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Abstract—This paper discussed the underlying mechanism for
a kind of sampling errors for directional samples m gridded wave [l SAMPLING ERRORS FORDIRECTIONAL SAMPLES
fields. We demonstrated that the-se sampling errorare periodic Suppose a wave field is defined on the ggicE {(x, )},
signals W[th seesaw like waves; their fgndamentalréquengles wherex = 1, 2, ....d y = 1, 2, ...,d;; dy andd, are integers.
gnd qom"@tﬁd f[?q”k?n;'efs are l_functlons of thg sa_mpgl Don't lose generality, we assume that the data values ar
pgﬁgt(;gg?ém ‘;?e}r 'Smo'gulé(‘)tiosr?";?fggse:gf Sgt gpp'rrg;r:;g?y observed on grid points, i.e., the regular sampling intenfals
predicted. Related results can be used to identifthe source of Wbave 5|%nals faretﬁll 1 unllt)_ontl_:)oth )f(farld yfd|rect|on. Ttt_t;n,
unusual periodogram spikes in the wave identificatin analysis. observations for the combination efiects of a group olidpa
wavesW = {w, (x, y)} on G can be represented by a data array
Keywords—Gridded wave fields; spectrum; periodogram D With dimension ¢, d,); the effects of background noises,
directional sampling; discretization; sampling errs; spatial wave ~ Which are limited to homogeneous Gaussian Noises in this
image; modulation effect. paper, should also be included in arigyi.e.,D represents the
gridded wave field ofs.

. INTRODUCTION Now we are interested in checking the periodogram fa dat

Spatial signal data often comes in the form of vajpies series ordered along a given direction Assume for any
spatial coordinates. For example, regularly sampled spatia ~ Sinusoid wavew,(x, y) in W, wy(x, y) is wide-sense stationary
usually are organized as arrays, for which each dimensigpf 9ridG. It means that,(x, y) has the same distributions for
corresponds to grid or lattice coordinate of the spptadts. In ~ fréquency and direction on the gridded wave field. Theegfr
many cases, irregularly sampled data could also bsftraned dqta series on a line along angls a directional s_ample of the
into their discrete version through gridding the spatiagridded wave field. In general cases, the sampling les dot
coordinates and aggregating observation values. Gridded d Necessarily pass through the grid points of the wave field;
can simplify the problem and is suitable for spectrallymis ~therefore we have to replace the real wave valudh w
[1, 2], therefore it is common to see in engineerampustics, observations on the nearest grid points. The differencetado
physical oceanography, astronomy, climate change [3, 4goordinates of data values are the sampling errors f
oceans waves alarm and many other application fields. directional samples on the gridded wave field.

In this paper, we focus on the situations in which apati
signal data are collected on a pre-defined set of giittq i.e., A
gridded wave fields. Since the spatial coordinates ai ees
fixed in advance, it caused some special issues that inotay
be a problem when data can be re-aggregated and the grid can
be re-defined. Sampling error for data samples on ties li
along a given direction is one of such issues. Usuallhave
to deal with difference frequencies of oscillations aldhng
sampling line. Unit speed along the line generates frequen
along x and along y. Their spectral space is the supegposft
these different frequencies. Those signals, noisesyedatkd B
sampling error effects make wave surface complicdttste
we will provide an analytical formula to describe thenpling o
errors’ spectrum for directional samples on gridded weele;
then the phase modification effects of sampling errorshe
periodogram of directional samples will also be disedss

Fig. 1. Sampling errors along sampling directién
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Definition 1: For a sampling line along direction anglén
the gridded wave fiel®, its sampling errors ob are:

e(#; t) =tan(d)t - round(tan(d)t), from y direction (1a)
e(0; t) =t/tan(#) - round(t/tan(d)), from x direction (1b)

whereround(.) is the rounding functiori{1Z, t is the index
of points on the sampling line.

