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Abstract 

 

 
 Compressed sensing is a new paradigm for signal 

recovery and sampling. It states that a relatively small 

number of linear measurements of a sparse signal can 

contain most of its salient information and that the 

signal can be exactly reconstructed from these highly 

incomplete observations. The major challenge in 

practical applications of compressed sensing consists 

in providing efficient, stable and fast recovery 

algorithms which, in a few seconds, evaluate a good 

approximation of a compressible image from highly 

incomplete and noisy samples. In this paper, we 

propose to approach the compressed sensing image 

recovery problem using adaptive nonlinear filtering 

strategies in an iterative framework, and we prove the 

convergence of the resulting two-steps iterative 

scheme. The results of several numerical experiments 

confirm that the corresponding algorithm possesses 

the required properties of efficiency, stability and low 

computational cost and that its performance is 

competitive with those of the state of the art 

algorithms. 

 1. Introduction 

                                       In most image reconstruction 

problems, the images are not directly observable. 

Instead, one observes a transformed version of the 

image, possibly corrupted by noise. In the general 

case, the estimation of the image can be regarded as a 

simultaneous de-convolution and de-noising problem. 

Intuitively, a better reconstruction can be obtained by 

incorporating knowledge of the image into the 

reconstruction algorithm. Compressed sensing, also 

known as compressive sensing. Compressed sensing is 

the process of acquiring and reconstructing a signal 

that is supposed to be sparse or compressible. It states 

that a relatively small number of linear measurements 

of a sparse signal can contain most of its salient 

information. It follows that signals that have a sparse 

representation in a transform domain can be exactly 

recovered from these measurements by solving an 

optimization problem. However, the number of salient 

features hidden in massive data is usually much 

smaller than their sizes. Hence data are compressible. 

In data processing, the traditional practice is to 

measure (sense) data in full length and then compress 

the resulting measurements before storage or 

transmission. 

                             Section II reviews the existing 

algorithms we consider. In section III we propose a 

method in order to analyze the reconstruction 

approach. Section IV presents the estimation of quality 

based on some numerical experiments. Section V 

presents simulation results and discussions. 

Concluding remarks are presented in section VI. 

 

 2. Related Work 
                   A large amount of research has been 

aimed at finding fast algorithms for solving numerical 

solution of problems. In fact, although are convex 

optimization problems that can be solved using several 

standard methods such as interior points methods, 

when the problems are large, as in the case of real 

images, their practical use is limited by the extensive 

computation required to generate a solution. Recently, 

efficient computational methods for problems of the 

form have been developed.  

  

1.1. Existing Algorithms:   

                              They include iterated shrinkage 

methods, Bregman iterative algorithms, gradient 

projection algorithms[2], fixed point continuation 

algorithms iterative reweighted algorithms and the 
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specialized interior point method proposed in for 

solving the equivalent quadratic problem with linear 

inequality constraints. In an algorithmic framework for 

problems of the form and is also proposed, that 

represents a generalization of the iterate shrinkage 

methods. Other kinds of approaches to solving 

problems are the iterative greedy algorithms which 

include OMP, ROMP and COSAMP, and the 

combinatorial algorithms. 

                         While detailed studies and many 

comparisons between the performance and efficiency 

of the previously mentioned algorithms are given in 

the literature for the reconstruction of sparse 1-

Dsignals[1], it is not completely clear how they work 

for large 2-D and 3-D problems, especially from the 

computational speed point of view. From the results 

of, and it seems that the run time necessary to 

reconstruct 256x256 and 512x512 images ranges from 

one hour to a few minutes. These values are still too 

high to allow for their widespread use in several 3-D 

practical applications, as, for example, medical 

imaging.  

                             The only algorithm that, up to the 

present, seems to be really effective for large scale 

problems is the split-Bregman algorithm [2] . In that 

paper, it is shown that, by minimizing energies 

involving the reconstruction total variation, and using 

a “split” formulation combined with Bregman 

iteration, it is possible to obtain sufficiently accurate 

reconstructions of 256 x256 sparse gradient images in 

a few tens of iterations. Recently, a new nonlinear 

filtering strategy has been proposed in the context of a 

penalized approach to the compressed sensing signal 

recovery problem. A suitable filter is used according 

to the considered minimization problem and a fast 

flexible algorithm has been realized for its solution. 

The empirical results presented in show that this 

nonlinear filtering approach succeeds in the perfect 

recovery of sparse and sparse gradient 1-D-signals [1] 

from highly incomplete data, and that the computing 

time is competitive with the most efficient state of the 

art algorithms. 

