Some Mapping on $\alpha c^* g$-Open & Closed Maps in Topological Spaces

A. Pushpalatha
Department of Mathematics,
Government Arts College
Udumalpet-642 126, Tirupur District
Tamil Nadu, India

A. Kavitha
Department of Mathematics,
Dr.Mahalingam College of Engineering and Technology,
Pollachi-642003,Coimbatore District
TamilNadu, India

Abstract

In this paper we have introduced the concept of Closed maps, Open maps, Irresolute and Homeomorphism on the $\alpha c^* g$-closed set and study some properties on them.

1. Introduction

Malghan [1] introduced and investigated some properties of generalized closed maps in topological spaces. The concept of generalized open map was introduced by Sundaram[2]. In this paper we introduced the concepts of $\alpha c^* g$-closed maps and $\alpha c^* g$-open maps in topological spaces.

2. Premilinaries

Definition 2.1: A subset A of a topological space (X, r) is called
(i) Generalized closed set (g-closed)[3] if cl(A) $\subseteq U$ whenever $A \subseteq U$, and U is open in X.
(ii) α-generalized closed set (g-closed)[4] if αcl(A) $\subseteq U$ whenever $A \subseteq U$, and U is open in X.
(iii) αc^*g-closed set[5] if αcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is C-set. The complement of αc^*g-closed set is αc^*g-open set[5].
(iv) αcg-closed set[5] if αcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is C*-set. The complement of αcg-closed set is αcg-open set[5].
(v) αg-closed set[5] if αcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is G-set.

Definition 2.2: A map $f: X \rightarrow Y$ is said to be
(i) g-closed[3] in X for each closed set F in Y.
(ii) α-generalized continuous (g-continuous)[15] if $f^{-1}(F)$ is αg-closed in X for each closed set F in Y.
(iii) closed map[1] if for each closed set F in X, $f(F)$ is closed in Y.
(iv) open map[1] if for each open set F in X, $f(F)$ is open in Y.

3. $\alpha c^* g$-Closed maps & $\alpha c^* g$-Open maps in topological spaces

Definition 3.1: A map $f: X \rightarrow Y$ from a topological space X into a topological space Y is called $\alpha c^* g$-closed map if for each closed set F in X, $f(F)$ is a $\alpha c^* g$-closed set in Y.

Theorem 3.2: If a map $f: X \rightarrow Y$ is closed map then it is $\alpha c^* g$-closed map but not conversely.

Proof: Since every closed set is $\alpha c^* g$-closed set then it is $\alpha c^* g$-closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that

$f: (X, \tau_1) \rightarrow (Y, \tau_2)$.
$\tau_1 = \{\varphi, Y, \{b, c\}\}$,
$\tau_2 = \{\varphi, X, \{a\}, \{a, c\}, \{a, b\}\}$.

Here

$C(\tau_1, \tau_2) = \{\phi_y, \{a\}\} \cup C(X, \tau_2) = \{\phi, X, \{b, c\}, \{b\}, \{c\}\}$.

Then f is $\alpha c^* g$-closed map but not closed map.

Since for the closed set $\{a\}$ in (X, τ_1),
$f([a]) = \{a\}$ is not closed in Y.

Theorem 3.4: If a map \(f : X \to Y \) is g-closed map then it is \(\alpha g \)-closed map but not conversely.

Proof: Let \(f : X \to Y \) be a g-closed map. Then for each closed set \(F \) in \(X \), \(f(F) \) is g-closed in \(Y \). Since every g-closed set is \(\alpha g \)-closed set. Therefore \(\overline{f(F)} \) is \(\alpha g \)-closed set. Hence \(f \) is \(\alpha g \)-closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5: Let \(X = Y = \{a, b, c\} \). Let \(f \) be a identity map such that \(f : (X, \tau_1) \to (Y, \tau_2) \).
\[
\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \quad \text{and} \quad \tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}.
\]
Then \(f \) is \(\alpha g \)-closed but not g-closed because for the closed set \(\{a, c\} \) in \(X \), \(f(\{a, c\}) = \{a, c\} \) is not g-closed in \(Y \). Therefore \(f \) is not g-closed map.

