Some (r, 2, k)-regular graphs containing a given graph.

N.R.Santhi Maheswari
G.venkataswamy Naidu College, Kovilpatti - 628502. India.
nrsmaths@yahoo.com.
C.Sekar
Aditanar College of Arts and Science
Tiruchendur-628216.India
Sekar.acas@gmail.com

Abstract

A graph G is called $(r, 2, k)$-regular if each vertex of G is at a distance one from r vertices of G and each vertex of G is at a distance two from exactly k vertices of G. That is, if $d(v)=r$ and $d_{2}(v)=k$, for all v in G [9].This paper suggests a method to construct a $(m+n-1,2,(m n-1))$ - regular graph of order $m n$ containing the given graph G of order $n \geq 2$ as an induced sub graph, for any $m \geq 1$, and this paper includes existence of some ($r, 2, k$)-regular graphs and few examples of $(2, k)$ regular graphs.

Keywords: Distance degree regular, Induced subgraph, (d, k)-regular graphs, (2, k) - regular graphs, semi regular graphs.

MATHAMATICS SUBJECT CLASSIFICATION CODE (2010): 05C12.
1.

Introduction.

By a graph we mean a finite, simple, undirected graph. We denote the vertex set and edge set of G byV (G) and (G) respectively. The addition of two graphs G_{1} and G_{2} is a graph $G_{1}+G_{2}$ with $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) U V\left(G_{2}\right)$ and $E\left(G_{1}+G_{2}\right)=$ $E\left(G_{1}\right) U E\left(G_{2}\right) U\left\{u v / u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. The degree of a vertex v is the number of vertices adjacent to v and it is denoted by $\mathrm{d}(\mathrm{v})$. If all the vertices of a graph have the same degree r , we call that graph r-regular.

Two vertices u and v of G are said to be connected if there is a (u, v) - path in G. For a connected graph G, the distance $d(u, v)$ between two vertices u and v is the length of a shortest (u, v) path in G. In any graph $G, d(u, v)=1$ if and only if u and v are adjacent. Therefore, the degree of a vertex v is the number of vertices at a distance one from v, and for d a positive integer and v a vertex of a graph G, the $d^{\text {th }}$ degree of v in G, denoted by $d_{d}(v)$ - is defined as the number of vertices at a distance d from v. Hence $d_{1}(v)=d(v)$.

A graph G is said to be distance d - regular if every vertex of G has the same number of vertices at a distance d from it [5]. Let us call a graph (dike)-regular if every vertex of G has exactly k number of vertices at a distance d from it .That is, a graph G is said to be $(\boldsymbol{d}, \boldsymbol{k})$ - regular graph if $\mathrm{d}_{d}(v)=\mathrm{k}$, for all v in G.The $(1, \mathrm{k})-$ regular graphs and k regular graphs are the same. A graph G is $(2, k)$ regular if $d_{2}(v)=k$, for all v in G. A graph G is said to be $(2, k)$ regular if $d_{2}(v)=k$, for all v in G, where $d_{2}(v)$ - means number of vertices at a distance 2 away from v. The concept of semi regular graph was introduced and studied by Alison Northup [2]. We observe that (2, k) - Regular and $\mathrm{k}-$ semi regular graphs are same.

An induced sub graph of G is a sub graph H of G such that $\mathrm{E}(H)$ consists of all edges of G whose end points belong to $\mathrm{V}(\mathrm{H})$.In 1936, Konig [8] proved that if G is any graph , whose largest degree is r , then there is an r-regular graph H containing G as an induced sub graph.

The above results motivate us to suggest a method to construct, $\mathrm{a}(\mathrm{m}+\mathrm{n}-1,2,(\mathrm{mn}-1))$ - regular graph H of order $m n$ containing given graph G of order $n \geq 2$ as an induced sub graph, for any $m \geq 1$. Terms not defined here are used in the sense of Harary [6] and J.A Bondy and U.S.R .Murty [4].

