Some (r, 2, k)-regular graphs containing a given graph.

N.R.Santhi Maheswari

G.venkataswamy Naidu College,

Kovilpatti - 628502. India.

nrsmaths@yahoo.com.

C.Sekar

Aditanar College of Arts and Science

Tiruchendur-628216.India

Sekar.acas@gmail.com

Abstract

A graph G is called (r, 2, k) - regular if each vertex of G is at a distance one from r vertices of G and each vertex of G is at a distance two from exactly k vertices of G. That is, if d(v) = r and $d_2(v) = k$, for all v in G [9]. This paper suggests a method to construct a (m + n - 1, 2, (mn - 1))- regular graph of order m n containing the given graph G of order $n \ge 2$ as an induced sub graph, for any $m \ge 1$, and this paper includes existence of some (r, 2, k)-regular graphs and few examples of (2, k) regular graphs.

Keywords: Distance degree regular, Induced subgraph, (d, k)-regular graphs, (2, k) - regular graphs, semi regular graphs.

MATHAMATICS SUBJECT CLASSIFICATION CODE (2010): 05C12.

1. Introduction.

By a graph we mean a finite, simple, undirected graph. We denote the vertex set and edge set of G byV (*G*) and (*G*) respectively. The addition of two graphs G_1 and G_2 is a graph G_1+G_2 with $V(G_1+G_2) = V(G_1)UV(G_2)$ and $E(G_1+G_2) = E(G_1)UE(G_2) U$ { $uv/u \in V(G_1)$, $v \in V(G_2)$ }. The degree of a vertex v is the number of vertices adjacent to v and it is denoted by d (v). If all the vertices of a graph have the same degree r, we call that graph r-regular.

Two vertices *u* and *v* of *G* are said to be connected if there is a (u, v) – path in *G*. For a connected graph *G*, the distance *d* (u, v) between two vertices *u* and *v* is the length of a shortest (u, v) path in *G*. In any graph G, d(u, v) = 1 if and only if u and v are adjacent. Therefore, the degree of a vertex v is the number of vertices at a distance one from v, and for d a positive integer and v a vertex of a graph G, the dth degree of v in G, denoted by d_d(v) - is defined as the number of vertices at a distance d from v. Hence d₁(v) = d(v).

A graph *G* is said to be distance d – regular if every vertex of *G* has the same number of vertices at a distance *d* from it [5]. Let us call a graph (dike)-regular if every vertex of *G* has exactly k number of vertices at a distance *d* from it .That is, a graph *G* is said to be (*d*, *k*) - **regular graph** if d_d(v) = k, for all v in *G*. The (1, k) – regular graphs and k-regular graphs are the same. A graph *G* is (2, *k*) regular if d₂(v) = *k*, for all v in *G*. A graph *G* is said to be (2, k) regular if d₂(v) = k, for all v in *G*. A graph *G* is said to be (2, k) regular if d₂(v) = k, for all v in *G*. A graph *G* is said to be (2, k) regular if d₂(v) = k, for all v in *G*, where d₂(v) - means number of vertices at a distance 2 away from v. The concept of semi regular graph was introduced and studied by Alison Northup [2]. We observe that (2, k) - Regular and k –semi regular graphs are same.

An induced sub graph of G is a sub graph H of G such that E(H) consists of all edges of G whose end points belong to V(H).In 1936, Konig [8] proved that if G is any graph ,whose largest degree is r, then there is an r-regular graph H containing G as an induced sub graph.

The above results motivate us to suggest a method to construct, a (m + n - 1, 2, (mn - 1))- regular graph H of order mn containing given graph G of order $n \ge 2$ as an induced sub graph, for any $m \ge 1$. Terms not defined here are used in the sense of Harary [6] and J.A Bondy and U.S.R .Murty [4].

2.

(2, k) - regular graphs

Definition 2.1. A graph is said to be (2, k) - regular graph if each vertex of G is at a distance two away from exactly k vertices. That is, d₂ (v) = k, for all vertex in G.Note that (2, k) - regular graph may be regular or non – regular.

Examples 2.2.

Non-regular graph which are (2, k)-regular 2.3.

(i). Sunflower graph is the graph obtained by starting with an $n \ge 5$ cycles with consecutive vertices v_1 , v_2 , v_3 , v_4 ,...., v_n and creating new vertices w_1 , w_2 , w_3 ,..., w_n with w_i connected with v_i and v_{i+1} (v_{n+1} is v_1) is (2, 4)- regular. We denote this graph by SF_n . **Proof:** Let the vertex set $V(SF_n) = \{v_1, v_2, v_3, v_4, ..., v_n\} U\{w_1, w_2, w_3, w_4, ..., w_n\}$ and edge set $E(SF_n) = E(C) U\{VI, wi/(1 \le i \le n)\} U\{v_{i+1}w_i/(1 \le i \le n)\} U\{v_1w_n\}$. Here $d_2(v_i) = 4$, $d_2(w_e) = 4$, for $(1 \le i \le n)\}$. Therefore, $SF_n (n \ge 5)$ is (2, 4) - regular graph.