Theorem 3.6: If a map \(f : X \to Y \) is \(\alpha \)-closed map then it is \(\alpha g \)-closed map but not conversely.

Proof: Let \(f : X \to Y \) be a \(\alpha \)-closed map. Then for each closed set \(F \) in \(X \), \(f(F) \) is \(\alpha \)-closed set in \(Y \). Since every \(\alpha \)-closed set is \(\alpha g \)-closed set. Therefore \(f(F) \) is \(\alpha g \)-closed set. Hence \(f \) is \(\alpha g \)-closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let \(X = Y = \{a, b, c\} \). Let \(f \) be a identity map such that \(f : (X, \tau_1) \to (Y, \tau_2) \).
\[
\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \quad \text{and} \quad \tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}.
\]
Then \(f \) is \(\alpha g \)-closed but not \(\alpha \)-closed because for the closed set \(\{a, c\} \) in \(X \), \(f(\{a, c\}) = \{a, c\} \) is not \(\alpha \)-closed in \(Y \). Therefore \(f \) is not \(\alpha \)-closed map.

Theorem 3.8: If a map \(f : X \to Y \) is \(\alpha g \)-closed map then it is \(\alpha g \)-closed map but not conversely.

Proof: Let \(f : X \to Y \) be a \(\alpha g \)-closed map. Then for each closed set \(F \) in \(X \), \(f(F) \) is \(\alpha g \)-closed set in \(Y \). Since every \(\alpha g \)-closed set is \(\alpha g \)-closed set. Therefore \(f(F) \) is \(\alpha g \)-closed set. Hence \(f \) is \(\alpha g \)-closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.9: Let \(X = Y = \{a, b, c\} \). Let \(f \) be a identity map such that \(f : (X, \tau_1) \to (Y, \tau_2) \).
\[
\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \quad \text{and} \quad \tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}.
\]
Then \(f \) is \(\alpha g \)-closed but not \(\alpha g \)-closed because for the closed set \(\{a, c\} \) in \(X \), \(f(\{a, c\}) = \{a, c\} \) is not \(\alpha g \)-closed in \(Y \). Therefore \(f \) is not \(\alpha g \)-closed map.

Theorem 3.10: If a map \(f : X \to Y \) is gs-closed map then it is \(\alpha g \)-closed map but not conversely.

Proof: Let \(f : X \to Y \) be a gs-closed map. Then for each closed set \(F \) in \(X \), \(f(F) \) is gs-closed set in \(Y \). Since every gs-closed set is \(\alpha g \)-closed set. Therefore \(f(F) \) is \(\alpha g \)-closed set. Hence \(f \) is \(\alpha g \)-closed map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11: Let \(X = Y = \{a, b, c\} \). Let \(f \) be a identity map such that \(f : (X, \tau_1) \to (Y, \tau_2) \).
\[
\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \quad \text{and} \quad \tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}.
\]
Then \(f \) is \(\alpha g \)-closed but not gs-closed because for the closed set \(\{a, c\} \) in \(X \), \(f(\{a, c\}) = \{a, c\} \) is not gs-closed in \(Y \). Therefore \(f \) is not gs-closed map.

Definition 3.12: A map \(f : X \to Y \) from a topological space \(X \) into a topological space \(Y \) is called \(\alpha g \)-open map if \(f(F) \) is a \(\alpha g \)-open set in \(Y \) for every open set \(F \) in \(X \).

Theorem 3.13: If a map \(f : X \to Y \) is open map then it is \(\alpha g \)-open map but not conversely.

Proof: Let \(f : X \to Y \) be a open map. Let \(F \) be any open set in \(X \), \(f(F) \) is open set in \(Y \). Then \(f(F) \) is \(\alpha g \)-open set. Since every open set is \(\alpha g \)-open set. Hence \(f \) is \(\alpha g \)-open map.
The converse of the above theorem need not be true as seen from the following example.