There are two feasible ways to define the samplingrro
For sampling errors from perspective along y directioncare
taket = x + Xo; otherwiset =y + y,. Herexy, andy, are the
coordinate for the sampling line intersect with the .2Wiie
often need only select one of them to use in practice.
illustrated in Fig. 1, if the red circles are griddednpées on
the line, the intersections with grid lines along xyatirection
can be chosen as the real wave values, corresponding iaE
and 1b, respectively. For perspective along y directiba,

highest absolute values of the rounding errors appear in tifé&

middle of line segment OA; but usually it is less thalf bk
the grid interval. The sampling errors usually are aopési
movement with zero mean and can be approximated as:
e(t) = Lin=110m €nlt) = Zin=110MAn SIN2tfut + o) (2)
Heret can be viewed as the sampling steps on direétion

1) = Zin= 110 MEn(t) = Zm=1 10 MARSIN2T-M-tb+p)  (4)
It would be useful in practice if we can know in advance
the dominate frequency &t), or say, which part of(t) has
the most power or the largest.

Proposition 2 For a sampling line along directieh(0< 6
<m)ongridG ={(x, y)}, xeZ,ye Z, if |[tan(0) | =a/b, ae N,
b € N, a andb don’'t have common factors. Suppdsdas the
largest power among all the frequency components for
sampling errors along directiofy thenf. can be decided as
following:

E () = min([tan(#)|, 14tan(6)]), from y direction (5a)
E (f) = min(1/|tan(6)|, 1-1Jtan(d)]), from x direction (5b)

Proof: We first check the sampling errors from perspective
along y direction, as showed in Fig. 1. Considering #m®-z
ossings of the sampling erreft), it can only happen when
the sampling line crosses the lineyof 0.5, ke Z. If a /b <
0.5, for each time the sampling line crosses the line=00.5,

e(t) changes its sign. Thagt) has 2 zero-crossings ib steps
of one period, including the zero value on the startoigtp

For 0.5<a/b< 1, one “step” may cross more than one line
of y=0.%, ke Z. So it is not easy to count the zero-crossings.

Next, we will show that the frequencies of the majorg,t we can consider the flowing two seriea/bjk and (+

components og(t), denoted by, in Eq. 2, are only related to
directiond.

Proposition 1 For a sampling line along directieh(0 < 6
<m) ongridG = {(x,¥)}, xeZ,ye Z, supposetan (0) | =a /b,
aeN, beN, aandb don't have common factors; then the
fundamental frequency for the sampling errors on directis
1/b.

Proof: The proof is straightforward. For perspective along

y direction, sincev is integer, if we starting from a grid point O
on thex-axis, for where sampling error is zero, after ehch
steps alongd we will end in another grid point with zero
sampling error. Thub steps should be one periodedt), i.e.,

e(t+kb) = e(t), forallke Z. 3
In fact, there doesn’t exist a periad> b, ¢ # k'b, k€ Z.

Otherwise, it will conflict with the conditionthn (6) | = a/b.
Therefore, 1 is the fundamental frequenciesegt). Similarly,

a/lbk, k=2, ...,b-1. The first is the sampling series itself, while
the later is the difference between sampling line ofctioe

7/4 andé. The rounding errors for these two series changes at
the same time, or say, they have the same zerovmgessgnal.

In fact, we can rewrite the sampling erreff) as following:

e(k) =rround(ka/b) —ka/b=k —ka/b + roundka/b) — k

= (1 -a/b)-k + round(k-a/b —K), if -0.5= 0.5 fore(t)

= (1 -a/b)-k — round(1 —a/b) -k) (6)

It means the rounding errors of seriafk is actually the
negative of rounding errors of series{a/b)k, k = 2, ...,b-1.
The condition in this equation can also eQlor -1= 0. Since
(1- a/b) < 0.5, following the inference of previous paragraphs

for a /b < 0.5, we can conclude theft) changes its signs for
2(1 —a/b) times from point O to A in Fig. 1.

