Some New Functions in Soft Topological Space

R. Buvaneswari Department of Mathematics, Alagappa Govt. Arts College Karaikudi – 630 003, Tamil Nadu, India.

Abstract— The purpose of this paper is to form some new functions like soft biclop.na-continuous and somewhat soft nearly biclop.na-continuous and also by using these concept, some theorems are analyzed.

Keywords— Soft Feebly Open, Soft Feebly Closed, Soft δ-Open, Soft δ-Closed.

I.

PRELIMINARIES

Definition 1.1 [4]: Let X be an initial universe set and let E be the set of all possible parameters with respect to X. Let P(X) denote the power set of X. Let A be a nonempty subset of E. A pair (F,A) is called soft set over X, where F is a mapping given by F:A \rightarrow P(X). A soft set (F,A) on the universe X is defined by the set of ordered pairs (F,A)={(x,f_A(x)):x \in E,f_A(x) \in P(X)} where f_A: E \rightarrow P(X) such that f_A(x)= φ if $x \notin A$. Here f_A is called an approximate function of the soft set (F,A). The collection of soft set (F,A) over a universe X and the parameter set A is a family of soft sets denoted by SS(x)_A.

Definition 1.2[3]: A set set (F,A) over X is said to be null soft set denoted by φ if for all $e \in A, F(e) = \varphi$. A soft set (F,A) over X is said to be an absolute soft set denoted by A if all $e \in A, F(e)=X$.

Definition 1.3[5]: Let Y be a nonempty subset of X, then Y denotes the soft set (Y,E) over X for which Y(e)=Y, for all $e \in E$. In particular, (X,E) will be denoted by X.

Definition 1.4 [5]: Let τ be the collection of soft sets over X, then τ is said to be a soft topology on X if (i) $\phi, X \in \tau$ (ii)If (F,E),(G,E) $\in \tau$ then (F,E) \cap (G,E) $\in \tau$ (iii) If { (F_i,E)}_{i \in I} $\in \tau$ then \bigcup (F_i,E) $\in \tau$. The pair (X, τ ,E) is called a soft topological space. Every member of τ is called a soft open set. A soft set (F,E) is called soft closed in X if (F,E)^c $\in \tau$.

Definition 1.5: Let (X,τ,E) be a soft topological space over X and let (A,E)be а soft set over Х (i) the soft interior [7] of (A,E) is the soft set $\widetilde{mt}(A,E) = \widetilde{U}\{(O,E):(O,E)\}$ which is soft open and(O,E) \cong (A,E)

(ii) the soft closure [5] of (A,E) is the soft set $\widehat{cl}(A,E) = \widehat{n}\{$ (F,E) : (F,E) which is soft closed and (A,E) \cong (F,E)}. Clearly $\widehat{cl}(A,E)$ is the smallest soft closed set over X which contains (A,E) and $\widehat{int}(A,E)$ is the largest soft open set over X which is contained in (A,E).

A. P. Dhana Balan Department of Mathematics, Alagappa Govt. Arts College Karaikudi – 630 003, Tamil Nadu, India.

Definition 1.6 [2]: In a soft topological space (X,τ,E) , a soft set (i) (A,E) is said to be soft feebly-open set if $(A,E) \simeq scl(int(A,E))$.

(ii) (A,E) is said to be soft feebly-closed set if $s int(\widetilde{cl}(A,E)) \cong (A,E)$.

It is said to be soft feebly-clopen if it is both soft feebly-open and soft feebly-closed.

Definition 1.7 [2]: Let (X,τ,E) be a soft topological spaces soft set over and let (A,E)be а X. (i) Soft feebly-closure of a soft set (A,E) in X is denoted by $f \tilde{cl}(A,E) = \tilde{n}\{(F,E): (F,E) \text{ which is a soft feebly-closed set}\}$ (A,E) [≈] and (F,E). (ii) Soft feebly-interior of a soft set (A,E) in X is denoted by fint(A,E) = O(O,E) : (O,E) which is a soft feebly-open set and $(O,E) \cong (A,E)$. Clearly $f \in (A,E)$ is the smallest soft feebly-closed set over X which contains (A,E) and fint(A,E) is the largest soft feebly-open set over Х which is contained in (A,E).

Definition 1.8 ([4],[5],[1],[6]) : For a soft (F,E) over the universe U, the relative complement of (F,E) is denoted by (F,E)' and is defined by (F,E)' = (F',E), where (F',E), where $F' : E \rightarrow P(U)$ is a mapping defined by F'(e) = U - F(e) for all $e \in E$.

II. SOME NEWLY TWO MAPPINGS IN SOFT TOPOLOGICAL

Definition 2.1:Let(A,E) be a subset of soft topological space (X,τ,E) . It is said to be soft δ -open if for each $x \in (A,E)$, there exists an soft open set (G,E) such that $x \in (G,E) \subset int(\widehat{cl}(G,E) \subset (A,E)$. On the other hand soft δ -open if for each $x \in (A,E)$, there exists a soft regular open set (U,E) of (X,τ,E) such that $x \in (U,E) \subset (A,E)$.

