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Abstract  
 

In this paper, we present that hyperspectral image 

classification based on sparse representation can be 

significantly improved by using an image enhancement 

step. Spatial enhancement allows further analysis of 

hyperspectral imagery, as it reduces the intensity 

variations within the image. Perona-Malik, a partial 

differential equation based non-linear diffusion scheme 

is used for the enhancement of the hyperspectral 

imagery prior to classification. The diffusion technique 

applied smoothens the homogenous areas of 

hyperspectral imagery and thereby increases the 

separability of the classes. The diffusion scheme is 

applied individually to each band of the hyperspectral 

imagery and it does not take into account the spectral 

relationship among different bands. Experiments are 

performed on the real hyperspectral dataset AVIRIS 

(Airborne Visible/IR Imaging Spectrometer) 1992 

Indiana Indian Pines imagery. We compared the 

classification statistics of hyperspectral imagery before 

and after performing the spatial preprocessing step in 

order to prove the effectiveness of the proposed 

method. The experiments results proved that the 

hyperspectral image classification using sparse 

representation along with spatial enhancement step 

lead to 97.53% of classification accuracy which is high 

when compared with the classification accuracy 

obtained without applying the spatial preprocessing 

technique.  

Keywords: Compressed sensing, classification, sparse 

representation, hyperspectral imagery, Simultaneous 

OMP, preprocessing, Perona-Malik diffusion 

 

 
1. Introduction  

 
Imaging spectrometry or hyperspectral sensing 

allows simultaneous acquisition of images in hundreds 

of narrow contiguous spectral bands spanning the 

visible to infrared region of the spectrum. The high 

resolution reflectance spectra collected by imaging 

spectrometers makes it possible to classify materials 

within the scene with improved accuracy. However, 

hyperspectral imagery suffers from several drawbacks. 

The most important disadvantage is the computational 

complexity involved in processing high dimensional 

hyperspectral dataset. In addition to this, hyperspectral 

imagery suffers from noise and poor contrast due to 

different illumination conditions, degradation in 

transmission media, etc. 

Various techniques have been proposed for sparsity 

based hyperspectral image classification. The sparsity 

model [2] [3], relies on the fact that hyperspectral 

pixels belonging to the same class will approximately 

lie in a low-dimensional subspace. Thus, a test pixel 

can be sparsely represented using few training samples 

from a dictionary and this sparse representation will 

give information about the class label. Since the 

hyperspectral images have large homogenous regions, 

pixels in the neighbourhood consist of similar material. 

Hence to exploit contextual information, a joint sparsity 

model [4] is employed where neighbouring pixels are 

represented by linear combination of few common 

training samples. Each pixel share the same training 

samples (atoms) but are weighted using different 

values. Previous approaches for hyperspectral image 

classification shows that use of kernel methods yields 

significant improvement in classification performance 

[6]. This is due to the fact that kernel methods project 

data into a nonlinear feature space making it more 

separable. Hence the linear sparse model is extended to 

a high dimensional feature space by using kernel 

function [7], where a test pixel is sparsely represented 

in terms of all training samples in a feature space by 

using a kernel based greedy algorithm. Further 

improvement in classification is brought about by using 

probabilistic graphical model [8], where discriminative 

tree graphs are learnt for each set of distinct sparse 

feature vectors. These features exhibit class conditional 

correlations and hence classification is performed by 

using a classifier that combines the distinct sparse 

features.  

In this paper, we apply a spatial preprocessing step 

prior to sparsity based classification. The preprocessing 

technique performed in our proposed work is PDE 

based Perona-Malik nonlinear diffusion, which allows 

the homogenous regions to be smoothened out and 

thereby increases the separability between the classes. 
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However, the diffusion scheme is applied on each band 

individually and hence does not take into account the 

spectral relationship among different bands of the 

hyperspectral image. In order to prove the effectiveness 

of our proposed method, we have compared the 

classification statistics of the Indian Pines hyperspectral 

dataset before and after performing spatial 

preprocessing technique. The results have proved that 

hyperspectral image classification using sparse 

representation along with an enhancement step offers 

significantly better classification results. 