Summarizing two situations, frequency component/of

Proposition 1 is also true for sampling errors from thedecides the zero-crossings &f). Now we can use the zero-

perspective of x direction.
Gridding Errors

ceta=atan(5/16)

0.4

0.0

-0.4

T T T - T T
0 10 20 30 40
Index

Fig. 2. Sawtooth waves of sampling errors along directitam(5/16)

Based on Proposition 1, we can see that2b, ..., a/ball
are possible frequencies fiyrin Eq. 2. Also,p,, are the same
constant for alm=1, ...,M.

crossings to detect the “pitch” of the sampling esignal. The
condition is 1) no noise, and 2) the wave shape of tmalsig
clear. Basically, the sampling errors are sawtoottves of
period ofb/a plus a smaller sawtooth adjustment of petipds
showed in Fig. 2. The Fourier transform of sawtooth waye
with frequencyf is —

Xea(D) = A2 — (V) 25 k= 110 (-1) siN(27KF) /K
Xeovsan(t) = 2T - 22 = 1 00 (-1)F SIN(27k Ft) /k (7b)

Therefore, the frequency of sawtooth waves is the
dominated frequency of its Fourier series, reflectedthsy
frequency of the zero-crossings signal. In other woes) is
the summary of harmonic signals din(2zta/b) and
sin(2zt/b), and frequencys = a/b should have the largest
amplitude among,,(t), m= 1, ...,M. Considering the aliasing
effects, Eq. 5a holds. The situation of Eq. 5b can be proofed
similarly.

(7a)
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Remark: For the situation ofb is an even integer, the This means that the sampling errors will modulate the
dominate frequency a(t) also will be affected by the method phase of the wave signal. It can also be viewed asragehat
to deal with the duels in rounding numbers, i.e., the catbs the frequency of the signal. Since the analytical Itesu
value -0.5 and 0.5. If the allowed rounding errors angdid to  complicated, we will focus on the spectral behavior ofoma
[-0.5, 0.5) or (-0.5, 0.5], Eg. 5a and 5b are still ttoieb as  components ofv.,(X). We can consider the effectsepf(t), m
even integers. This is also the condition for Eq. 6. =1, ...,M, separately.

Fig. 3 is an example of the periodogram of sampling errors \,  (x) = sin (w4 X + v + sin (8)-w.-e. (X)) =
for sampling lines on the gridded wave field. The doneidat e () ] (@ax+y _(ﬁ) @a & ()
frequency of sampling errors is 5/16, other spectrumspask = sin(wq X+ y) cOS(SiN(B)-wa- €n (X)) +
its harmonic or harmonic din (27t /16). This periodogram cos(wg X+ ) SiN(SIN(B)- - €n (X)) ©)

plot is consistent with Eq. 5.
In our casesg,(t) have small amplitudeg, = sin(8) wqAn
IlI.  MODULATION EFFECTS OFSAMPLING ERRORS <0.707-2-0.5-0.5: n/2.828, therefore we have

When sampling errors interact with spatial waves in the . _
wave field, the wave signal would be modulated. Generetly, cog4-sin(@mx+gm) = 1=y(4) + v(4)cog2omx+pr)  (10)
the periodogram for sampling lines on gridded wave figld, sin(4-sin(wm X + ¢m) = {(4) sin(wm X + o) (11)
spectral spikes caused by sampling errors usually argroog

and could be smoothed out as noise effects. In some extent Wherey(4) and((4) are functions ot. Usually, Eq. 11
these modulation effects can be anticipated. works best whed < /3 or smaller, but here it is good enough

for revealing the spectral characteristic of Eq. 9.
Mean Periodogram .
0% DZ 200 points - 17.35° Weng(X) = Sin(waX + w)[1—-y(4) +y(4) COL20m X + pr)] +

