Some Studies on Simple Semiring

P. Sreenivasulu Reddy and Abduselam Mahamed Derdar Department of mathematics, Samara University Semera, Afar Regional State, Ethiopia. Post Box No.131

Abstract: Authors determine different additive and multiplicative structures of simple semiring which was introduced by Golan [1]. We also proved some results based on the paper P. Sreenivasulu Reddy and Guesh Yfter tela [4].

1. INTRODUCTION

This paper reveals the properties of simple semiring. Through out this paper simple semiring $(S, +, \bullet)$ means simple semiring $(S, +, \bullet)$ with multiplicative identity 1.

1.1. Definition: A triple $(S, +, \bullet)$ is said to be a semiring if S is a non - empty set and "+, \bullet " are binary operations on S satisfying that

(i) (S, +) is a semigroup

(ii) (S, •) is a semigroup

(iii) a(b + c) = ab + ac and (b + c)a = ba + ca, for all a, b, c in S.

Examples: (i) The set of natural numbers under the usual addition, multiplication

- (ii) Every distributive lattice (L, \lor, \land) .
- (iii) Any ring $(\mathbf{R}, +, \bullet)$.
- (iv) If (M, +) is a commutative monoid with identity element zero then the set End(M) of all endomorphism of M is a semiring under the operations of point wise addition and composition of functions.
- (vi) Let $S = \{a, b\}$ with the operations given by the following tables:

b		•	• a
b		а	a b
	1	b	b b

Then $(S, +, \bullet)$ is a semiring.

1.2.Definition: An element x in a semigroup (S, \bullet) is said to be multiplicative idempotent if $x^2 = x$.

1.3.Definition: An element 'x' in a semigroup (S, +) is said to be an additive idempotent if x + x = x.

1.4.Definition: A semigroup (S, \cdot) with all of its elements are left (right) cancellable is said to be left (right) cancellative semigroup.

1.5. Definition: A semigroup (S, •) is said to satisfy quasi separative if $x^2 = xy = yx = y^2 \implies x = y$, for all x, y in S.

1.6. Definition: A semigroup (S, +) is said to satisfy weakly separative if $x + x = x + y = y + y \Rightarrow x = y$, for all x, y in S.

1.7. Definition: A semigroup (S, \bullet) is said to be left (right) regular if it satisfies the identity aba = ab (aba = ba) for all a, b in S.

1.8. Definition: A semigroup (S, +) is said to be left (right) singular if it satisfies the identity a + b = a (a + b = b) for all a, b in S.

1.9. Definition: A semigroup (S, .) is said to be left(right) singular if it satisfies the identity ab = a (ab = b) for all a,b in S 1.10. Definition: [3] A semiring S is called simple if a + 1 = 1 + a = 1 for any $a \in S$.

1.11. Definition: A semiring (S, +, .) with additive identity zero is said to be zero sum free semiring if x + x = 0 for all x in S.

1.12. Definition: A semiring (S, +, .) is said to be zero square semiring if $x^2 = 0$ for all x in S, where 0 is multiplicative zero.

1.13. Definition: A viterbi semiring is a semiring in which S is additively idempotent and multiplicatively subidempotent.i.e., a + a = a and $a + a^2 = a$, for all 'a' in S.

1.14. Theorem: A simple semiring is additive idempotent semiring. Proof: Let (S, +, .) be a simple semiring. Since (S, +, .) is simple, for any $a \in S$, a + 1 = 1. (Where 1 is the multiplicative identity element of S. $S^1 = SU \{1\}$.) Now $a = a.1 = a(1 + 1) = a + a \Rightarrow a = a + a \Rightarrow S$ is additive idempotent semiring.

1.15. Theorem: If $(S, +, \bullet)$ be a simple semiring and (S, +) be a right cancellative then (S, \bullet) be a band. Proof: From hypothesis, $(S, +, \bullet)$ be a simple semiring $\Rightarrow a + 1 = 1 \Rightarrow a(a + 1) = a \cdot 1 \Rightarrow a^2 + a = a \Rightarrow a^2 + a = a + a$ (Since Theorem1.14) $\Rightarrow a^2 = a$ (Since (S, +) be a right cancellative) \Rightarrow (S, \bullet) be a band.