Example 3.14: Let $X = Y = \{a, b, c\}$. Let f' be a identity map such that $f': (X, \tau_1) \rightarrow (Y, \tau_2)$.
\[\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \]
\[\tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \]. Then f' is αg-open map but not open map because for the open set $\{b\}$ in X, $f'([b]) = \{b\}$ is not open in Y. Therefore f' is not open map.

Theorem 3.15: If a map $f: X \rightarrow Y$ is g-open map then it is $\alpha^c g$-open map but not conversely.

Proof: Let $f: X \rightarrow Y$ be a g-open map. Let F be any open set in X, $f(F)$ is g-open set in Y. Since every g-open set is $\alpha^* g$-open set. Then $f(F)$ is αg-open set. Hence f is $\alpha^* g$-open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.16: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$.
\[\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \]
\[\tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \]. Then f is $\alpha^* g$-open map but not g-open map because for the open set $\{b\}$ in X, $f([b]) = \{b\}$ is not g-open in Y. Therefore f is not g-open map.

Theorem 3.17: If a map $f: X \rightarrow Y$ is αg-open map then it is $\alpha^* g$-open map but not conversely.

Proof: Let $f: X \rightarrow Y$ be a αg-open map. Let F be any open set in X, $f(F)$ is αg-open set in Y. Since every αg-open set is $\alpha^* g$-open set. Then $f(F)$ is $\alpha^* g$-open set. Hence f is $\alpha^* g$-open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.18: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$.
\[\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \]
\[\tau_2 = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \]. Then f is $\alpha^* g$-open map but not g-open map because for the open set $\{b\}$ in X, $f([b]) = \{b\}$ is not g-open in Y. Therefore f is not g-open map.

Theorem 3.19: If a map $f: X \rightarrow Y$ is α-open map then it is $\alpha^* g$-open map but not conversely.

Proof: Let $f: X \rightarrow Y$ be a α-open map. Let F be any open set in X, $f(F)$ is α-open set in Y. Since every α-open set is $\alpha^* g$-open set. Then $f(F)$ is $\alpha^* g$-open set. Hence f is $\alpha^* g$-open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.20: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$.
\[\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \]
\[\tau_2 = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}\} \]. Then f is $\alpha^* g$-open map but not α-open map because for the open set $\{b\}$ in X, $f([b]) = \{b\}$ is not α-open in Y. Therefore f is not α-open map.

Theorem 3.21: If a map $f: X \rightarrow Y$ is gs-open map then it is $\alpha^* g$-open map but not conversely.

Proof: Let $f: X \rightarrow Y$ be a gs-open map. Let F be any open set in X, $f(F)$ is gs-open set in Y. Since every gs-open set is $\alpha^* g$-open set. Then $f(F)$ is $\alpha^* g$-open set. Hence f is $\alpha^* g$-open map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.22: Let $X = Y = \{a, b, c\}$. Let f be a identity map such that $f: (X, \tau_1) \rightarrow (Y, \tau_2)$.
\[\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \]
\[\tau_2 = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}\} \]. Then f is $\alpha^* g$-open map but not gs-open map because for the open set $\{b\}$ in X, $f([b]) = \{b\}$ is not gs-open in Y. Therefore f is not gs-open map.
Theorem 3.23: If \(f : X \to Y \) is \(\alpha^c \text{-} g \)-continuous and \(\alpha^c g \)-closed and \(A \) is a \(\alpha^c g \)-closed set of \(X \), then \(f(A) \) is \(\alpha^c g \)-closed in \(Y \).

Proof: Let \(f(A) \subseteq O \), where \(O \) is \(\alpha^c \)-set of \(Y \), Since \(f \) is \(\alpha^c \text{-} g \)-continuous, \(f^{-1}(O) \) is \(\alpha \)-set containing \(A \). Hence \(cl(A) \subseteq f^{-1}(O) \) as \(A \) is \(\alpha^c g \)-closed. Since \(f \) is \(\alpha^c g \)-closed, \(f(cl(A)) \) is \(\alpha^c \)-set contained in \(\alpha \)-set \(O \), which implies that \(cl(f(cl(A))) \subseteq O \) and hence \(cl(f(A)) \subseteq O \). So \(f(A) \) is \(\alpha^c g \)-closed in \(Y \).