 
2. Basic theory of Compressive Sensing  
 

In this section, we present a brief overview of 

compressive sensing and sparse representation. 

Compressed sensing is a recently developing method 

that exploits the fact that signals are either sparse by 

itself or sparse in any other transformation domain. By 

the term sparsity, we mean that the information present 

in the signal can be compactly represented by using a 

few non-zero values. Consider a signal x of length N 

and with K non-zero entries, where K << N. 

Compressive sensing framework recovers the signal x 

from 

                y Ax               (1) 

where y is a vector and A is a dictionary matrix with 

size M×N, where M ≪ N. Here, we say that x is 

compressible in A. As M ≪ N, gives infinitely many 

solutions for (1). One way of finding the solution for 

(1) is by finding the ’sparsest’ x. The sparsest solution 

is obtained by solving the following optimization 

problem 

        0
min subject tox Ax y

             
(2) 

where 
0

x gives the count of the number of non-zero 

elements in x. 

Hence, we find that sparse representation allows 

representing a signal as a linear combination of few 

atoms from the dictionary. The dictionary can be either 

based on a mathematical model of the data or it can be 

learned directly from the data. 

 

3. Perona-Malik Non-Linear Diffusion 
Scheme  
 

Spatial preprocessing techniques are used to remove 

noise and smoothen out the image. Hence, they 

enhance the quality of the image, resulting in improved 

classification accuracy. In this paper, PDE based 

diffusion schemes have been used as the preprocessing 

step. 

In general, diffusion equation in 2-D is given by 

                   0

( , , ) . ( , , ) ( , , )

( , , 0) ( , )

u x y t c x y t u x y t
t

u x y u x y
  (3) 

where c(x, y, t) is the diffusion conductance or 

diffusivity,  is the gradient operator, .  the 

divergence operator, and t denotes the number of 

iterations. If c(x, y, t) is a constant, it leads to a linear 

diffusion equation. In that case, the filter not only 

smoothens out noise in the image, but also blurs edges 

as the image evolves in time. If the function c(x, y, t) is 

not a constant and is image dependent, then the linear 

diffusion equation becomes a non-linear diffusion 

equation. By using a diffusion conductance c that was 

based on the derivative of the image at time t, we will 

be able to control the diffusion near the edges in the 

image. Such an improved formulation is known as 

anisotropic diffusion, where diffusion takes place 

according to a diffusion coefficient that is variable and 

adaptive in order to reduce the smoothing effect near 

edges. [11] 

Perona-Malik [10] proposed anisotropic diffusion to 

smooth out noise and prevent diffusion at the edges. 

The term “anisotropic” as defined by Perona and Malik 

refers to the case where the diffusivity is a function 

varying with the location. However, the Perona and 

Malik process is essentially a nonhomogeneous 

nonlinear isotropic diffusion, since it utilizes a scalar-

valued diffusivity function. The anisotropic diffusion 

equation given in (3) when applied to hyperspectral 

imagery is given as 

                      
.( ), 1, 2,......i

i

u
c u i B

t                (4)

 

where 1( ,......, )
T

Bu u u is the hyperspectral image 

composed of B  bands. 

The diffusivity function used here is 

                            

2

2
( ) exp( )

u
c u

k                    (5)

 

where k is a constant which influences the smoothing 

process. A large value of k will cause low-contrast edge 

features to be smoothed out, while a small value of k 

leads to slow diffusion within homogeneous regions. 

Now, ( )c u is a scalar function that controls the 

amount of diffusion. We find that ( ) 0c u  when 

u is large. The norm of the image gradient u  is 

large at the edges of the image. This ensures that strong 

edges are less blurred by this function than noise and 

low-contrast details present in the image. 