Definition 2.2: Let (A,E) be a subset of soft topological space (X,τ,E) . It is said to be soft δ -clopen if it is both soft δ -open and soft δ -closed.

Remark 2.3: Union of two soft δ -clopen set is soft δ -clopen set .

Definition 2.4:A function $f : (X,\tau,E) \rightarrow (Y,\tau,E)$ is said to be soft biclop.na-continuous if the inverse image

of every soft $\delta\text{-clopen}$ set (V,E) of Y is soft feebly–clopen in X.

Definition 2.5:Let (A,E) be subset of soft topological space (X,τ,E) . (A,E) is said to be somewhat soft nearly clopen if $\widehat{cl}(int(\widehat{cl}(A,E))) = \varphi$.

Definition 2.6: A function $f : (X,\tau,E) \rightarrow (Y,\tau,E)$ is somewhat soft nearly biclop.na-continuous if $f^{-1}(V,E)$ is somewhat soft nearly clopen for every soft feebly- clopen set (V,E) in Y such that $f^{-1}(V,E) = \varphi$.

Theorem 2.7: For a function $f : (X,\tau,E) \rightarrow (Y,\tau,E)$, the following statements are equivalent.

(a) f is soft biclop.na-continuous

(b) A function $f : (X,\tau,E) \rightarrow (Y,\tau,E)$ is soft biclop.nacontinuous if for every soft feebly- clopen set (V,E) of Y containing f(x) there exist soft δ -clopen set (U,E) containing x such that $f(U,E) \cong (V,E)$.

Proof :(a) \Rightarrow (b) : Let $x \in X$ and let (V,E) be a soft feeblyclopen set in Y containing f(x). Then, by (b), f⁻¹(V,E) is soft δ -clopen in X containing x. Let (U,E) = f⁻¹(V,E). Then, f(U,E) \subseteq (V,E).

(b) \Rightarrow (a) : Let (V,E) be a soft feebly-clopen set of Y, and let $x \in f^{-1}(V,E)$. Since $f(x) \subseteq (V,E)$, there exists (U,E) containing x such that $f(U,E) \subseteq (V,E)$. then follows that $x \in (U,E) \subseteq f^{-1}(V,E)$. Hence $f^{-1}(V,E)$ is soft δ -clopen.

Theorem 2.8:If $f : (X,\tau,E) \rightarrow (Y,\tau,E)$ and $X = X_1 \bigcup X_2$ where X_1 and X_2 and soft δ -copen set and f/X_1 and f/X_2 are soft biclop.na-continuous, then f is soft biclop.na-continuous.

Proof: Let (A,E) be a soft feebly- clopen subset of Y. Then, since (f/X_1) and (f/X_2) are both soft biclop.na-continuous, therefore $(f/X_1)^{-1}(A,E)$ and $(f/X_2)^{-1}(A,E)$ are both soft δclopen set in X₁ and X₂ respectively. Since X₁ and X₂ are soft δ-clopen subsets of X, therefore $(f/X_1)^{-1}(A,E)$ and $(f/X_2)^{-1}(A,E)$ are both soft δ-clopen subsets of X. Also, $f^{-1}(A,E)$

= $(f/X_1)^{-1}(A,E)$ $\tilde{\mathbf{O}}$ $(f/X_2)^{-1}(A,E)$. Thus f⁻¹(A,E) is the union of two soft δ -clopen sets and is therefore soft δ -clopen. Hence f is soft biclop.na-continuous.

Theorem 2.9: If $f: (X,\tau,E) \rightarrow (Y,\tau,E)$ and $X = X_1 \ \mathcal{O} \ X_2$ and if (f/X₁) and (f/X₂) are both soft biclop.na-continuous at a point x belongs to X₁ \cap X₂, then f is soft biclop.na-continuous at x. *Proof:* Let (U,E) be any soft feebly- clopen set containing f(x). Since $x \in X_1 \cap X_2$ and (f/X₁), (f/X₂) are both soft biclop.na-continuous at x, therefore there exist soft δ -clopen sets (V₁,E) and (V₂,E) such that $x \in X_1 \cap (V_1,E)$ and f(X₁ $\cap (V_1,E)) \cong (U,E)$, and $x \in (X_2 \cap (V_2,E))$ and $(X_2 \cap (V_2,E)) \cong (U,E)$. Now since $X = X_1 \mathcal{O} X_2$, therefore f ((V₁,E) \cap (V₂,E)) =f(X₁ \cap (V_1,E) \cap (V_2,E)) $\mathcal{O}((U,E)$. Thus, (V₁,E) $\cap (V_2,E) = (V,E)$ is a soft δ -clopen set containing x such that f(V,E)) $\cong (U,E)$ and hence f is soft biclop.nacontinuous at x. *Theorem 2.10:* Every restriction of a soft biclop.na-continuous mapping is soft biclop.na-continuous.