                                          In this thesis, considered an 

extension of this nonlinear filtering approach to the 

multi dimensional case. We focus on a recovery 

problem where the optimal solution, in addition to 

satisfying the acquisition constraints, has minimal 

“bounded variation norm,” namely, it minimizes. The 

optimal reconstruction is evaluated by solving a 

sequence of total variation regularized unconstrained 

sub problems, where both isotropic and anisotropic 

TV estimates have been considered. For each value of 

the penalization parameter the unconstrained sub 

problems are approached making use of a two-step 

iterative procedure based upon the forward-backward 

splitting method .Interestingly, in compressed sensing 

context, where the acquisition matrix is obtained as 

randomly chosen rows of an orthogonal transform, the 

two steps of the iterative procedure become an 

enforcing of the current iterate to be consistent with 

the given measurements, and a total variation filtering 

step.  

3. Reconstruction approach 

                          We set here our notation and state the 

results   in the following. Let S belongs to R(N1XN2)  

be a randomly generated binary mask, such that the 

point-to-point product with any v  belongs to 

R(N1XN2)   , denoted by  S x v , represents a random 

selection of the elements of  v, namely, we have 

0,0

1,

ij

ijij
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sif

sifv
vwithvSv

ij
     

                                      Let T be an orthogonal 

transform acting on an image x, We denote by 

                  )( xS TSxT                                                                           

                          The randomly sub sampled orthogonal 

transform of the input data can be represented as 

                              xTTSy Sx )(  

                             We want to find u belongs to R 

(N1xN2) that solves 

                 yuTtosubjectuF S
Ru

NN
),(min

21

 

                     In the case of input data perturbed by 

additive white Gaussian noise with standard deviation 

σ 

                      ssx eTeTSy
x

)(  

The problem can be cast as  
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                       where )22(22 MM  

                         To overcome this problem we use the 

well known penalization approach that considers a 

sequence of unconstrained minimization sub problems 

of the form   

         
2

22

1
)(min

21
yuTuF s

k
Ru

NN
    

   The convergence of the penalization method to the 

solution of the original constrained problem has been 

established (under very mild conditions). 

Unfortunately, in general, using very small 

penalization parameter values makes the 

unconstrained sub problems very ill-conditioned and 

difficult to solve. In the present context, we do not 

have this limitation, since we will approach these 

problems implicitly, thus, avoiding the need to deal 

with ill-conditioned linear systems. This is obtained by 

evaluating an approximation of the solution of 

iteratively, using an operator splitting strategy 

(frequently considered in the literature to solve L1-

regularized problems), and taking advantage of the 

particular structure of the resulting problems. 

Fig 1: Test images (a) phantom (b) head image of size 

(256x256)               

The corresponding bound constrained two-step 

iterative algorithm is the following. The proposed 

penalized splitting approach corresponds to an 

algorithm whose structure is characterized by two-

level iteration. There is an outer loop, which 

progressively diminishes the penalization parameter in 

order to obtain the convergence to the global 

minimum, and an inner loop, which iteratively, using 

the two-step approach, minimizes the penalization 

function for the given value of LAMBDA 

   )( nS

T

Snn uTyTuv   

   
2

21
2

1
)(minarg ncun vuuFu  

The general scheme of the bound constrained 

algorithm is   the following: 

StepA-0: Initialization. 

Given F(.),y,Ts,β>0,γ>0,0<r<1,Toll≥0, λmin and  λ0  

such that 0< λmin≤ λ0. 

Set k=0,u0,0=0 and λ0,0= λ0. 

Step A-1: Start with the inner iterations 

While (λk,0> λmin and ||Tsuk,0-y||2>Toll) 

Step B-0: Start with the outer iterations 

i=0; 

Step B-1: 

Updating step: 

)( ,,, ikS

T

Sikik uTyTuv  

Constrained Nonlinear filtering Step: 

2

2,

,

1,
2

1
)(minarg ik

ik

cuik vuuFu   

Convergence Test: 

If |F(uk,i+1)-F(uk,i)|/ F(uk,i+1)≥γ λk,i 

i=i+1 

λk,i= λk,i-1 go to step B-1 

Otherwise go to step A-2. 