o ] § cos(wy X + y) {(4) sin(wm X + ¢m)
= sin(wgx+ y) [1-y(4)] +
© - YA S5+ 20mx+y+ pr)+Sin((@a-20mx+ v - p)l2 +
5 LD sin((wgtomX+y + om) -SiN((@g-omX+y - pm) 12 (12)
© L
03;?:' The approximated result is like an amplitude modulation.
055 : Beside the “carrier” frequencyy, new frequency component
< 4 : . .
0 0525 : wgt oy andwgt 2w, have been introduced by modulation of
: 0.4575 sampling errors. Similarly, Egq. 12 also holds for sangplin
o~ - ? errors from perspective of x direction.
A o ; Mean Periodogram
= I i P\ ; ; .‘5‘ 0% DZ 200 points : 17.35°
| | | | | | o |
0.0 0.1 0.2 0.3 0.4 0.5 =
Frequency (cycles/unit interval) o1
o |
Fig. 3. Directional periodogram of sampling errors alongdiion @
atan(5/16)
Proposition 3 For continuous sinusoid wavéx, y), if the S
wave frequency for sample points on the sampling linagalo
directiond (0< 0 < ) is vy, then the gridded samples of the 06 02775 07
same sampling lines will have dominated frequemgyand o 0.0975 015
additional signals arounge; = vg = f and vgex = vg £ 2- i, - 7 ate
wheref. is the dominated frequency of the sampling errors.

Proof: Suppose sinusoid wawe (x, y) propagates along o A i /A -
direction g (0 < g < x); its projection on the sampling lines | | ‘ | r |
along directiond (0< 0 <7 ) is Wy (X) = sin(wg X + w). The

sampling errore(t) is from perspective along y direction, then 0.0 0.1 0.2 0.3 0.4 0.5
e(x)-sin (p) is the part act on the wave direction. The wave Frequency (cycles/unit interval)

signalwy (x) after gridding is denoted ag, (x), then we will

have the following equation: Fig. 4. Modulation effects of sampling errors. Signals: @ 0.4t) along

30°; noise: none; sampling directiatan (5/16)

Wep () = sin (@q (X + € (X)-sin (£)) +v) When4 — 0, {(4) >>y(4), because they are function 6f
= sin(wg X + y +sin (ﬂ)'wdzmzltoMem(X)) (8) in different order: ford < w3, {(4) = ¢4, y(4) = c4® The
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modulation effects ofog+ wr, is much stronger than that @f Fig. 6 is another example: 2 sinusoid waves propagate
* 20 When4 is small. In may cases, we only need to considealong direction 30° and -30° in a 480400 wave field; the

the dominated frequendy= wn, /21, and its effects ofy+ f.. frequency is 0.4 and 0.05, respectively. Their amplit@desl
According to Carson's Rule for Phase Modulation, most of thand 1.5; while the Gaussian noisNig0, 16). The signals are
energy of the modulated signal is contained within theburied in the noises. Fig. 6 is the periodogram for daefi
bandwidth of 24+1)w,, andh is the peak phase deviation. In samples along angke= 15°. Please notice that there is a small
our caseh < /2. This is consistent with conclusion of Eq. 12 peak around frequency 0.3325. This is the modulation effect
sampling errors act on periodogram spike at frequency 0s4: it
not significant and can be smoothed out, thus it isnmatked

IV. DIRECTIONAL PERIODOGRAMEXAMPLES , ;
as wave spectral signal in the plot.

This section will illustrate some examples for the speat

of directional samples modulated by sampling errorst,Fes However, in practice there are cases for which sampling
take a look at the modulation effects for the examplebited  errors are not negligible, especially when wave fregesrare
in Fig. 3. Herevy = 0.41,f. = f, = 5/16 = 0.3125, andf, = large and noise levels or smoothing levels are relgtilow.