1.16. Theorem: If $(S, +, \bullet)$ be a simple semiring and (S, \bullet) be a rectangular band then (S, \bullet) be a singular. Proof: From hypothesis, $(S, +, \bullet)$ be a simple semiring $\Rightarrow a + 1 = 1 \Rightarrow b(a + 1) = b.1 \Rightarrow ba + b = b \Rightarrow a(ba + b) = ab \Rightarrow aba + ab = ab \Rightarrow a + ab = ab (Since <math>(S, \bullet)$ be a rectangular band) $\Rightarrow a(1 + b) = ab \Rightarrow a = ab \Rightarrow ab = a \Rightarrow (S, \bullet)$ be a left singular. $\rightarrow(1)$ Again, $a + 1 = 1 \Rightarrow (a+1)b = 1.b \Rightarrow ab + b = b \Rightarrow (ab + b)a = ba \Rightarrow aba + ba = ba \Rightarrow a + ba = ba (Since <math>(S, \bullet)$ be a rectangular band) $\Rightarrow a(1+b)=ba \Rightarrow a = ba \Rightarrow ba = a \Rightarrow (S, \bullet)$ be a rectangular band) $\Rightarrow a(1+b)=ba \Rightarrow a = ba \Rightarrow ba = a \Rightarrow (S, \bullet)$ be a rectangular band) $\Rightarrow a(1+b)=ba \Rightarrow a = ba \Rightarrow ba = a \Rightarrow (S, \bullet)$ be a rectangular band) $\Rightarrow a(1+b)=ba \Rightarrow a = ba \Rightarrow ba = a \Rightarrow (S, \bullet)$ be a rectangular band) $\Rightarrow a(1+b)=ba \Rightarrow a = ba \Rightarrow ba = a \Rightarrow (S, \bullet)$ be a rectangular band) $\Rightarrow a(1+b)=ba \Rightarrow a = ba \Rightarrow ba = a \Rightarrow (S, \bullet)$ be a rectangular. $\rightarrow(2)$ From (1) and (2), (S, •) be a singular.

1.17. Theorem: If $(S, +, \bullet)$ be a zero sum free and simple semiring with additive identity 0 then ab = 0 for every a, b in $(S, +, \bullet)$. Proof: Since $(S, +, \bullet)$ be a simple semiring, $b + 1 = 1 \Rightarrow a(b + 1) = a.1 \Rightarrow ab + a = a \Rightarrow ab + a + a = a + a$ (Since theorem1.14) $\Rightarrow ab + 0 = 0$ ($(S, +, \bullet)$ be a zero sum free semiring) $\Rightarrow ab = 0$.

1.18. Theorem: If $(S, +, \bullet)$ be a zero square and simple semiring with additive identity 0 then aba = 0 and bab = 0 for every a, b in $(S, +, \bullet)$.

Proof: Since $(S, +, \bullet)$ be a simple semiring, $b + 1 = 1 \Rightarrow a(b + 1) = a.1 \Rightarrow ab + a = a \Rightarrow (ab + a)a = a.a \Rightarrow aba + a^2 = a^2 \Rightarrow aba + 0 = 0$ (Since $(S, +, \bullet)$ be a zero square semiring) $\Rightarrow aba = 0$.

Again, $a + 1 = 1 \Rightarrow b(a + 1) = b.1 \Rightarrow ba + b = b \Rightarrow (ba + b)b = b.b \Rightarrow bab + b^2 = b^2 \Rightarrow bab + 0 = 0$ (Since (S, +, •) be a zero square semiring) \Rightarrow bab = 0.

1.19. Theorem: Let $(S, +, \bullet)$ be a simple semiring. If (S, \bullet) is a singular then (S, +) is a singular.

Proof: Let $(S, +, \bullet)$ be a simple semiring in which (S, \bullet) is a singular that is $ab = a \Rightarrow ab + b = a + b \Rightarrow (a + 1)b = a + b \Rightarrow b = a + b \Rightarrow a + b = b \Rightarrow (S, +)$ is a right singular. \rightarrow (1)

Again, $ab = b \Rightarrow a + ab = a + b \Rightarrow a(1 + b) = a + b \Rightarrow a.1 = a + b \Rightarrow a = a + b \Rightarrow a + b = a \Rightarrow (S, +)$ is a left singular. \rightarrow (2) From (1) and (2), (S, +) is a singular.