Hence, the basic idea in using the diffusivity 

function ( )c u is that it is variable and increase as 
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u  decreases. At homogenous regions in the image, 

where u is small, ( )c u  is large and lot of 

smoothing is done whereas in regions where u is 

large (i.e. near edges), ( )c u tends to zero and as a 

result, the edges are preserved. 
 
4. Classification using Sparse 
Representation with Contextual 
Information 
 
4.1. Classification Algorithm 
 

In this section, we brief out the sparsity based 

classification method using contextual information 

proposed by Yi Chen et al. [3]. Let 

,1 ,2 ,[ , ,....., ]
ii i i i nA a a a

 
be the training set 

corresponding to the ith class, where 
,i ja , 1,2,..... ij n

 

is a B-dimensional vector. A test sample 
By  from 

this class can be represented as a linear combination of 

the fewest training samples possible, out of the entire 

training set. Suppose we have M different classes, 

then
1 2[ , ,......., ]MA A A A be the concatenation of the 

N training samples from all M classes. Therefore, a test 

pixel can now be represented as a linear span of all 

training samples by y = Ax   

where
,1 ,[0,...,0, ,....., ,0,......0]

i

T

i i nx
 

is the sparse 

representation of y. 

Now, in order to increase the classification 

accuracy, the spatial correlations among pixels are 

considered. This is known as the joint sparsity model 

[3]. Consider a neighbourhood N which consist of T 

pixels. Pixels are concatenated to form a matrix Y. 

Now, using joint sparsity model we can write 

1 2 1 2
[ ...... ] [ ...... ]

T T
Y y y y Ax Ax Ax  

                                           AS                                 (6) 

where 1 2[ ...... ]TS x x x . In joint sparsity model, 

hyperspectral pixels in a neighbourhood can be 

represented as linear combination of few common 

atoms from a dictionary. The matrix S can be recovered 

by solving the following joint sparse recovery problem 

      
,0

ˆ arg min -    
F row

S AS Y subject to S K
    (7) 

where K denotes the number of non-zero elements. The 

simultaneous sparse recovery problems are NP-hard 

problems, which can be approximately solved by using 

greedy algorithm like Simultaneous Orthogonal 

Matching Pursuit (S-OMP) [5]. Finally, the residual for 

each class is computed and the class for which residual 

is minimum is assumed to be the class of the test pixel. 

 

4.2. Simultaneous Sparse Recovery 
Algorithm(S-OMP)  
 

In simultaneous sparse approximation, several input 

signals are approximated using different linear 

combination of the same K elementary signals. This 

appears when we are analyzing multiple observations 

of a sparse signal that have been contaminated with 

noise. 

 

Input: B N dictionary matrix 
1 2

[ , , ........, ]
N

A a a a , 

B T matrix 
1 2

[ , , ........, ]
T

Y y y y  

 

(1) Initialize the residual res =Y, the index set
0

, 

and the iteration counter k= 1. 

(2) Find the index of the atom which best approximates 

all the T input signals 

1
1,..,

arg max ; 1
T

k k i pi N

res a p  

(3) Update the index set 

1k k k
  . 

(4) Determine the orthogonal projector kP onto the span 

of the atoms indexed in k  . 

1
( )

k k k

T T

k
P A A A Y  

(5) Calculate the new residual 

k
k k

R Y A P  

(6) Increment k, and return to Step 2 until stopping 

criterion is met. 

 

Output: Sparse representation Ŝ whose non-zero rows 

indexed by index set are the K rows of 
1

( )
T T

P A A A X   

 

Step 2 of the algorithm is referred to as the greedy 

selection. The intuition behind maximizing 
T

i p
res a  

is that we wish to find an atom that contributes the 

most energy to as many of the input signals as possible. 

In this paper we have selected p . It is important 

to note that each column of the residual is orthogonal to 

the atoms indexed in . Therefore, no atom is ever 

chosen twice. 

 5. Proposed method  
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Figure 1. Block diagram of the proposed method 

 
In literature, it can be seen that the most obvious 

way to improve classification performance is by using a 

preprocessing stage before the classification algorithm. 