0.375,f;= 0.0625,f, = 0.4375. For sampling errors modulatedAs in Fig. 7, beside the expected dominated frequencyat 0
signal, the major expected spectral spikes are at &dlipther there are a series of small frequency peaks causedriplisg

spikes are all consistent with Fig. 4. errors; the spike at 0.1767 is not just a small peak.
Mean Periodogram Mean Periodogram
0% DZ 200 points - go° 1% DZ 200 points - 15°
: o
e ‘ o~ 0i4
(=]
W — D
0.035 |
© — 2 | oofrs
< - 8 wa
o~ - T T T T T
0.0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/unit interval)
(= B B : i i
‘ ‘ ‘ ‘ ‘ ‘ Fig. 6. Periodogram for gridded directional samples aldby $ignalssin
0.0 0.1 0.2 0.3 0.4 0.5 (2n-0.4t) along 30°; 1.5in (2r-0.05t) along -30°; noise N (0, 100).
‘ L ‘ | | | 0% DZ 150 points : 60°
2 2
(=T
~ % _
0|
— o |
P ™~ 0.176667
(= o
- 01483775 o
01075 o A o
0o
o LS | | T | | |
0.0 0.1 0.2 0.3 0.4 05

Fig. 5. Periodogram of sampling errors (upper) and the rated wave Frequency (cycles/unit interval)

(bottom). Signals: sin 20.45t) along 30°; noise: none; directiorF 92°.
Fig. 7. Effects of sampling errors for directional periodmm along 60°.

Fig. 5 exhibits another example of sampling errors and the Signals:sin (2r-0.4t) along 30°; noise: none
modulation effects. For the given sampling linévft = 0.45
€0s(92°-30°)Ysin(30°) = 0.2114. Following Eq. 1, we will have
f. = tan (27/180) = 0.035; the modulated signal have spikes at V- .LINEAR lNTERPOLATIO'\f OF TH.EWAVE SI_GNA_L
f.+ f. = 0.246 and, - f. = 0.176,f, + 2f = 0.281,f, - 2f = Sometimes, the method of linear interpolation is used to
0.141. The detected results fit the formula very well. remedy the effects of sampling errors. A typical atpan is

interpolating by weighting based on distances of real value t
grid points. Suppose the grid interval is 1 on both x ynd
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direction, and we denote the interpolated signalgag(t) on
the sampling line along directidgh then the algorithm is:
We »(X) = a-w(X, floor (tan(6) - (X+X0))) +
(1-0)-w (X, ceiling(tan(0) - (x+xo))) (13)

wherea = |tan(d) - (x+x,) — ceiling(tan(d) - (x+xo)) |, xZ,
for perspective of y direction.

We 4 (Y) = e w(floor (tan(6) - (y+yo))), y) +
(1-)-w(ceiling(tan(0) - (y+y2))), y) ~ (14)

wherea = |tan(6) - (y+yo) — ceiling(tan(6) - (y+vy)) |, yL1Z,
for perspective of x direction.

Notice that the frequencies afand (1 -a) is actually the

frequency of sampling errorx@; t) before interpolation; the

frequencies ofv (x, floor (tan(#) (x+xo))) andw (x, ceiling(tan
(0)(x+x9))), as while asv(floor (tan(8)(y+Yo)), y) andw(ceiling

because the Fourier transform and KZFT are highly seéecti
recovered movement energy decreases rapidly with bias from
given frequencies. However, this method only works Vil
situations of low background noise. If noise level iases, the
accuracy of reconstruction quickly decreases. One mieiho
overcome this disadvantage is to average the reconstructed
signal along the direction that perpendicular to its pyapag
direction. In this case, the spatial arrangement of piases”

of directional sampling lines may cause a different tgpe
sampling errors if the signal frequency isn’t considered.

Fig. 9 is an illustration of the spatial phase patteansaf
wave signal and its different reconstructions. The spatial
interaction of signal and sampling errors generatetpat as
if two waves moved in the field. Pattern 1 (bottom léftfor
the sampling scheme using no frequency information, thus the
sampling errors formed a “wave” propagating algraxis, and
this direction will not change with wave frequency.