Corollary 3.24: If \(f : X \to Y \) is continuous and closed map and if \(A \) is \(\alpha^c g \)-closed set in \(X \), then \(f(A) \) is \(\alpha^c g \)-closed in \(Y \).

Proof: Since every continuous map is \(\alpha^c \)-continuous and every closed map is \(\alpha^c \)-closed, by the above theorem the result follows.

Theorem 3.25: If \(f : X \to Y \) is closed and \(h : Y \to Z \) is \(\alpha^c \)-closed then \(h \circ f : X \to Z \) is \(\alpha^c \)-closed.

Proof: Let \(f : X \to Y \) is a closed map and \(h : Y \to Z \) is \(\alpha^c \)-closed map. Let \(V \) be any closed set in \(X \). Since \(f(X) \) is closed in \(Y \) and since \(h(Y) \) is \(\alpha^c \)-closed \(h(f(V)) \) is \(\alpha^c \)-closed set in \(Z \). Therefore \(h \circ f : X \to Z \) is \(\alpha^c \)-closed map.

Theorem 3.26: If \(f : X \to Y \) is \(\alpha^c g \)-closed and \(A \) is closed set in \(X \). Then \(f^{-1}(A) \to Y \) is \(\alpha^c g \)-closed.

Proof: Let \(V \) be closed set in \(A \). Then \(V \) is closed in \(X \). Therefore \(f^{-1}(A) \) is \(\alpha^c g \)-closed set in \(Y \). By theorem 1.24 \(f(V) \) is \(\alpha^c g \)-closed. That is \(f^{-1}(A) \) is \(\alpha^c g \)-closed set in \(Y \). Therefore \(f^{-1}(A) \to Y \) is \(\alpha^c g \)-closed.

4. \(\alpha^c g \) - irresolute map in Topological Spaces

Crossley and Hildebrand[9] introduced and investigated the concept of irresolute function in topological spaces. Sundaram[2], Maheshwari and Prasad[10], Jankovic[11] have defined gc- irresolute maps, \(\alpha \)-irresolute maps and p-open maps in topological spaces.

In this section, we have introduced a new class of map called \(\alpha^c g \) - irresolute map and study some of their properties.

Definition 4.1: A map \(f : X \to Y \) from topological space \(X \) into a topological space \(Y \) is called \(\alpha^c g \) - irresolute map in the inverse of every \(\alpha^c g \)-closed (\(\alpha^c g \)-open) set in \(Y \) is \(\alpha^c g \)-closed (\(\alpha^c g \)-open) in \(X \).

Theorem 4.2: If a map \(f : X \to Y \) is \(\alpha^c g \)-irresolute, then it is \(\alpha^c g \)-continuous, but not conversely.

Proof: Assume that \(f \) is \(\alpha^c g \)-irresolute. Let \(F \) be any closed set in \(Y \). Since every closed set is \(\alpha^c g \)-closed, \(F \) is \(\alpha^c g \)-closed in \(Y \). Since \(f \) is \(\alpha^c g \)-irresolute, irresolute, \(f^{-1}(F) \) is \(\alpha^c g \)-closed in \(X \). Therefore \(f \) is \(\alpha^c g \)-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\emptyset, Y, \{a\}\} \). Let \(f(X, \tau_1) \to (Y, \tau_2) \) be the identity map then \(f \) is \(\alpha^c g \)-continuous, because for the inverse image of every closed in \(Y \) is \(\alpha^c g \)-closed in \(X \), but not \(\alpha^c g \)-irresolute. Because for the inverse image of every \(\alpha^c g \)-closed in \(Y \) is not \(\alpha^c g \)-closed in \(Y \), (ie) for the \(\alpha^c g \)-closed set \(\{b\} \) in \(Y \) the inverse image \(f^{-1}(\{b\}) = \{b\} \) is not \(\alpha^c g \)-closed in \(X \).

Theorem 4.4: Let \(X, Y, \) and \(Z \) be any topological spaces.