In this paper, we have applied a Perona and Malik non-

linear diffusion preprocessing step prior to sparsity 

based hyperspectral classification. Fig. 1 shows an 

overview of the proposed method. The input to the 

algorithm is the hyperspectral image Indian Pines, 

which consists of 220 spectral bands in the spectral 

range of 400-2500nm. The very next step is the 

removal of the noisy bands. Bands 104-108,150-

163,220 are considered as noisy due to water 

absorption (Tadjudin and Landgrebe, 1998) and are 

hence removed. The resulting hyperspectral image 

consists of 200 spectral bands. The proposed algorithm 

mainly consists of two main stages-Preprocessing and 

Classification.  

 

 

 
5.1. Spatial preprocessing step 

 
In preprocessing step, Perona-Malik diffusion 

scheme is applied to each band of the hyperspectral 

image. When performing band wise smoothing, 

contents of the other bands are ignored because each 

band of an image is treated “separately”. Hence, this 

mechanism does not take into account the spectral 

relationship among different bands of the hyperspectral 

image. Now, the diffused hyperspectral bands are 

combined to form the hyperspectral cube. 

 
5.2. Classification step 

 
Classification stage usually involves separating data 

into training and testing sets. In the training phase, 10% 

of the pixels of the hyperspectral image are randomly 

selected from each class and are concatenated to form a 

dictionary matrix A. Now, all the columns of the 

dictionary matrix must have unit norm. In testing 

phase, all the hyperspectral pixels, excluding 

background pixels are used for validation.  

In a real hyperspectral image, neighbouring pixels 

are highly correlated mainly due to the fact that 

homogenous regions in the hyperspectral image are 

generally large when compared to the size of the pixel. 

Hence, in order to improve the classification accuracy 

information each pixel is classified based on its own 

spectral information along with the information 

extracted from its neighbourhood. This is what is done 

in the joint sparsity model, where pixels are selected for 

testing by using a window whose size is variable. The 

centre pixel of the window forms the test pixel, whose 

label is to be determined. The pixels in the 

neighbourhood are then arranged to form a matrix, 

where each column of the matrix represents a 200 

dimensional vector. This matrix is represented as Y. 
This is illustrated below by using an example. Consider 

a hyperspectral image shown in Fig. 2. Here, we 

consider a 3×3 neighbourhood.  

 

 

 

 

 

 

 

 
 

Figure 2. Hyperspectral Image 

 

Let, y1 be the test pixel and yi, i = 2,....,9 be the 

neighbouring pixels. Now, the pixel in the center is 

classified by taking into account the information from 

its neighbouring pixels. Each pixel is then vectorized 

and concatenated to form a matrix, which in this case is 

of size 200 × 9. 
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Finally, Y is sparsely represented using dictionary 

matrix A. The matrix S can be recovered by solving the 

following joint sparse recovery problem 

,0

ˆ arg min -    
F row

S AS Y subject to S K
 

where K denotes the number of non-zero elements. The 

above optimization problem is approximately solved by 

using greedy algorithm like Simultaneous Orthogonal 

Matching Pursuit (S-OMP) [5], which is explained in 

the previous section. The sparse matrix S, is a row 

sparse matrix since only a very few atoms of A is used 

to represent Y. The residual for each class is computed 

by calculating the difference between the original 

samples and its approximation. 

ˆ( ) , 1, 2.....
m m m

F
r Y Y A S m M  

Finally, the class for which residual is minimum is 

assumed to be the class of the test pixel (center pixel). 

1
1,2...

( ) arg min ( )
m

m M

Class y r Y  

 
6. Experimental Results  
 

In this section, we present an overview of the 

characteristics of the data used followed by the 

accuracy assessment measures used for evaluating the 

classification performance. We then brief out the effect 

of the parameters on the classification algorithm and 

finally compare the classification performance of 

hyperspectral image before and after applying spatial 

preprocessing step. 

