sawtooth adjustment of period b, as 
showed in Fig. 2. The Fourier transform of sawtooth wave [5] 
with frequency f is – 

xsaw(t) = A/2 – (A/π) Σ k = 1 to ∞ (-1)k sin(2πkft) /k     (7a) 

xrevsaw (t) = 2A/π · Σ k = 1 to ∞ (-1)k sin(2πkf t) /k     (7b) 

Therefore, the frequency of sawtooth waves is the 
dominated frequency of its Fourier series, reflected by the 
frequency of the zero-crossings signal. In other words,  e (t) is 
the summary of harmonic signals of sin(2πta/b) and 
sin(2π t /b), and frequency f* = a/b should have the largest 
amplitude among em (t), m = 1, ..., M. Considering the aliasing 
effects, Eq. 5a holds. The situation of Eq. 5b can be proofed 
similarly. 
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Remark: For the situation of b is an even integer, the 
dominate frequency of e (t) also will be affected by the method 
to deal with the duels in rounding numbers, i.e., the cases with 
value -0.5 and 0.5. If the allowed rounding errors are limited to 
[-0.5, 0.5) or (-0.5, 0.5], Eq. 5a and 5b are still true for b as 
even integers. This is also the condition for Eq. 6. 

Fig. 3 is an example of the periodogram of sampling errors 
for sampling lines on the gridded wave field. The dominated 
frequency of sampling errors is 5/16, other spectrum peaks are 
its harmonic or harmonic of sin (2πt /16). This periodogram 
plot is consistent with Eq. 5. 

III.  MODULATION EFFECTS OF SAMPLING ERRORS 

When sampling errors interact with spatial waves in the 
wave field, the wave signal would be modulated. Generally, on 
the periodogram for sampling lines on gridded wave field, the 
spectral spikes caused by sampling errors usually are not strong 
and could be smoothed out as noise effects. In some extent, 
these modulation effects can be anticipated. 

 

Fig. 3. Directional periodogram of sampling errors along direction 
atan(5/16) 

Proposition 3: For continuous sinusoid wave w(x, y), if the 
wave frequency for sample points on the sampling line along 
direction θ (0 ≤ θ ≤ π ) is vd, then the gridded samples of the 
same sampling lines will have dominated frequency vd and 
additional signals around νde1 =  νd  ±  f*  and νde2 =  νd  ± 2 · f*, 
where f* is the dominated frequency of the sampling errors. 

Proof: Suppose sinusoid wave w (x, y) propagates along 
direction β (0 ≤ β ≤ π); its projection on the sampling lines 
along direction θ (0 ≤ θ ≤ π ) is wθ (x) = sin (ωd x + ψ). The 
sampling errors e (t) is from perspective along y direction, then 
e (x)· sin (β) is the part act on the wave direction. The wave 
signal wθ (x) after gridding is denoted as we,θ (x), then we will 
have the following equation: 

we,θ (x) = sin (ωd (x + e (x)· sin (β)) + ψ)  

       = sin (ωd x + ψ + sin (β)·ωd Σ m = 1 to M em (x) )        (8) 

This means that the sampling errors will modulate the 
phase of the wave signal. It can also be viewed as a change of 
the frequency of the signal. Since the analytical result is 
complicated, we will focus on the spectral behavior of major 
components of we,θ (x).  We can consider the effects of em (t), m 
= 1, ..., M, separately. 

wem,θ (x) = sin (ωd x + ψ + sin (β)·ωd·em (x)) =  

    = sin (ωd x + ψ) cos (sin (β)·ωd· em (x)) +  

  cos (ωd x + ψ) sin (sin (β)·ωd·em (x))       (9) 

In our cases, em(t) have small amplitudes, ∆ = sin(β) ωd Am  

≤ 0.707·2π·0.5·0.5 ≈ π/2.828, therefore we have 

cos(∆·sin(ωmx+φm)) ≈ 1– γ(∆) + γ(∆)cos(2ωmx+φm)     (10) 

sin (∆·sin (ωm x + φm))  ≈  ζ(∆) sin (ωm x + φm)              (11) 

where γ(∆) and ζ(∆) are functions of ∆. Usually, Eq. 11 
works best when ∆ < π/3 or smaller, but here it is good enough 
for revealing the spectral characteristic of Eq. 9. 

wem,θ(x) ≈ sin(ωdx + ψ)[1– γ(∆) + γ(∆) cos(2ωm x + φm)]  + 

  cos (ωd x + ψ) ζ(∆) sin (ωm x + φm)  