(ii) . For any $k \ge 1$, let G_k graph obtained from two disjoint copies of $K_{1,k}$ by adding a matching between two partite sets of size kiths graph G_k is (2, k)- regular graph order 2k +2. Graph G_5 in Figure 1 is (2,5) - regular graph

Figure 1

Regular graphs which are (2, k) – regular 2.4.

(i). Any complete m partite graph K $_{n1}$, $_{n2}$, $_{n3}$, $_{n4}$, $_{nm}$ is (2, k) - regular iff $_{n1 = n2 = n3 = n4, = nm}$.

(ii). Any positive integer n = m k, where m > 1 and $k \ge 1$ are positive integers. Then we construct complete 'm'partite graph

which is (2,
$$\left(\frac{n}{m}\right) - 1$$
) regular.

We denote r-regular graphs which are (2, k)-regular by (r, 2, k)-regular graph.

3. (r, 2, k)-regular graph.

Next, we will see some results related with (r, 2, k)-regular graph that we have already seen in [9], [10], [11], [12].

Definition 3.1

A graph G is called (r, 2, k)-regular if each vertex in graph G is at a distance one from exactly r-vertices and at a distance two from exactly k vertices. That is, d(v) = r and $d_2(v) = k$, for all v in G.

Example 3.2.

(3, 2, 0)-regular graph

```
(3, 2, 3)-regular graph
```


(3, 2, 5)-regular graph

Figure 2.

The following facts can be verified easily:

- **Fact 1 [8]** If G is (r, 2, k)-regular graph, then $0 \le k \le r$ (r-1).
- Fact 2 [9] for any r > 1, a graph G is (r, 2, r(r-1)-regular if G is r-regular with girth at least five.
- Fact 3 [9] for any $n \ge 5$, $(n \ne 6, 8)$ and any r > 1, there exists a (r, 2, r (r-1))-regular graph on n x 2^{r-2} vertices with girth five.
- **Fact 4 [10]** for any odd $r \ge 3$, there is no (r, 2, 1)-regular graph
- Fact 5 [10] Any (r, 2, k) regular graph has at least k+r+1 vertices.
- Fact 6 [10] If r and k are odd, then (r, 2, k)-regular graph has at least k+r+2 vertices.
- **Fact 7** [10] For any $r \ge 2$ and $k \ge 1$, G is a (r, 2, k)-regular graph of order r+k+1 if and only if dam (G) = 2.

Fact 8 [10] For any $r \ge 2$, there is a (r, 2, (r-1) (r-1))-regular graph on 4 x 2^{r-2} vertices

Fact 9 [10] For r > 1, if G is a (r, 2, (r-1) (r-1))-regular graph, then G has girth four.

Fact 10[11] For any $r \ge 1$, there exist a (r, 2, r-1)-regular graph of order 2r.

Fact 11[11] For any $r \ge 1$, there exist a (r, 2, 2 (r-1)) - regular graph of order 4r-2.

Fact 12[11] For any $r \ge 2$, there is a (r, 2, (r-2)(r-1))- regular graph on 3 x 2^{r-2} vertices.

Fact 13[12] For any $r \ge 3$, there is a (r, 2, (r-3)(r-1))- regular graph on $4 \ge 2^{r-3}$ vertices.

Result 3.3.

For any r > 0, there exists (r, 2, r+n-1) - regular bipartite graph of order 2(r+n), for $(0 \le n \le r-1)$

Proof.

Let r>0, let G be a bipartite graph with the vertex set $V(G)=\{v_i, u_i/(1 \le i \le r+n)\}$ and edge set $E(G)=\{v_i, u_i, v_i, u_{i+j}/(1 \le i \le r+n)\}$ and $1 \le j \le r-1\}$. Subscripts are taken modulo r + n. This graph G is (r, 2, r+n-1) -regular bipartite graph of order 2(r+n).

Example 3.3. Figure 3 illustrates the result 3.2, for r = 2, 3.

When r=2.

When r=3.

4. The (r, 2, k) - regular containing given graph as an induced sub graph.

Konig [7] proved that if G is any graph, whose largest degree is r, then it is possible to add new points and to draw new lines joining either two new points or a new point an existing point, so that the resulting graph H is a regular graph containing G as an induced sub graph. We now suggests a method that may be considered an analogue to Konig's theorem for (r, 2, k)) - regular graphs.

Main theorem 4. 1

For any $m \ge 1$, every graph G of order $n \ge 2$ is an induced sub graph of ((n+m-1),2, (mn-1)) - regular graph of order 2mn.