2.
 (2, k) - regular graphs

Definition 2.1. A graph is said to be (2, k$)$ - regular graph if each vertex of G is at a distance two away from exactly k vertices. That is, $\mathrm{d}_{2}(\mathrm{v})=\mathrm{k}$, for all vertex in G.Note that $(2, k)$ - regular graph may be regular or non - regular.

Examples 2.2.

Non-regular graph which are (2, k)-regular 2.3.

(i). Sunflower graph is the graph obtained by starting with an $n \geq 5$ cycles with consecutive vertices $v_{1}, v_{2}, v_{3}, v_{4}, \ldots \ldots v_{n}$ and creating new vertices $w_{1}, w_{2}, w_{3}, \ldots \ldots w_{n}$ with w_{i} connected with v_{i} and $v_{i+1}\left(v_{n+1}\right.$ is $\left.v_{1}\right)$ is (2, 4)- regular. We denote this graph by SF_{n}.

Proof: Let the vertex set $V\left(\mathrm{SF}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \ldots \ldots . \mathrm{v}_{\mathrm{n}}\right\} \mathrm{U}\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \ldots \ldots \mathrm{w}_{\mathrm{n}}\right\}$ and edge set $\mathrm{E}\left(\mathrm{SF}_{\mathrm{n}}\right)=\mathrm{E}(\mathrm{C}) \mathrm{U}$ \{VI, wi/ $(1 \leq \mathrm{i} \leq \mathrm{n})\} .\mathrm{U}\left\{\mathrm{v}_{\mathrm{i}+1} \mathrm{w}_{\mathrm{i}} /(1 \leq \mathrm{i} \leq \mathrm{n}).\right\} \mathrm{U}\left\{\mathrm{v}_{1} \mathrm{w}_{\mathrm{n}}\right\}$. Here $\mathrm{d}_{2}\left(\mathrm{v}_{\mathrm{i}}\right)=4, \mathrm{~d}_{2}\left(\mathrm{w}_{\mathrm{e}}\right)=4$, for $\left.(1 \leq \mathrm{i} \leq \mathrm{n})\right\}$. Therefore, $\mathrm{SF}_{\mathrm{n}}(\mathrm{n} \geq 5)$ is $(2,4)-$ regular graph.
(ii). For any $\mathrm{k} \geq 1$, let G_{k} graph obtained from two disjoint copies of $\mathrm{K}_{1, \mathrm{k}}$ by adding a matching between two partite sets of size kiths graph G_{k} is $(2, k)$ - regular graph order $2 k+2$. Graph G_{5} in Figure 1 is $(2,5)$ - regular graph

G_{5}
Figure 1

Regular graphs which are (2, k) - regular 2.4.

(i). Any complete m partite graph $K_{n 1}, n 2, n 3, n 4, \cdot n m$ is $(2, k)$ - regular iff $n 1=n 2=n 3=n 4,=n m$.
(ii). Any positive integer $n=m k$, where $m>1$ and $k \geq 1$ are positive integers. Then we construct complete ' m 'partite graph which is (2, $\left(\frac{n}{m}\right)-1$) regular.

We denote r-regular graphs which are (2, k)-regular by (r, 2, k)-regular graph.

3.

(r, 2, k)-regular graph.

Next, we will see some results related with (r, 2, k)-regular graph that we have already seen in [9], [10], [11], [12].

Definition 3.1

A graph G is called ($r, 2, k$)-regular if each vertex in graph G is at a distance one from exactly r-vertices and at a distance two from exactly k vertices. That is, $d(v)=r$ and $d_{2}(v)=k$, for all v in G.

Example 3.2.

(3, 2, 0)-regular graph

(3, 2, 3)-regular graph

$(3,2,5)$-regular graph

Figure 2.