 

6.1. Dataset Description  

 

The hyperspectral image used in our experiments is 

the Indian Pines image shown in Fig. 3(a), acquired by 

Airborne Visible/IR Imaging Spectrometer (AVIRIS) 

sensor. This image contains 145×145 pixels and 220 

spectral bands in the spectral range of 400-2500nm. 

Noisy bands 104-108,150-163,220 were removed due 

to water absorption. Hence, the processed image has 

145×145 pixels and 200 spectral bands. Fig. 3(b) 

shows the ground truth available for the Indian Pines 

image consisting of 16 classes, of which ten correspond 

to different kind of crops, five correspond to 

vegetation, and one corresponds to a building. 

 

 
(a) 

 

 
(b) 

      

Figure 3. AVIRIS data scene a) color composite 

image, b) ground data for the scene and description 

of the classes 

 

 

6.2. Accuracy Assessment  

 
Classification accuracy in case of hyperspectral 

images is best expressed by using confusion matrix or 

error matrix. The major diagonal of the error matrix 

represents the properly classified land use categories. 

The non-diagonal elements of the matrix represent 

errors of omission or commission. Omission errors 

correspond to non diagonal row elements and 

commission errors are represented by non diagonal 

column elements. The classwise accuracy, average 

accuracy, and overall accuracy is measured from the 

confusion matrix as given below  

 

     
 

      

Correctly classified pixels in each class
Classwise Accuracy

Total number of pixels in each class
 

      
 

   

Sum of the accuracies of each class
Average Accuracy

Total number of class

    fie  
 

   

Total number of correctly classi d pixels
Overall Accuracy

Total number of pixels
 

6.3. Results and Discussion 
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In this section, the Perona-Malik diffusion 

algorithm is applied to a real hyperspectral image, and 

is then evaluated quantitatively and visually using 

classification maps. Briefly explaining our work, we 

first perform Perona-Malik non linear diffusion on each 

band of Indian Pines image after which the 

hyperspectral cube is classified using joint sparsity 

model. The performance of the proposed method is 

then compared with the sparsity based classification of 

hyperspectral image without applying spatial 

preprocessing method.  

The effect of spatial preprocessing on the 

hyperspectral image classification depends on the 

parameters such as number of iteration, step size and 

diffusion control parameter k value. We find that as the 

number of iteration increases, the entire image gets 

blurred. This is one of the drawbacks of diffusion 

techniques. Over-diffusion of the image may result the 

new smoothed image to be too far from the original 

version. Hence, the number of iterations is to be limited 

so that the features are preserved. Here, the number of 

iteration is limited to 3, where we find the noise been 

attenuated while the features been preserved. The step 

size plays an important role in the stability of the 

diffusion process. The step size should be chosen less 

than 0.25 in order to result in a stable solution scheme. 

Diffusion control parameter k influences the smoothing 

process and mainly depends on the hyperspectral image 

used. Here, we have set the k value as .012.  

 

 

 

 

 

 

 
     (a)           (b) 

 

 

 

 

 

 

 

      (c)            (d) 

 

Figure 4. Effect of preprocessing (a) original band 2  

(b) band 2 after  preprocessing (c) original band 145  

(d) band 145 after  preprocessing 

 

 

Fig. 4 shows the effect of Perona-Malik diffusion. 

Comparing the original and preprocessed version, we 

find that in noisy band 2, noise has been reduced with 

most of the features been preserved whereas the 

noiseless band 145 has been smoothed out. 

In order to observe the effect of Perona-Malik 

diffusion on the classification of the real hyperspectral 

image, we present the classification maps obtained 

using Indian Pines image before preprocessing and 

after preprocessing, which are depicted in Fig. 5. 

According to the visual analysis, the proposed method 

gives more accurate classification map than the 

classification map obtained without applying the spatial 

preprocessing technique. Furthermore from Table 3-4, 

it is apparent that preprocessed image produces higher 

classification accuracy.  