Proof.

Let G be a graph of order $n \ge 2$ with the vertex set V (G) = { $v_1, v_2, v_3, \dots, v_n$ }. Let G t denote a copy of G with the vertex set V(G t) = { $v_1^t, v_2^t, v_3^t, \dots, v_n^t$ }, for t =1,2,3,... m. Let G the vertex acopy of G with the vertex set V(G t = 1,2,3,...) = { $v_1, v_2, v_3, \dots, v_n^t$ }.

 $\{u_1^r, u_2^r, u_3^r, \dots, u_n^r\}$, for $r = 1, 2, 3, \dots, m$). The desired graph H has the vertex set V(H) = $\bigcup_{t=1}^{2m} V(G_t)$ and edge set E(H) =

$$\bigcup_{t=1}^{2m} E(G_t) \bigcup_{t=1}^{m} \{ v_j^t u_i^t, u_j^t v_i^t / v_j^{-1} v_i^{-1} \notin V(G_1), (1 \le j \le n), (j+1 \le i \le n) \} \bigcup_{k=1}^{n} \{ v_k^{-i} u_k^{i+j} / (1 \le i \le m) \text{ and } (0 \le j \le m-1) \}.$$
 (Super state of the second secon

scripts are taken modulo m). The resulting graph H contains G as an induced sub graph .

In H, for t = 1, 2, 3, ..., m. d $(v_i^t) = d(u_i^t) = m + n - 1$ and $d_2(v_i^t) = d_2(u_i^t) = m n - 1$, for i = 1, 2, 3, ..., n. That is, H is

((m + n - 1), 2, mn - 1) - regular graph H of order 2mn containing any graph G of order $n \ge 2$. For any graph of order $n \ge 2$, there exist ((m + n - 1), 2, mn - 1) - regular graph H of order 2mn containing given graph of order $n \ge 2$ as an induced sub graph. Therefore, there are at least as many (m + n - 1), 2, mn - 1) - regular graph of order 2 m n as there are graph of order $n \ge 2$.

Corollary 4.3.

Every graph G of order $n \ge 2$, is an induced sub graph of (n, 2, n-1) - regular graph of order 2n.

Proof.

This result is the particular case of theorem 4.1, for m = 1.

Let G be a graph of order $n \ge 2$ with vertex set V (G) = $\{v_1, v_2, v_3, \dots, v_n\}$. Let G₁ denote a copy of G with the vertex set V(G₁)= $\{v_1^1, v_2^1, v_3^1, \dots, v_n^1\}$. Let G₂ denote a copy of G with the vertex set V(G₂)= $\{u_1^1, u_2^1, u_3^1, \dots, u_n^1\}$ The desired graph H has the vertex set V(H) = $\bigcup_{t=1}^2 V(G_t)$ and edge set E(H)= $\bigcup_{t=1}^2 E(G_t) \bigcup_{t=1}^{\infty} \{v_1^1, u_1^1, u_1^1, u_1^1, v_1^1/v_1, u_1^1, u_2^1, u_1^1, u_1^1 \}$ (G₁), $(1 \le j \le n)$, $(j+1 \le i \le n)$.

n)} $\bigcup_{k=1}^{n} \{v_k^{1}u_k^{1}\}$. The resulting graph H contains G as an induced sub graph.

In H, $d(v_i^{1}) = d(u_i^{1}) = n$ and $d_2(v_i^{1}) = d_2(u_i^{1}) = n-1$, for i = 1, 2, 3, ... n. That is, H is (n, 2, n-1) - regular graph of order 2n containing given graph G of order $n \ge 2$. For any graph of order $n \ge 2$, there exist (n, 2, (n - 1)) - regular graph H of order 2n containing given graph of order $n \ge 2$, as an induced sub graph. Therefore, there are at least as many (n, 2, (n - 1)) - regular graphs of order 2n as there are graphs of order $n \ge 2$.

Example 4.4. Graphs in Figure 5 illustrates corollary 4.3, for n=3.

Figure 5

Corollary 4.5. Every graph G of order $n \ge 2$, is an induced sub graph of (n+1), 2, 2n-1) -regular graph of order 4n.

Corollary 4.6. Every graph G of order $n \ge 2$, is an induced sub graph of (n+2), 2, 3n-1) -regular graph of order 6n

Summary 4.7.

Therefore, there are at least as many ((n+m-1), 2, (m n-1)) - regular graphs of order 2mn as there are graphs of order n ≥ 2 . If m =1, 2, 3, 4, 5..., n, then we get (n, 2, n-1), (n+1, 2, 2n-1), (n+2, 2, 3n-1), (n+3, 2, 4n-1), (n+4, 2, 5n-1),...(2n, 2, n²-1) - regular graphs of order 2n, 4n, 6n, 8n, 10n, 2n², ..., containing given graph G of order $n \geq 2$ as an induced sub graphs.