The following facts can be verified easily:
Fact 1 [8] If G is (r, 2, k)-regular graph, then $0 \leq k \leq r(r-1)$.
Fact 2 [9] for any $r>1$, a graph G is ($r, 2, r(r-1)$-regular if G is r-regular with girth at least five.
Fact 3 [9] for any $n \geq 5,(n \neq 6,8)$ and any $r>1$, there exists a (r, 2, r (r-1))-regular graph on $n \times 2^{r-2}$ vertices with girth five.
Fact 4 [10] for any odd $r \geq 3$, there is no ($r, 2,1$)-regular graph
Fact 5 [10] Any (r, 2, k) - regular graph has at least $\mathrm{k}+\mathrm{r}+1$ vertices.
Fact 6 [10] If r and k are odd, then ($\mathrm{r}, 2, \mathrm{k}$)-regular graph has at least $\mathrm{k}+\mathrm{r}+2$ vertices.
Fact 7 [10] For any $r \geq 2$ and $k \geq 1, G$ is a $(r, 2, k)$-regular graph of order $r+k+1$ if and only if dam $(G)=2$.
Fact 8 [10] For any $r \geq 2$, there is a (r, 2, (r-1) (r-1))-regular graph on $4 \times 2^{r-2}$ vertices
Fact 9 [10] For $r>1$, if G is a $(r, 2,(r-1)(r-1))$-regular graph, then G has girth four.
Fact 10[11] For any $r \geq 1$, there exist a (r, 2, r-1)-regular graph of order 2r.
Fact 11[11] For any $r \geq 1$, there exist a (r, 2, $2(r-1)$ - regular graph of order $4 r-2$.
Fact 12[11] For any $r \geq 2$, there is $a(r, 2,(r-2)(r-1))$-regular graph on $3 \times 2^{r-2}$ vertices .
Fact 13[12] For any $r \geq 3$, there is $a(r, 2,(r-3)(r-1))$-regular graph on $4 \times 2^{r-3}$ vertices .

Result 3.3.
For any $r>0$, there exists ($\mathrm{r}, 2, \mathrm{r}+\mathrm{n}-1$) - regular bipartite graph of order $2(\mathrm{r}+\mathrm{n})$, for $(0 \leq \mathrm{n} \leq \mathrm{r}-1)$
Proof.
Let $\mathrm{r}>0$, let G be a bipartite graph with the vertex set $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} /(1 \leq \mathrm{i} \leq \mathrm{r}+\mathrm{n})\right.$ \}and edge set $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+\mathrm{j}} /(1 \leq \mathrm{i} \leq\right.$ $\mathrm{r}+\mathrm{n}$) and $1 \leq \mathrm{j} \leq \mathrm{r}-1$) \}.Subscripts are taken modulo $\mathrm{r}+\mathrm{n}$. This graph G is ($\mathrm{r}, 2, \mathrm{r}+\mathrm{n}-1$) -regular bipartite graph of order $2(r+n)$.

Example 3.3. Figure 3 illustrates the result 3.2, for $\mathrm{r}=2,3$.

When $\mathrm{r}=2$.

$$
\mathbf{n}=0 \quad \mathbf{n}=\mathbf{1} .
$$

When $\mathrm{r}=3$.

Figure 3

4. The ($\mathbf{r}, \mathbf{2}, \mathrm{k}$) - regular containing given graph as an induced sub graph.

Konig [7] proved that if G is any graph, whose largest degree is r, then it is possible to add new points and to draw new lines joining either two new points or a new point an existing point, so that the resulting graph H is a regular graph containing G as an induced sub graph. We now suggests a method that may be considered an analogue to Konig's theorem for ($\mathrm{r}, 2, \mathrm{k}$)) - regular graphs.

Main theorem 4. 1

For any $m \geq 1$, every graph G of order $n \geq 2$ is an induced sub graph of ($(n+m-1), 2,(m n-1)$)- regular graph of order 2 mn .

Proof.