Proof:Let f be a soft biclop.na-continuous mapping of (X,τ,E) into (Y,τ,E) and t (A,E) be any soft subset of X. For any soft feebly-clopen subset (S,E) of Y, $(f/(A,E))^{-1}(V,E) = (A,E) \cap f^{-1}(V,E)$. But f is being soft biclop.na-continuous, f ¹(S,E) is soft δ-clopen and hence $(A,E) \cap f^{-1}(V,E)$ is a relatively soft δ-clopen subset of (A,E), that is $(f/(A,E))^{-1}(V,E)$ is a soft δ-clopen subset of (A,E). Hence f/(A,E) is soft biclop.na-continuous.

Theorem 2.11: Let f map (X,τ,E) into (Y,τ,E) and let x be a point of X. If there exist a soft δ -clopen set (N,E) of x such that the restriction of f to (N,E) is soft biclop.na-continuous at x, then f is soft biclop.na-continuous at x.

Proof: Let (U,E) be any soft feebly-clopen set containing f(x). Since f/(N,E) is soft biclop.na-continuous at x, therefore there is an soft δ -clopen set (V_1,E) such that $x \in (N,E) \cap (V_1,E)$ and $f((N,E) \cap (V_1,E)) \subset (U,E)$. Thus $(N,E) \cap (V_1,E)$ is soft δ -clopen set of x.

Theorem 2.12: Let $X = (R_1, E) \tilde{U}(R_2, E)$, where (R_1, E) , (R_2, E) are soft δ -clopen sets in X. Let $f : (R_1, E) \rightarrow (Y, \tau, E)$ and $g : (R_2, E) \rightarrow (Y, \tau, E)$ be soft biclop.na-continuous.

If f(x) = g(x) for each $x \in (R_1, E) \cap (R_2, E)$. Then $h : (R_1, E) \cap (R_2, E) \rightarrow (Y, \tau, E)$ such that h(x) = f(x) for $x \in (R_1, E)$ and h(x) = g(x) for $x \in (R_2, E)$ is soft biclop.na-continuous.

Proof:Let (U,E) be a soft feebly- clopen set of Y. Now $h^{-1}(U,E) = f^{-1}(U,E)$ $\mathbf{\tilde{U}}$ g⁻¹(U,E). Since f and g are soft biclop.na-continuous, f⁻¹(U,E) and g⁻¹(U,E) are soft δ-clopen set in (R₁,E) and (R₂,E) respectively. But (R₁,E) and (R₂,E) are both soft δ-clopen sets in X. Since union of two soft δ-clopen sets is soft δ-clopen, so $h^{-1}(U,E)$ is a soft δ-clopen set in X. Hence h is soft biclop.na-continuous.

Theorem 2.13:Let $f : (X,\tau,E) \rightarrow (Y,\tau,E)$ be soft biclop.nacontinuous surjection and (A,E) be soft δ -clopen

subset of X. If f is soft feebly- clopen function, then the function $g : (A,E) \rightarrow f(A,E)$, defined by g(x) = f(x) for each $x \in (A,E)$ is soft biclo.na-continuous.

Proof: Suppose that H = f(A,E). Let x \in (A,E) and (V,E) be any soft feebly- clopen set in (H,E) containing g(x). Since (H,E) is soft feebly clopen set in Y and (V,E) is soft feeblyclopen in (H,E). Since f is soft biclop.na-continuous, hence there exist a soft δ-clopen set (U,E) in X containing x. Taking (W,E) = (U,E) ∩ (A,E), since (A,E) is soft δ-open and soft δ-clopen set in (A,E) containing x. Thus g is soft biclop.na-continuous.

REFERENCES

- [1] Bin Chen, Soft semi-open sets and related properties in soft topological spaces, *Appl.Math.Inf.Sci.*7, No.1: 287-294, 2013.
- [2] A.P. Dhana Balan and R. Buvaneswari, On Soft Feebly-Continuous Functions, *Research International Journal of Mathematics and Computer*, 2(11): 723-728, 2014.
- [3] P.K. Maji , R. Biswas and A.R. Roy , Soft set theory, Comput.Math.Appl.,45:555-562, 2003.
- [4] D. Molodtsov, Soft set theory-first results, *Computers and Mathematics with Applications*, 37(4-5):19-31, 1999.
- [5] M. Shabir and M. Naz, On soft topological spaces, *Comput.Math.Appl.*, 61:1786-1799, 2011.
- [6] D. Sreeja and C. Janaki, On πgb-Closed Sets in Topological Space, *International journal of Mathematical Archive*, Vol 2, 8: 1314-1320, 2011.
- [7] I. Zorlutuna, M. Akdag, W.K. Min and S. Atmaca, Remark on soft topological spaces, *Annals of Fuzzy Mathematics and Informatics*, 3(2):171-185, 2012.