Example: The following example satisfies the conditions of theorem

	1	a	b	•	1	a	
1	1	a	b	1	1	a	
а	1	а	b	a	a	a	
b	1	а	b	b	b	a	

1.20. Theorem: Let $(S, +, \bullet)$ be a simple semiring. If (S, \bullet) be a left regular semigroup then (S, +) is an E-inversive semigroup E(+).

Proof: By hypothesis (S, \bullet) be a left regular semigroup then aba = ab for every a, b in (S, \bullet)

 $b+1 = 1 \Rightarrow a(b+1) = a.1 \Rightarrow ab + a = a \Rightarrow b(ab + a) = ba \Rightarrow bab + ba = ba \Rightarrow ba + ba = ba, \forall a, b \in E(+).$ Where E(+) is the set of all idempotent elements in (S, +). This means that there exists a in S such that ba + ba = ba implies ba is an E-inversive element. Hence (S, +) is an E-inversive semigroup.

1.21. Theorem: If $(S, +, \bullet)$ be a simple semiring with multiplicative identity which is also additive identity then (S, \bullet) is a quasi-separative semigroup.

Proof: If $(S, +, \bullet)$ be a simple semiring with multiplicative identity which is also additive identity then ab + a = a. Let $a^2 = ab \Rightarrow a^2 = a(b + e) \Rightarrow a^2 = ab + a \Rightarrow a^2 = ab + a \Rightarrow a^2 = a$.

Similarly, $b^2 = ba \Rightarrow b^2 = b(a + e) \Rightarrow b^2 = ba + b.e \Rightarrow b^2 = ba + b \Rightarrow b^2 = b$.

If $a^2 = ab = ba = b^2$ then a = b. Hence (S, \bullet) is a quasi-seperative semigroup.

1.22. Theorem: If $(S, +, \bullet)$ be a simple semiring with multiplicative identity which is also additive identity then

(S, •) is a (i) seperative semigroup.

(ii) weakly seperative semigroup.

Proof: Proof is similar to above theorem1.22.

1.23. Theorem: Every simple semiring $(S, +, \bullet)$ is a viterbi semiring. Proof: By hypothesis $(S, +, \bullet)$ be a simple semiring From the theorem1.14 $(S, +, \bullet)$ be an additive idempotent semiring that is $a + a = a \rightarrow (1)$ And $1 + a = 1 \Rightarrow a(1 + a) = a \Rightarrow a + a^2 = a \rightarrow (2)$ From (1) & (2), $(S, +, \bullet)$ is a viterbi semiring. Remark: Converse of theorem1.15, is true if (S, \bullet) is left cancellative and (S, +) is commutative. Proof: Consider $a + a^2 = a$, for all 'a' in S $\Rightarrow a.1 + a^2 = a.1$ $\Rightarrow a (1 + a) = a.1$ $\Rightarrow 1 + a = 1$ (Since (S, \bullet) is left cancellative) $\Rightarrow 1 + a = a + 1 = 1$ (Since (S, +) is commutative)

 \Rightarrow (S, +, •) be a simple semiring.

Example: This is an example for theorem 1.23

+ - 1 1 1 1 a 1 a		1	а			
1 1 1 a 1 a	+			•	1	
a 1 a a	1	1	1	1	1	
	a	1	а	a	а	

1.24. Theorem: Every simple semiring $(S, +, \bullet)$ is a multiplicative sub idempotent semiring. Proof: Proof is similar to above theorem 1.23.

REFERENCES:

- [1] Golan, J.S. "The theory of semirings with applications in mathematics and theoretical computer science", Pitman monographs and surveys in pure and applied mathematics, II. Series.(1992).
- [2] Jonathan S.Golan, "Semirings and their Applications".
- [3] Jonathan S.Golan, "Semirings and Affine Equations over Them : Theory and Applications". Kluwer Academic.
- [4] P. Sreenivasulu Reddy and Guesh Yfter tela "Simple semirings", International journal of Engineering Inventions, Vol.2, Issue 7, 2013, PP: 16-19.