 

 

 
                (a)   

 

 

 
  (b)              (c) 

 

Figure 5. (a) Ground truth map. Classification maps 

obtained using Indian Pines image (b) before 

preprocessing (c) after preprocessing (proposed 

method) 

 

Finally, a main issue to be highlighted from the 

results is that an optimal sparsity level K and window 

size acts as important parameters for varying the 

classification accuracy. In this work, we have set the 

window size as 9 × 9 and sparsity level K as 30, which 

gives highest classification accuracy as shown in Table 

1. The sparsity level K is varied from 10 to 30 and the 

window size is varied from 3 × 3 to 9 × 9. We find that 

as the window size increases, accuracy increases. This  

Table 1. Effect of window size and Sparsity level K 

on Overall Accuracy of Indian Pines image before 

preprocessing  
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Window size Sparsity Level K Overall Accuracy 

3 3  

10 92.34 

20 83.66 

30 82.71 

5 5  

10 90.47 

20 90.87 

30 90.93 

7 7  

10 89.30 

20 94.02 

30 94.03 

9 9  

10 88.57 

20 94.24 

30 94.77 

 

 

is because of the fact that the Indian Pines image has 

large homogenous regions. We also find that when the 

window size is large, a small sparsity level gives 

reduced accuracy results since the pixels in the 

neighbourhood cannot be faithfully approximated using 

a few training samples. Also for a large sparsity level, 

the classification accuracy increase as the window size 

increases [3]. 

 

7. Conclusion 
 

In this paper, we discussed the overall impact of spatial 

preprocessing technique namely Perona-Malik, a non-

linear diffusion scheme applied prior to sparsity based 

hyperspectral image classification. We considered the 

hyperspectral imagery as two-dimensional images and 

applied the diffusion scheme on each band of the 

hyperspectral data. The proposed method was tested on 

a real hyperspectral dataset. The experimental results 

proved that the spatial preprocessing technique applied 

on the hyperspectral band improved the quality of 

image and provided better within-class variations 

which lead to the increase in classification accuracy. 
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Table 2. Confusion Matrix for Indian Pines image calculated based on our proposed method 
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CLASSIFICATION RESULTS 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

G
R

O
U

N
D

 T
R

U
T

H
 

1 50 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1379 2 0 0 2 0 0 0 10 26 0 0 1 14 0 

3 0 5 808 5 5 1 0 0 0 0 0 6 4 0 0 0 

4 0 0 0 232 0 0 0 0 0 0 0 2 0 0 0 0 

5 0 0 7 0 475 0 0 0 0 10 5 0 0 0 0 0 

6 0 0 0 0 0 743 0 0 0 0 2 0 0 2 0 0 

7 0 0 0 0 18 0 8 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 489 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 

10 0 18 4 0 0 0 1 0 0 926 8 3 0 8 0 0 

11 0 6 0 0 0 10 0 1 0 5 2441 0 1 2 2 0 

12 0 0 7 2 0 0 0 0 0 1 0 599 0 0 1 4 

13 0 0 0 0 2 0 0 0 0 0 0 0 210 0 0 0 

14 0 0 0 0 0 0 0 1 0 0 4 0 0 1284 5 0 

15 0 0 0 0 0 0 0 0 0 5 0 0 0 0 375 0 

16 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 91 

 

Table 3. Comparison of classwise accuracy of Indian Pines image before and after applying spatial preprocessing 

(proposed method) 

Class before applying spatial preprocessing after applying Spatial preprocessing (proposed method) 

1 85.18519 92.59259 

2 91.98047 96.16457 

3 92.20624 96.88249 

4 94.01709 99.1453 

5 94.3662 95.57344 

6 98.92905 99.46452 

7 50 30.76923 

8 100 100 

9 5 0 

10 86.77686 95.66116 

11 98.29822 98.906 

12 88.59935 97.557 

13 98.58491 99.0566 

14 99.53632 99.2272 

15 95 98.68421 

16 95.78947 95.78947 

Overall 94.77 97.53 

Average 85.89 87.217 
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