Let G be a graph of order $n \geq 2$ with the vertex set $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\}$. Let G_{t} denote a copy of G with the vertex set $V\left(G_{t}\right)=\left\{v_{1}{ }^{t}, v_{2}{ }^{t}, v_{3}{ }^{t}, \ldots \ldots . v_{n}{ }^{t}\right\}$, for $t=1,2,3, \ldots m$. Let G_{r+m} denote a copy of G with the vertex set $V\left(G_{r}+m\right)=$ $\left\{\mathrm{u}_{1}{ }^{\mathrm{r}}, \mathrm{u}_{2}{ }^{\mathrm{r}}, \mathrm{u}_{3}{ }^{\mathrm{r}}, \ldots \ldots . \mathrm{u}_{\mathrm{n}}{ }^{\mathrm{r}}\right\}$, for $\left.\mathrm{r}=1,2,3, \ldots \mathrm{~m}\right)$. The desired graph H has the vertex set $\mathrm{V}(\mathrm{H})=\bigcup_{t=1}^{2 m} V\left(G_{t}\right)$ and edge set $\mathrm{E}(\mathrm{H})=$ $\bigcup_{t=1}^{2 m} E\left(G_{t}\right) \bigcup_{t=1}^{m}\left\{\mathrm{v}_{\mathrm{j}}^{\mathrm{t}} \mathrm{u}_{\mathrm{i}}^{\mathrm{t}}, \mathrm{u}_{\mathrm{j}}^{\mathrm{t}} \mathrm{v}_{\mathrm{i}}^{\mathrm{t}} / \mathrm{v}_{\mathrm{j}}{ }^{1} \mathrm{v}_{\mathrm{i}}{ }^{1} \notin \mathrm{~V}\left(\mathrm{G}_{\mathrm{i}}\right),(1 \leq \mathrm{j} \leq \mathrm{n}),(\mathrm{j}+1 \leq \mathrm{i} \leq \mathrm{n})\right\} \bigcup_{\mathrm{k}=1}^{n}\left\{\mathrm{v}_{\mathrm{k}}{ }^{\mathrm{i}} \mathrm{u}_{\mathrm{k}}{ }^{\mathrm{i}+\mathrm{j}} /(1 \leq \mathrm{i} \leq \mathrm{m})\right.$ and $(0 \leq \mathrm{j} \leq \mathrm{m}-1\}$. (Super scripts are taken modulo m). The resulting graph H contains G as an induced sub graph .

In H, for $t=1,2,3, \ldots m$. $d\left(v_{i}^{t}\right)=d\left(u_{i}^{t}\right)=m+n-1$ and $d_{2}\left(v_{i}^{t}\right)=d_{2}\left(u_{i}^{t}\right)=m n-1$, for $i=1,2,3, \ldots n$. That is, H is
(($m+n-1$), $2, m n-1)$ - regular graph H of order $2 m n$ containing any graph G of order $n \geq 2$. For any graph of order $n \geq 2$, there exist ((m+n-1), 2, mn-1) - regular graph H of order $2 m n$ containing given graph of order $n \geq 2$ as an induced sub graph. Therefore, there are at least as many ($m+n-1$), $2, m n-1$) - regular graph of order $2 m n$ as there are graph of order $\mathrm{n} \geq 2$.

Example 4.2. Figure 4 illustrates theorem 4.1, for $m=2$ and $n=3$.

Figure 4

Corollary 4.3.

Every graph G of order $n \geq 2$, is an induced sub graph of (n, 2, $n-1$) - regular graph of order 2 n .

Proof.