(tan(@)(y+ys)), y) all have the same frequency as sampling The setting of directional sampling lines in Pattern 2
errorse(d; 1), which hadsi. = |tan(6) |. However, their phases (bottom right) used wave frequency information, and itsréoi

are quite different to each other. Here we don't furthaend
the formula. An important fact is that linear interpmatof the
wave signal cannot totally eliminate the effects tbie

dominated frequency of sampling errer but it can largely

diminish the effects of other harmonic frequency.oin fact,
linear interpolation will introduce an amplitude modwatiof

wave signal with frequendy. Thus this method will reduce the

power of the wave signal; but the effecf.olvill still appear in
the periodogram (see Fig. 8).

Mean Periodogram
0% DZ 200 points - 92°

|
e
[=T 0.225
=
0.2475
o -

I I T I I I
0.0 0.1 0.2 0.3 04 0.5
Frequency (cycles/unit interval)

Fig. 8. Modulation effects of linear interpolation of wav&smpled along =
92°. Signals: sin (20.45t) along 30°; noise: none.

pattern direction will change with wave frequency. Inétat?2,
points in the connected regions with same color (whiteedr
strips) are taken as if have the same wave phaseg anahe
same sampling line along orthogonal direction and therefore
could be averaged to filter out the noise.

Ml

TR T TS T
| LI

Fig. 9. Spatial patterns of a wave (upper left) and itemstructions through
averaging along orthognonal wave direction basesionpling of: (1) given
direction (bottom left); (2) given direction anéduency (bottom right), (3)
given direction, frequency, and fine averaging myi@pper right). The
correlation coefficient with original signal (wasén (2r-0.45t) along 5°, no
noise) is (1) 71.3%, (2) 72.5%, and (3) 99.6%, eesipely.

Without related information of the spatial wave, the

performance of interpolation algorithms is limitecbwever, if

Sampling scheme of Pattern 2 reflects the wave steucfur

the background noises are high, the sampling errors aier ea signal; but since its averaging grain is too large atteiracy of

to smooth out as noises with linear interpolation method.

VI. DIRECTIONAL SAMPLING ERRORS INRECONSTRUCTION

Most sampling errors as defined by Eq. 1 can be easilp{oi

filtered out in the process of reconstructing spatialesawith
Fourier transform, especially with KZFT [1, 2, 7, 8]. §h$

reconstruction is not high. Pattern 3 is improved bintakine
grain to average data. This improved sampling scheme ca
almost perfectly recover the signal even under strorgenoi

Please notice that the best averaging grain is decided by
se level and the size of wave field. With higheisadevels
we need more data points to average out the noise effects
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while with larger field size, there will be more pwiron the step, {kz.rc2} will recover wave movements in 2D field.
same sampling line and the rounding grain could be finer. Functions are also available for other auxiliary proegss

Also, the improved sampling scheme doesn’t affect the From the upper two Boxplots of Fig. 10, obviously, the
sampling errors as defined by Eq. 1. In fact, Patte®) &nd 3  correlation decreases when the noise levels increasdsthe
have the same spectrum features for the sampling eemods; procedure usually fails to identify the wave parametersn
the sampling scheme of Pattern 1 is exact what we wsed fthe noise levels are more than 15 to 20 times of idmalk
directional periodogram [6]. The relational of improvedlevels. Comparing the two Scatter plots on the batttre
sampling scheme is to avoid introducing sampling errorgjuality of the reconstructions based on optimized paramete

caused by spatial phase shift. tends to be higher (about 5%) and is more robust when noise
levels increases. The simulation was based on an automatic
VII. FROM IDENTIFICATION TO RECONSTRUCTION searching procedure utilizing KZ directional periodogrdih [

There are about 25 cases failed to be correctly idehtifie

The reconstruction process used both wave direction angscause of extremely high noise ratio, very small fiedd, or
frequency information in the algorithm. The accuracythf being buried by other dominated signals.