Step A-2: Outer iteration Updating 

K=k+1 

λk,0=r. λk-i,i 

uk,0=uk-1,i+1 

endwhile 

Terminate with uk,0 as an approximation of x 

 

4. Numerical Experiment 

                            In this, we demonstrate the 

effectiveness of the proposed image reconstruction 

algorithm by reporting several numerical experiments 

that highlight its reconstruction capabilities, stability 
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and speed. In all the experiments, we have used 

simulated data. This choice is motivated by the need to 

give an objective quantitative evaluation of the 

effectiveness of the proposed algorithm by using 

reconstructed image quality. In fact, the only visual 

inspection of the reconstructed images, as given in 

and, is not really enough to compare the performance 

of different reconstruction algorithms. The image 

quality has been evaluated using the PSNR value, 

defined as            

                  
RMSE

R
PSNR 10log20  

                             Where 

21 NN

Error
RMSE

 

 Where R>0 is the maximum value image gray level 

range and 

      
1 2

1 1

2

,,2
)(

N

i

N

j

jiji xuxuError  

                          The PSNR values that we give in the 

different experiments refer to the first, minimum 

energy reconstruction .As already mentioned, we have 

considered only the sparse gradient case and in all our 

experiments we have used both the anisotropic and 

isotropic discrete approximations of the total variation. 

Since we have experimentally seen that it is not 

important to find a very accurate solution of the 

variation problem, for all the experiments we have 

fixed to four the number of iterations of the isotropic 

estimate yielded by the digital total variation filter. 

This choice represents a good compromise between 

accuracy and efficiency. A higher iteration number 

increases the computing time without a real 

improvement in the reconstruction. The anisotropic 

estimate is obtained using just one iteration of the 

recursive new median filter. Since both the considered 

algorithms deal only with unconstrained minimization 

         We remark that, while the two methods 

substantially perform very well in all the experiments, 

we have noted some differences in their behavior that 

justify the use of both estimate. The images used in 

our experimentation, shown in Fig. 1, are the Shepp–

Logan Phantom, the typical test image of the 

computed tomography literature and an example 

 

         

Fig2: Acquisition Mask 1 & Mask 2 

of a sparse gradient image, and compressible image 

widely used for comparisons between different 

methods, the Head image. All the experiments are 

performed using sub sampled frequency acquisitions, 

but, in order to demonstrate the capabilities of our 

nonlinear filtering method, we have tested it using two 

different acquisition strategies corresponding to the 

masks given in Fig.2                . 

5. Experimental Results 

                  Simulations are performed using Matlab 

software which possesses excellent graphics and 

matrix handling capabilities. Matlab has a separate 

toolbox for image processing applications, which 

provided simpler solutions for many of the problems 

encountered in this research. The results shown in 

table 1 & 2 are obtained by running a matlab 

implementation of the bound constrained version of 

NFCS-2D on a PC with an Intel pentium4 HT3.4Ghz 

processor and 3GB of RAM under Windows XP. 

PHANTOM image Reconstruction: 

 

original image generated mask

sparse image reconstructed image

original image generated mask

sparse image reconstructed image

original image generated mask

sparse image reconstructed image

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

4www.ijert.org



 

 

 

 

 

 

 

 

HEAD IMAGE Reconstruction: 

 

 

 

 

 
 

 

 

 

 

Table 1: Comparisons of PSNR, CPU Time, and Error rate 

for SHEPP-LOGAN WITH Mask1 

 

Method PSNR Error Rate CPU Time in sec 

NFCS-2D 63.7432 32708.24 12.59 

NFCS-2DI 59.0103 18729.18 9.869 

NFCS-2DA 137.3919 2.2564 7.925 

 

 

 

 

 

 

Table 2: Comparisons of PSNR, CPU Time, and Error rate 

for HEAD IMAGE WITH Mask2 

 

Method                                       PSNR Error Rate CPU Time in sec 

 NFCS-2D 62.035 39662.2 11,44sec 

 NFCS-2DI 57.42 22479.2 24.007sec 

 NFCS-2DA 129.395 12.67 5.66sec 

 

6. Conclusion 

                             For the solution of the compressed 

sensing reconstruction problem we have proposed an 

efficient iterative algorithm, based upon a penalized 

splitting approach and an adaptive nonlinear Filtering 

strategy, and its convergence property has been 

established. The capabilities, in terms of accuracy, 

stability, and speed of NFCS-2D, are illustrated by the 

results of several numerical experiments and 

comparisons with a state of the art algorithm. We 

remark that, even if we have analyzed the sparse 

gradient case with under sampled frequency 

acquisitions, our approach is completely general, and 

works for different kinds of measurements and 

different choices of the function. Also for future work, 

it is also possible for reconstruction of 3D i.e. color 

images.    
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