This result is the particular case of theorem 4.1, for $\mathrm{m}=1$.
Let G be a graph of order $n \geq 2$ with vertex set $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots . . v_{n}\right\}$. Let G_{1} denote a copy of G with the vertex set $V\left(G_{1}\right)=\left\{\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \ldots \ldots . \mathrm{v}_{\mathrm{n}}{ }^{1}\right\}$.Let G_{2} denote a copy of G with the vertex set $\mathrm{V}\left(\mathrm{G}_{2}\right)=\left\{\mathrm{u}_{1}{ }^{1}, \mathrm{u}_{2}{ }^{1}, \mathrm{u}_{3}{ }^{1}, \ldots \ldots . \mathrm{u}_{\mathrm{n}}{ }^{1}\right\}$ The desired graph H has the vertex set $\mathrm{V}(\mathrm{H})=\bigcup_{t=1}^{2} V\left(G_{t}\right)$ and edge set $\mathrm{E}(\mathrm{H})=\bigcup_{t=1}^{2} E\left(G_{t}\right) \bigcup\left\{\mathrm{v}_{\mathrm{j}}{ }^{1} \mathrm{u}_{\mathrm{i}}{ }^{1}, \mathrm{u}_{\mathrm{j}}{ }^{1} \mathrm{v}_{\mathrm{i}}{ }^{1} / \mathrm{v}_{\mathrm{j}}{ }^{1} \mathrm{v}_{\mathrm{i}}{ }^{1} \notin \mathrm{~V}\left(\mathrm{G}_{1}\right),(1 \leq \mathrm{j} \leq \mathrm{n}),(\mathrm{j}+1 \leq \mathrm{i} \leq\right.$ $\mathrm{n})\} \bigcup_{\mathrm{k}=1}^{n}\left\{\mathrm{v}_{\mathrm{k}}{ }^{1} \mathrm{u}_{\mathrm{k}}{ }^{1}\right\}$. The resulting graph H contains G as an induced sub graph.

In $H, d\left(v_{i}{ }^{1}\right)=d\left(u_{i}{ }^{1}\right)=n$ and $d_{2}\left(v_{i}{ }^{1}\right)=d_{2}\left(u_{i}{ }^{1}\right)=n-1$, for $i=1,2,3, \ldots n$. That is, H is $(n, 2, n-1)$ - regular graph of order $2 n$ containing given graph G of order $n \geq 2$. For any graph of order $n \geq 2$, there exist $(n, 2,(n-1))$ - regular graph H of order 2 n containing given graph of order $\mathrm{n} \geq 2$, as an induced sub graph. Therefore, there are at least as many ($\mathrm{n}, 2$, (n $1)$ - regular graphs of order 2 n as there are graphs of order $\mathrm{n} \geq 2$.

Example 4.4. Graphs in Figure 5 illustrates corollary 4.3, for $\mathrm{n}=3$.

Figure 5

Corollary 4.5.Every graph G of order $n \geq 2$, is an induced sub graph of ($n+1$), $2,2 n-1$) -regular graph of order $4 n$.

Corollary 4.6.Every graph G of order $n \geq 2$, is an induced sub graph of ($n+2$), $2,3 n-1$) -regular graph of order $6 n$

Summary 4.7.

Therefore, there are at least as many $((n+m-1), 2,(m n-1))$ - regular graphs of order $2 m n$ as there are graphs of order n ≥ 2. If $m=1,2,3,4,5 \ldots \ldots n \ldots$, then we get $(n, 2, n-1),(n+1,2,2 n-1),(n+2,2,3 n-1),(n+3,2,4 n-1),(n+4,2,5 n-1), \ldots$ ($2 n, 2, n^{2}-1$)- regular graphs of order $2 n, 4 n, 6 n, 8 n, 10 n \ldots \ldots .2 n^{2} \ldots$ containing given graph G of order $n \geq 2$ as an induced sub graphs.

Theorem 4.8.

Every graph G of order $n \geq 2$ is an induced sub graph of ($n+1,2,2 n$)-regular graph of order $5 n$.

Proof.