identified wave parameters directly affects the quabfy

reconstruction. Fortunately, as far as the identifiecupaters The results illustrate that the whole procedure thainfr
are not from a fake signal, optimization proceduresbeansed identification to reconstruction is feasible; and tpéroization

to improve their accuracy. During the optimization procttes ~ procedure is useful for improving the accuracy. Usualtpéf
highly selective feature decided by the frequency respondield size is large and the noise level is relativaly, the
characteristics of KZFT [2] helps to filter out untteld moves improvement of optimization is marginal. There are efeam

and noise, and therefore we can accurately identifyr¢né  cases for which the reconstructions based on un-optimized
parameter based on given information of wave frequency arRrameters are slightly better than that of after dpétion
direction. For this reason, identification is the keégpsand under extreme noisy conditions. But the effects of optition

important starting point for this process. are consistently positive for most cases under giveimget
Noise level vs. correlation
S’Eéf SiT%ﬁ* VIII.  SUMMARY
24 7 = = 9 | —E == The wave patterns formed by sampling errors are analogue
. == . to Moiré pattern formed by two sets of parallel linbst has
c : — | ° different underlying mechanism. In this paper, we discussed

the sampling errors formed by the gridded wave field and its
effects on the sampling lines along given direction. hsee

o

02 04
L 1
o

@
02 04
L 1

o ° B demonstrated that the sampling error is periodic signits
2 o o = o seesaw like wave; their fundamental frequency and doeudnat
o s 0 1 2 2 o s 1o 15 2 o frequency are functions of the sampling direction. When the
rosie levelisignal level sampling errors act on the directional periodogram, the

modulation effects can be predicted. We therefore are tabl
identify the source of these unusual periodogram spikes@and d
not take the incorrect spectral signals into the warameter
identification analysis [6].

1.0
1.0

08
L
08
1

06
L
06
1
o
o

04
04

. Generally speaking, the best way to avoid sampling error

o ° o effects is to increase the sampling frequency so thaivéve
° o ® ° frequency will not be too close to 0.5. The second meithtul
sS4 : : LI - . ‘ e smoothing the directional periodogram. This can be used to
4 2 0 2 4 4 2 0 2 4 handle most of the cases in practice. When the waveeinegu
log(nosie level/signal level) log(nosie level/signal level) |S hlgh than 04, and the Sampllng errors Cannot be SEHd)Oth

Fig. 10.Simulation results for correlation coefficientsdifferent noise levels out, we can predicate the modulated frequency spikds wi
for 200 cases of 2D wave signals reconstructeddbasédentified wave Proposition 3. This method is useful for the identifivatof

parameters. (1) (upper left) Boxplot for reconstinrchased on identified spatial wave parameters.

parameters; (2) (bottom left) Scatter plot for mestouction based on identified The f la t dict tral behavi f l
parameters; (3) (upper right) Boxplot for recondinrcbased on optimizated € formula 1o predict spectral behavior of sampling error

parameters; (4) (bottom right) Scatter plot farorestruction based on effects have been used in our R package {kzfs} [7].sThi
optimizated parameters. package is designed for the separation and reconstruatio
motion scales in 2D motion images on different directions
Our R package {kzfs} helps to realize the whole procesgased on KZ periodogram and KZFT. For the wave parameter
from the step of identification to reconstruction. Rio identification, {kzfs} provides functions to check direwtal
{kzpdr} is designed to collect directional periodografata; periodograms for spatial waves in the wave field. Resof
estimation works will be done with function {kzpdr.evalhd this paper help to exclude the fraud spectral spikes dduge
{kzpdr.estimate}. {kzp2d} estimates wave parameter®las  sampling errors of directional samples generated from t
2D periodogram. Function {OptDRP} and {Opt2DP} are given gridded data.
to optimize the identified parameters. For the recansbn
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