Theorem 4.8.

Every graph G of order $n \ge 2$ is an induced sub graph of (n+1, 2, 2n)-regular graph of order 5n.

Proof.

Let G be a graph of order $n \ge 2$ with the vertex set V (G) = { $v_1, v_2, v_3, \dots, v_n$ }. Let G the denote five copies of G with the vertex set V(G t) = { $v_1^t, v_2^t, v_3^t, \dots, v_n^t$ }, for t =1,2,3,4,5. The desired graph H has the vertex set V(H)= $\bigcup_{t=1}^5 V(G_t)$, and edgeset E(H)= $\bigcup_{t=1}^5 E(G_t) \bigcup_{t=1}^4 \{v_j^t v_i^{t+1}, v_j^5 v_i^{1/2} v_j^{1/2} v_i^{1/2} \notin E(G_t) (1 \le j \le n), (j+1 \le i \le n)\} \bigcup_{k=1}^n \{v_k^i v_k^{i+1}, v_k^5 v_k^{1/2} (1 \le i \le 4)\}.$

The resulting graph H contains G as an induced sub graph. Moreover, for $(1 \le t \le 5)$, In H, $d(v_i^t) = n+1$, $d_2(v_i^t) = 2n$, for $(1 \le i \le n)$. That is, H is (n+1, 2, 2n) - regular graph with 5n vertices. For any graph G of order $n \ge 2$, there exists a (n+1, 2, 2n)-regular graph H of order 5n containing given graph G as an induced sub graph. Therefore, there are at least as many (n+1, 2, 2n) - regular graph of order 5n as there are graph G of order $n \ge 2$.

Example 4.9. Figure 6 illustrates the Theorem 4.8, for n = 4 (here we take only four graphs of order 4).

Figure 6

Corollary 4.10. Every graph G of order $n \ge 2$ is an induced sub graph of (n+1, 2, 2n-2) - regular graph of order 3n.

For, if we take 3 copies of G instead of taking 5 copies of G in Theorem 4.8,then there is (n+1, 2, 2n-2) - regular graph containing every graph G of order $n \ge 2$.

Example 4.11. Figure 7 illustrates the Corollary 4.10, for n = 3.

Figure 7

Corollary 4.12. Every graph G of order $n \ge 2$ is an induced sub graph of (n+1, 2, 2n-1)-regular graph of order 4n.

For, if we take 4 copies of G instead of taking 5 copies of G in Theorem 4.8,then there is (n+1, 2, 2n-1) - regular graph containing every graph G of order $n \ge 2$.

Example 4.13. Figure 8 illustrates the Corollary 4.12, for n = 3.

Remark 4.14 If we take 6,7,8,.... copies of G instead of taking 5 copies of G in Theorem 4.8, then there is only (n+1, 2, 2n) - regular graph of order 6n, 7n, 8n.....

References.

- Y.Alavi, Gary Chartrand, F. R. K. Chang, Paul Erdos, H. L.Graham and O.R. Oellermann Journal of Graph Theory, Vol.11, No.2, (1987), 235-249.
- [2] Alison Pechin Northup, A Study of Semi-regular Graphs, Preprint.(2002).
- [3] G. S.Bloom. J. K. Kennedy and L.V. Quintas "Distance Degree Regular Graphs" in The theory and applications of Graphs, Wiley, New York, (1981) 95 - 108.
- [4] J.A.Bondy and Murty U.S.R . "Graph Theory with Application" MacMillan , London(1979).
- [5] Gary Chartrand, Paul Erdos, Ortrud R. Oellerman "How to Define an irregular graph", College Math Journal, 39. (1998)

- [6] Harary , F(1969) Graph theory , Addition Westly.
- [7] D. Konig Theoritic der Endlichen and Unendlichen Graphen, Leipizig (1936). Reprinted Chelsea, New York (1950).
- [8] K.R. Parthasarathy, Basic Graph theory, TataMcGraw- Hill Publishing company Limited.New Delhi.
- [9] N.R.SanthiMaheswari and C,Sekar, (r, 2, r (r-1))-regular graphs, International journal of Mathematics and Soft Computing, vol. 2.No.2 (2012), 25-33.
- [10] N.R.SanthiMaheswari and C,Sekar (r, 2, (r-1) (r-1))-regular graphs, accepted for International journal of Mathematics Combinatorics vol.4. (2012).
- [11] N.R.SanthiMaheswari and C, Sekar (r, 2, (r-2) (r-1))-regular graphs, (Communicated).
- [12] N.R.SanthiMaheswari and C, Sekar (r, 2, (r-3) (r-1))-regular graphs, (Communicated).