= sin (ωd x + ψ) [ 1 – γ(∆) ]  + 

γ(∆)[sin((ωd+2ωm)x + ψ +  φm)+sin((ωd - 2ωm)x + ψ - φm)]/2 + 

ζ(∆)[sin((ωd+ωm)x + ψ +  φm) - sin((ωd - ωm)x + ψ - φm) ]/2    (12) 

The approximated result is like an amplitude modulation. 
Beside the “carrier” frequency ωd, new frequency component 
ωd ± ωm and ωd ± 2ωm have been introduced by modulation of 
sampling errors. Similarly, Eq. 12 also holds for sampling 
errors from perspective of x direction. 

 

Fig. 4. Modulation effects of sampling errors. Signals: sin (2π·0.4·t) along 
30°; noise: none; sampling direction: atan (5/16) 

When ∆ → 0, ζ(∆) >> γ(∆), because they are function of ∆ 
in different order: for ∆ < π/3, ζ(∆) ≈ c1∆, γ(∆) ≈ c3∆

2. The 
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modulation effects of ωd ± ωm is much stronger than that of ωd 

± 2ωm when ∆ is small. In may cases, we only need to consider 
the dominated frequency f* = ωm /2π, and its effects of vd ± f*. 
According to Carson's Rule for Phase Modulation, most of the 
energy of the modulated signal is contained within the 
bandwidth of 2(h+1)ωm, and h is the peak phase deviation. In 
our case, h ≤ π/2. This is consistent with conclusion of Eq. 12 

IV.  DIRECTIONAL PERIODOGRAM EXAMPLES 

This section will illustrate some examples for the spectrum 
of directional samples modulated by sampling errors. First, let 
take a look at the modulation effects for the example exhibited 
in Fig. 3. Here vd = 0.41, f* = f1 = 5/16 = 0.3125, and  f2 = 
0.375, f3 = 0.0625, f4 = 0.4375. For sampling errors modulated 
signal, the major expected spectral spikes are at 0.41, and other 
spikes are all consistent with Fig. 4. 

 

 

Fig. 5. Periodogram of sampling errors (upper) and the modulated wave 
(bottom). Signals: sin (2π·0.45·t) along 30°; noise: none; direction θ = 92°. 

Fig. 5 exhibits another example of sampling errors and the 
modulation effects. For the given sampling line, E (vd) = 0.45· 
cos (92°-30°)/sin (30°) = 0.2114. Following Eq. 1, we will have 
f* = tan (2π/180) = 0.035; the modulated signal have spikes at 
fc + f* = 0.246 and fc - f* = 0.176, fc + 2f* = 0.281, fc - 2f* = 
0.141. The detected results fit the formula very well. 

Fig. 6 is another example: 2 sinusoid waves propagate 
along direction 30° and -30° in a 400 x 400 wave field; the 
frequency is 0.4 and 0.05, respectively. Their amplitudes are 1 
and 1.5; while the Gaussian noise is N (0, 102). The signals are 
buried in the noises. Fig. 6 is the periodogram for directional 
samples along angle θ = 15°. Please notice that there is a small 
peak around frequency 0.3325. This is the modulation effect of 
sampling errors act on periodogram spike at frequency 0.4: it is 
not significant and can be smoothed out, thus it is not marked 
as wave spectral signal in the plot. 

However, in practice there are cases for which sampling 
errors are not negligible, especially when wave frequencies are 
large and noise levels or smoothing levels are relatively low. 
As in Fig. 7, beside the expected dominated frequency at 0.4, 
there are a series of small frequency peaks caused by sampling 
errors; the spike at 0.1767 is not just a small peak. 

 

Fig. 6. Periodogram for gridded directional samples along 15°. Signals: sin 
(2π·0.4·t) along 30°; 1.5·sin (2π·0.05·t) along -30°; noise ~ N (0, 100). 

 

Fig. 7. Effects of sampling errors for directional periodogram along 60°. 
Signals: sin (2π·0.4·t) along 30°; noise: none 

V. LINEAR INTERPOLATION OF THE WAVE SIGNAL  

Sometimes, the method of linear interpolation is used to 
remedy the effects of sampling errors. A typical algorithm is 
interpolating by weighting based on distances of real value to 
grid points. Suppose the grid interval is 1 on both x and y 
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direction, and we denote the interpolated signal as we’ ,θ (t) on 
the sampling line along direction θ, then the algorithm is: 

we’ ,θ (x) = α· w (x, floor (tan (θ) · (x+x0))) + 

   (1- α)· w (x, ceiling (tan (θ) · (x+x0)))       (13) 

where α = | tan (θ) · (x+x0) – ceiling (tan (θ) · (x+x0)) |, x∈Z, 
for perspective of y direction. 

we’ ,θ (y) = α· w (floor (tan (θ) · (y+y0))), y) +  

  (1- α)· w (ceiling (tan (θ) · (y+y0))), y)       (14) 

where α = | tan (θ) · (y+y0) – ceiling (tan (θ) · (y+y0)) |, y∈Z, 
for perspective of x direction. 