For any \(\alpha^c g \)-irresolute map \(f : X \to Y \) and any \(\alpha^c g \)-continuous map \(g : Y \to Z \) the composition \(g \circ f : X \to Z \) is \(\alpha^c g \)-continuous.

Proof: Let \(F \) be any closed set in \(Z \). Since \(g \) is \(\alpha^c g \)-continuous, \(g^{-1}(F) \) is \(\alpha^c g \)-closed in \(Y \). Since \(f \) is \(\alpha^c g \)-irresolute \(f^{-1}(g^{-1}(F)) \) is \(\alpha^c g \)-closed \(f^{-1}(g^{-1}(F)) \) is \(\alpha^c g \)-continuous.

Therefore \(g \circ f \) is \(\alpha^c g \)-continuous.

Theorem 4.5: If \(f : X \to Y \) from topological space \(X \) into a topological space \(Y \) is bijective, \(\alpha^c g \)-open set and \(\alpha^c g \)-continuous then \(f \) is \(\alpha^c g \)-irresolute.
Proof: Let A be a αc⁠g -closed set in Y. Let \(f^{-1}(A) \subseteq O \). Where O is C^*-set in X. Therefore A \(\subseteq f(O) \) holds. Since \(f(O) \) is αc⁠g-open set and A is αc⁠g-closed in Y, acl(A) \(\subseteq f(O) \), \(f^{-1}\text{ (acl(A))} \subseteq f(O) \).

Since f is αc⁠g-continuous and acl(A) is closed in Y. \(\alpha cl(f^{-1}(\alpha cl(A)) \subseteq O \).

Therefore \(f^{-1}(A) \) is αc⁠g-closed in X. Hence f is αc⁠g-irresolute.

The following examples show that no assumption of the above theorem can be removed.

Example 4.6: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}\} \). Then the defined identity map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is αc⁠g-continuous, bijective and not αc⁠g-open. So f is not αc⁠g-irresolute. Since for the αc⁠g-closed set \{a\} in Y the inverse image \(f^{-1}(\{a\}) = \{a\} \) is not αc⁠g-closed in X.

Example 4.7: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}\} \). Then the map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) be defined by \(f(a) = a, f(b) = b, f(c) = a \). Then f is αc⁠g-continuous, αc⁠g-open and not bijective. So f is not αc⁠g-irresolute. Since for the αc⁠g-closed set \{b\} in Y the inverse image \(f^{-1}(\{b\}) = \{b\} \) is not αc⁠g-closed in X.

Example 4.8: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}, \{a, b\}\} \) Then the defined identity map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is bijective, αc⁠g-open and not αc⁠g-continuous. So f is not αc⁠g-irresolute. Since for the αc⁠g-closed set \{b\} in Y the inverse image \(f^{-1}(\{b\}) = \{b\} \) is not αc⁠g-closed in X.

Remark 4.9: The following two examples show that the concepts of irresolute maps and αc⁠g-irresolute maps are independent of each other.

Example 4.10: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}, \{a, b\}\} \). Then the defined identity map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is irresolute but not αc⁠g-irresolute. Since \{b\} is αc⁠g-closed set in Y has its inverse image \(f^{-1}(\{b\}) = \{b\} \) is not αc⁠g-closed in X.

Example 4.11: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\varnothing, X, \{a\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}, \{a, b\}\} \). Then the defined identity map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is αc⁠g-irresolute but not irresolute. Since the closed set \{a,c\} in Y has its inverse image \(f^{-1}(\{a,c\}) = \{a,c\} \) is not closed in X.

Remark 4.12: From the following diagram we can conclude that αc⁠g-irresolute map is independent with irresolute map.

\[\text{αc⁠g-irresolute map} \quad \text{irresolute map} \]

5. αc⁠g-homeomorphism maps in Topological Spaces

Several mathematicians have generalized homeomorphism in topological spaces. Biswas[14], Crossley and Hildebrand[9], Gentry and Hoyle[13] and Umehara and Maki[12] have introduced and investigated semi-homeomorphism, which also a generalization of homeomorphism. Sundaram[2] introduced g-homeomorphism and gc-homeomorphism is topological spaces.