Let G be a graph of order $n \geq 2$ with the vertex set $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\}$. Let G_{t} denote five copies of G with the vertex set $V\left(G_{t}\right)=\left\{v_{1}{ }^{t}, v_{2}{ }^{t}, v_{3}{ }^{t}, \ldots \ldots v_{n}{ }^{t}\right\}$, for $t=1,2,3,4,5$. The desired graph H has the vertex set $V(H)=\bigcup_{t=1}^{5} V\left(G_{t}\right)$,and

The resulting graph H contains G as an induced sub graph. Moreover, for $(1 \leq t \leq 5)$, $\operatorname{In} H, d\left(v_{i}^{t}\right)=n+1, d_{2}\left(v_{i}^{t}\right)=2 n$, for $(1 \leq i \leq n)$.That is, H is $(n+1,2,2 n)$ - regular graph with $5 n$ vertices. For any graph G of order $n \geq 2$, there exists a ($n+1,2$, $2 n$)-regular graph H of order $5 n$ containing given graph G as an induced sub graph. Therefore, there are at least as many $(\mathrm{n}+1,2,2 \mathrm{n})$ - regular graph of order 5 n as there are graph G of order $\mathrm{n} \geq 2$.

Example 4.9. Figure 6 illustrates the Theorem 4.8, for $n=4$ (here we take only four graphs of order 4).

Figure 6
Corollary 4.10.Every graph G of order $n \geq 2$ is an induced sub graph of ($n+1,2,2 n-2$) - regular graph of order $3 n$.

For, if we take 3 copies of G instead of taking 5 copies of G in Theorem 4.8,then there is ($\mathrm{n}+1,2,2 \mathrm{n}-2$) - regular graph containing every graph G of order $\mathrm{n} \geq 2$.

Example 4.11. Figure 7 illustrates the Corollary 4.10, for $n=3$.

Figure 7
Corollary 4.12. Every graph G of order $n \geq 2$ is an induced sub graph of ($n+1,2,2 n-1$)-regular graph of order $4 n$.
For, if we take 4 copies of G instead of taking 5 copies of G in Theorem 4.8,then there is ($n+1,2,2 n-1$) - regular graph containing every graph G of order $\mathrm{n} \geq 2$.

Example 4.13. Figure 8 illustrates the Corollary 4.12, for $n=3$.

Figure 8
Remark 4.14 If we take $6,7,8, \ldots$. copies of G instead of taking 5 copies of G in Theorem 4.8 , then there is only ($n+1,2$, $2 n$) - regular graph of order $6 n, 7 n, 8 n \ldots \ldots$

References.

[1] Y.Alavi, Gary Chartrand, F. R. K. Chang, Paul Erdos, H. L.Graham and O.R. Oellermann - Journal of Graph
Theory, Vol.11, No.2, (1987), 235-249.
[2] Alison Pechin Northup, A Study of Semi-regular Graphs, Preprint.(2002).
[3] G. S.Bloom. J. K. Kennedy and L.V. Quintas - "Distance Degree Regular Graphs" in The theory and applications of Graphs, Wiley, New York, (1981) 95-108.
[4] J.A.Bondy and Murty U.S.R . "Graph Theory with Application " MacMillan , London(1979).
[5] Gary Chartrand , Paul Erdos, Ortrud R. Oellerman - "How to Define an irregular graph", College Math Journal,39. (1998)
[6] Harary , F(1969) Graph theory, Addition Westly.
[7] D. Konig - Theoritic der Endlichen and Unendlichen Graphen,Leipizig (1936). Reprinted Chelsea, New York (1950).
[8] K.R .Parthasarathy, Basic Graph theory, TataMcGraw- Hill Publishing company Limited.New Delhi.
[9] N.R.SanthiMaheswari and C,Sekar, (r, 2, r (r-1))-regular graphs, International journal of Mathematics and Soft Computing, vol. 2.No. 2 (2012), 25-33.
[10] N.R.SanthiMaheswari and C,Sekar (r, 2, (r-1) (r-1))-regular graphs, accepted for International journal of Mathematics Combinatorics vol.4. (2012).
[11] N.R.SanthiMaheswari and C, Sekar (r, 2, (r-2) (r-1))-regular graphs, (Communicated).
[12] N.R.SanthiMaheswari and C, Sekar (r, 2, (r-3) (r-1))-regular graphs, (Communicated).