Notice that the frequencies of α and (1 - α) is actually the 
frequency of sampling errors e(θ; t) before interpolation; the 
frequencies of w (x, floor (tan (θ) (x+x0))) and w (x, ceiling (tan 

(θ)(x+x0))), as while as w (floor (tan (θ)(y+y0)), y) and w (ceiling 

(tan(θ)(y+y0)), y) all have the same frequency as sampling 
errors e (θ; t), which has f* = | tan (θ) |. However, their phases 
are quite different to each other. Here we don’t further extend 
the formula. An important fact is that linear interpolation of the 
wave signal cannot totally eliminate the effects of the 
dominated frequency of sampling error f*, but it can largely 
diminish the effects of other harmonic frequency of f*. In fact, 
linear interpolation will introduce an amplitude modulation of 
wave signal with frequency f*. Thus this method will reduce the 
power of the wave signal; but the effect of f* will still appear in 
the periodogram (see Fig. 8). 

 

Fig. 8. Modulation effects of linear interpolation of waves sampled along θ = 

92°. Signals: sin (2π 0.45 t) along 30°; noise: none. 

Without related information of the spatial wave, the 
performance of interpolation algorithms is limited. However, if 
the background noises are high, the sampling errors are easier 
to smooth out as noises with linear interpolation method.  

VI.  DIRECTIONAL SAMPLING ERRORS IN RECONSTRUCTION 

Most sampling errors as defined by Eq. 1 can be easily 
filtered out in the process of reconstructing spatial waves with 
Fourier transform, especially with KZFT [1, 2, 7, 8]. This is 

because the Fourier transform and KZFT are highly selective: 
recovered movement energy decreases rapidly with bias from 
given frequencies. However, this method only works well for 
situations of low background noise. If noise level increases, the 
accuracy of reconstruction quickly decreases. One method to 
overcome this disadvantage is to average the reconstructed 
signal along the direction that perpendicular to its propagating 
direction. In this case, the spatial arrangement of the “phases” 
of directional sampling lines may cause a different type of 
sampling errors if the signal frequency isn’t considered.  

Fig. 9 is an illustration of the spatial phase patterns for a 
wave signal and its different reconstructions. The spatial 
interaction of signal and sampling errors generated patterns as 
if two waves moved in the field. Pattern 1 (bottom left) is for 
the sampling scheme using no frequency information, thus the 
sampling errors formed a “wave” propagating along y-axis, and 
this direction will not change with wave frequency.  

The setting of directional sampling lines in Pattern 2 
(bottom right) used wave frequency information, and its Moiré 
pattern direction will change with wave frequency. In Pattern 2, 
points in the connected regions with same color (white or red 
strips) are taken as if have the same wave phase, or are on the 
same sampling line along orthogonal direction and therefore 
could be averaged to filter out the noise.  

 

Fig. 9. Spatial patterns of a wave (upper left) and its reconstructions through 
averaging along orthognonal wave direction based on sampling of: (1) given 
direction (bottom left); (2) given direction and frequency (bottom right), (3) 

given direction, frequency, and fine averaging grain (upper right). The 
correlation coefficient with original signal (wave sin (2π·0.45·t) along 5°, no 

noise) is (1) 71.3%, (2) 72.5%, and (3) 99.6%, respectively. 

Sampling scheme of Pattern 2 reflects the wave structure of 
signal; but since its averaging grain is too large, the accuracy of 
reconstruction is not high. Pattern 3 is improved by taking fine 
grain to average data. This improved sampling scheme can 
almost perfectly recover the signal even under strong noise.  

Please notice that the best averaging grain is decided by 
noise level and the size of wave field. With higher noise levels 
we need more data points to average out the noise effects; 
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while with larger field size, there will be more points on the 
same sampling line and the rounding grain could be finer. 