In this section we introduce the concept of αc⁠g-homeomorphism and study some of their properties.

Definition 5.1: A bijection \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is called αc⁠g-homeomorphism if f is both αc⁠g-open and αc⁠g-continuous.

Theorem 5.2: Every homeomorphism is a αc⁠g-homeomorphism but not conversely.

Proof: Since every continuous function is αc⁠g-continuous and every open map is αc⁠g-open the proof follows.
The converse of the above theorem need not be true as seen from the following example.

Example 5.3: Let \(X = Y = \{a, b, c\} \) with \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, X, \{a, b\}\} \), then \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is \(\alpha\gamma^* \) -homeomorphism but not homeomorphism.

Theorem 5.4: For any bijection \(f: X \rightarrow Y \) the following statements are equivalent.

i) \(f^{-1}: Y \rightarrow X \) is \(\alpha\gamma^* \) -continuous.

ii) \(f \) is a \(\alpha\gamma^* \) -open map.

iii) \(f \) is a \(\alpha\gamma^* \) -closed map.

Proof: (i) \(\Rightarrow \) (ii) Let \(G \) be any open set in \(X \). Since \(f^{-1} \) is \(\alpha\gamma^* \) -continuous, the inverse image of \(G \) under \(f^{-1} \) namely \(f(G) \) is \(\alpha\gamma^* \) -open in \(Y \). So \(f \) is \(\alpha\gamma^* \) -open map.

(ii) \(\Rightarrow \) (iii) Let \(F \) be any closed set in \(X \). Then \(F^c \) is open in \(X \). Since \(f \) is \(\alpha\gamma^* \) -open map \(f(F^c) \) is \(\alpha\gamma^* \) -open map in \(Y \). But \(f(F^c) = Y - f(F) \) and so \(f(F) \) is \(\alpha\gamma^* \) -open map in \(Y \). Therefore \(f \) is a \(\alpha\gamma^* \) -closed map.

(iii) \(\Rightarrow \) (i) Let \(F \) be any closed set in \(X \). Then \((f^{-1})^{-1}F = f(F) \) is \(\alpha\gamma^* \) -closed map in \(Y \). Therefore \(f^{-1}: Y \rightarrow X \) is \(\alpha\gamma^* \) -continuous.

Theorem 5.5: Let \(f(X, \tau) \rightarrow (Y, \sigma) \) be a bijective and \(\alpha\gamma^* \) -continuous map the following statement are equivalent.

i) \(f \) is a \(\alpha\gamma^* \) -open map.

ii) \(f \) is a \(\alpha\gamma^* \) -homeomorphism.

iii) \(f \) is a \(\alpha\gamma^* \) -closed map.

Proof: The proof easily follows from definitions and assumptions.

The following examples shows that the composition of two \(\alpha\gamma^* \) -homeomorphism need not be \(\alpha\gamma^* \) -homeomorphism.

Example 5.6: Let \(X = Y = Z = \{a, b, c\} \) with topologies \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}, \{a, b\}\} \), \(\tau_3 = \{\varnothing, Z, \{a, b\}\} \) then \(f(X, \tau_1) \rightarrow (Y, \tau_2) \rightarrow (Z, \tau_3) \) is \(\alpha\gamma^* \) -homeomorphism but not \(\alpha\gamma^* \) -homeomorphism.

Let \(f \) and \(g \) be identity maps such that \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \) then \(f \) and \(g \) are \(\alpha\gamma^* \) -homeomorphism, but their composition \(g \cdot f: X \rightarrow Z \) is not \(\alpha\gamma^* \) -homeomorphism.

Theorem 5.7: Every \(\alpha \) -homeomorphism is a \(\alpha\gamma^* \) -homeomorphism.

Proof: Let \(f: X \rightarrow Y \) be a \(\alpha \) -homeomorphism then \(f \) is \(\alpha \) -continuous and \(\alpha \) -closed. Since every \(\alpha \) -continuous is \(\alpha\gamma^* \) -continuous and every \(\alpha \) -closed is \(\alpha\gamma^* \) -closed, \(f \) is \(\alpha\gamma^* \) -continuous and \(\alpha\gamma^* \) -closed. Therefore \(f \) is \(\alpha\gamma^* \) -homeomorphism.