Also, the improved sampling scheme doesn’t affect the 
sampling errors as defined by Eq. 1. In fact, Pattern 1, 2, and 3 
have the same spectrum features for the sampling errors; and 
the sampling scheme of Pattern 1 is exact what we used for 
directional periodogram [6]. The relational of improved 
sampling scheme is to avoid introducing sampling errors 
caused by spatial phase shift. 

VII.  FROM IDENTIFICATION TO RECONSTRUCTION 

The reconstruction process used both wave direction and 
frequency information in the algorithm. The accuracy of the 
identified wave parameters directly affects the quality of 
reconstruction. Fortunately, as far as the identified parameters 
are not from a fake signal, optimization procedures can be used 
to improve their accuracy. During the optimization process, the 
highly selective feature decided by the frequency response 
characteristics of KZFT [2] helps to filter out unrelated moves 
and noise, and therefore we can accurately identify the real 
parameter based on given information of wave frequency and 
direction. For this reason, identification is the key step and 
important starting point for this process. 

 

Fig. 10. Simulation results for correlation coefficients on different noise levels 
for 200 cases of 2D wave signals reconstructed based on identified wave 
parameters. (1) (upper left) Boxplot for reconstruction based on identified 

parameters; (2) (bottom left) Scatter plot for reconstruction based on identified 
parameters; (3) (upper right) Boxplot for reconstruction based on optimizated 

parameters;  (4) (bottom right) Scatter plot for reconstruction based on 
optimizated parameters. 

Our R package {kzfs} helps to realize the whole process 
from the step of identification to reconstruction. Function 
{kzpdr} is designed to collect directional periodogram data; 
estimation works will be done with function {kzpdr.eval} and 
{kzpdr.estimate}. {kzp2d} estimates wave parameters based on 
2D periodogram. Function {OptDRP} and {Opt2DP} are given 
to optimize the identified parameters. For the reconstruction 

step, {kz.rc2} will recover wave movements in 2D field. 
Functions are also available for other auxiliary processes. 

From the upper two Boxplots of Fig. 10, obviously, the 
correlation decreases when the noise levels increases, and the 
procedure usually fails to identify the wave parameters when 
the noise levels are more than 15 to 20 times of the signal 
levels. Comparing the two Scatter plots on the bottom, the 
quality of the reconstructions based on optimized parameters 
tends to be higher (about 5%) and is more robust when noise 
levels increases. The simulation was based on an automatic 
searching procedure utilizing KZ directional periodogram [6]. 
There are about 25 cases failed to be correctly identified 
because of extremely high noise ratio, very small field size, or 
being buried by other dominated signals.   

The results illustrate that the whole procedure that from 
identification to reconstruction is feasible; and the optimization 
procedure is useful for improving the accuracy. Usually if the 
field size is large and the noise level is relatively low, the 
improvement of optimization is marginal. There are even few 
cases for which the reconstructions based on un-optimized 
parameters are slightly better than that of after optimization 
under extreme noisy conditions. But the effects of optimization 
are consistently positive for most cases under given setting. 

VIII.  SUMMARY  

The wave patterns formed by sampling errors are analogue 
to Moiré pattern formed by two sets of parallel lines, but has 
different underlying mechanism. In this paper, we discussed 
the sampling errors formed by the gridded wave field and its 
effects on the sampling lines along given direction. We have 
demonstrated that the sampling error is periodic signals with 
seesaw like wave; their fundamental frequency and dominated 
frequency are functions of the sampling direction. When the 
sampling errors act on the directional periodogram, the 
modulation effects can be predicted. We therefore are able to 
identify the source of these unusual periodogram spikes and do 
not take the incorrect spectral signals into the wave parameter 
identification analysis [6].  

Generally speaking, the best way to avoid sampling error 
effects is to increase the sampling frequency so that the wave 
frequency will not be too close to 0.5. The second method is to 
smoothing the directional periodogram. This can be used to 
handle most of the cases in practice. When the wave frequency 
is high than 0.4, and the sampling errors cannot be smoothed 
out, we can predicate the modulated frequency spikes with 
Proposition 3. This method is useful for the identification of 
spatial wave parameters. 

The formula to predict spectral behavior of sampling error 
effects have been used in our R package {kzfs} [7]. This 
package is designed for the separation and reconstruction of 
motion scales in 2D motion images on different directions 
based on KZ periodogram and KZFT. For the wave parameter 
identification, {kzfs} provides functions to check directional 
periodograms for spatial waves in the wave field. Results of 
this paper help to exclude the fraud spectral spikes caused by 
sampling errors of directional samples generated from the 
gridded data.  
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