The converse of the above theorem need not to be true as seen from the following example.

Example 5.8: Consider the topological space \(X = Y = \{a, b, c\} \) with topology \(\tau_1 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{\varnothing, Y, \{a\}, \{a, c\}\} \). Then the defined identity map \(f(X, \tau_1) \rightarrow (Y, \tau_2) \) is \(\alpha\gamma^* \) -homeomorphism but not \(\alpha \) -homeomorphism. Since for the open set \(\{a\} \) in \(X \) the inverse image \(f^{-1}(\{a\}) = \{a\} \) is not \(\alpha \) -open in \(Y \).

From the above observations we get the following diagram:

\[
\text{homeomorphism} \quad \longrightarrow \quad \alpha \text{-homeomorphism} \quad \downarrow \\
\alpha\gamma^* \text{-homeomorphism} \quad \uparrow \\
\text{\(\alpha\gamma^* \) -irresolute map}
\]

Definition 5.9: A bijection \(f(X, \tau) \rightarrow (Y, \sigma) \) is said to be \((\alpha\gamma^*)^* \) homeomorphism if \(f \) and its inverse \(f^{-1} \) are \(\alpha\gamma^* \) -irresolute map.

Notation 5.10: Let the family of all \((\alpha\gamma^*)^* \) -homeomorphism from \((X, \tau) \) onto itself be denoted by \((\alpha\gamma^*)^* \) and the family of all \(\alpha\gamma^* \) -homeomorphism from \((X, \tau) \) onto itself be denoted by \((\alpha\gamma) \). The family of all
homeomorphism from \((X, \tau)\) onto itself be denoted by \(h(X, \tau)\).

Theorem 5.11: Let \(X\) be a topological space. Then

1. The set \((\alpha c^* g)^* h(X)\) is group under composition of maps.

2. \(h(x)\) is a subgroup of \((\alpha c^* g)^* h(X)\)
3. \((\alpha c^* g)^* h(X)\) is closed under the composition of maps.

Proof for (i): Let \(f, g \in (\alpha c^* g)^* h(X)\), then
\(g \cdot f \in (\alpha c^* g)^* h(X)\) and so \((\alpha c^* g)^* h(X)\) is closed under the composition of maps. The composition of maps is associative. The identity map \(I : X \to X\) is a \((\alpha c^* g)^*\)-homeomorphism and so \(I \in (\alpha c^* g)^* h(X)\). Also \(f \cdot I = I \cdot f = f\) for every \(f \in (\alpha c^* g)^* h(X)\). If \(f \in (\alpha c^* g)^* h(X)\), then \(f^{-1} \in (\alpha c^* g)^* h(X)\) and
\(f \cdot f^{-1} = f^{-1} \cdot f = I\). Hence \((\alpha c^* g)^* h(X)\) is a group under the composition of maps.

Proof for (ii): Let \(f(X, \tau) \to (Y, \sigma)\) be a homeomorphism. Then by theorem 4.5. Both of \(f\) and \(f^{-1}\) are \((\alpha c^* g)^*\)- irresolute and so \(f\) is a \((\alpha c^* g)^*\)-homeomorphism. Therefore every homeomorphism is a \((\alpha c^* g)^*\)-homeomorphism. Therefore \(h(x)\) is a subgroup of \((\alpha c^* g)^* h(X)\). Also \(h(x)\) is a group under composition of maps.

Proof for (iii): Since every \((\alpha c^* g)^*\)-irresolute map is \(\alpha c^* g\)-continuous, \((\alpha c^* g)^* h(X)\) is a subset of \((\alpha c^* g)^* h(X)\).

REFERENCES

[5] Kavitha.A., \(\alpha cg, \alpha c^*g, \alpha c(s)g\)-closed sets in Topological spaces, In the 99th Indian Science Congress, Bhubaneswar(2012).

