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Abstract-  We consider the modified form of the  forced spring 

equation , commonly known as Duffing equation 

 

 

 
 

where 2,1,,,, ppF  are adjustable parameters. In this 

paper a detail study of the nonlinear Duffing oscillator with 

damping and external excitation is presented. The system under 

study consists of  Duffing oscillator which is perturbed by the 

addition of a linear term )21( xpp  where 02,1 pp  . We have 

considered the case when  0  and 0   i.e., we are dealing 

with inverted  Duffing oscillator. The dynamical behavior of the 

proposed model is investigated analytically. We observe that the 

time continuous Duffing oscillator  shows repetition of chaotic 

behavior. The tools of theoretical approach are the bifurcation 

diagram, the phase portraits, the Poincare sections, time series 

and the strange attractors.  Next we observed occurrence of 

homoclinic orbits in our model when damping coefficient is 

taken as zero with varying F.  
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  INTRODUCTION 
In the last decades, research activities in systems of 

nonlinear oscillator resulted in a lot of publications on 

phenomena that such systems exhibit. Also, the interesting 

dynamical  behavior, which  these systems have shown, has 

triggered an investigation in possible applications of such 

systems in various scientific field, such as secure 

communication, cryptography, broadband communication 

systems, random numbers, radars, robots and in variety of 

complex physical, chemical and biological systems. 
 

The forced Duffing equation is given by 
 

      
 

where 𝛾 is the damping coefficient,  is the linear stiffness 

parameter,   is the  nonlinear (cubic) stiffness parameter, F 

is the strength of the driving force and   is the frequency. It 

has been studied by a large number of authors since its 

introduction by Duffing.  Duffing considered modeling 

forced oscillations using several different differential 

equations aiming at reproducing his observations of the 

behavior of machines. He was an engineer interested in 

solving very practical problems: to model forces and frictions 

including the complicated oscillations. [2] 

We have considered a nonlinear  and non-autonomous 

system  with linear damping in the following set of equations. 

We have modified the Duffing equation as 

 

 

where 


x is the velocity, 


x  is the acceleration,   is the 

damping coefficient, 𝛼  is the linear stiffness parameter, 𝛽 is 

the nonlinear (cubic) stiffness parameter. Here we have added 

a linear term  )21( xpp   to the equation and assumed  0  

and 0 , hence we are studying about inverted Duffing 

oscillator and its chaotic properties. We find that our model 

undergoes chaotic behavior as well as it also shows 

homoclinic properties within a certain range of parametric 

values. Our study consist of the following: First, we have 

fixed the  parameters 2,1,,, pp  and studied the behavior 

for different values of  F . We  obtained bifurcation diagram 

for 0.1< F <15  . Secondly we have obtained phase portrait 

and Poincare sections in this regard. Thirdly we have shown 

 x vs t  graph for our model within some range of parameters. 

Fourthly, we observed the behavior of the strange attractors, 

how they vary with driving force and damping factor. Lastly 

we observed the homoclinic behavior of the oscillator when 

damping coefficient is taken as zero.  

 

1. STUDY OF OUR MODEL 

Our modified Duffing equation is  
 

 
 

  with signs having their usual meaning. We have obtained 

the bifurcation diagram for our model.  Bifurcation theory 

attempts to provide a systematic classification of the sudden 

changes in the qualitative behavior of the dynamical system. 

It is the mathematical study of changes in the qualitative or 

topological structure of a given family. In order to understand 

the various type of qualitative behavior that are exhibited by a 

physical system, it is necessary to describe the various 

bifurcations that occur in the system  of differential equations 

modeling the physical system and to determine the parameter 

values, called bifurcation values , at which bifurcation occurs. 

Going back to the Duffing equation, we tried for different 

values of the parameter   and  and observed where the 
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period doubling route to chaos occurs. We have fixed 

1.  

F is taken within a range of 0.1 to 15 to obtain the bifurcation 

diagram. 
 

. 

Fig-1: period-doubling route to chaos with  𝛾=0.1, 𝛼=-2, 𝛽=2, 𝜔=1.2, 𝘍≤ 
15   is plotted. 

 

Clearly we see period doubling route to chaos. With 

parameters chosen in the region of limit cycles the system is 

either  in the well of positive x or in the well of negative x, 

depending on the precise value of  F, but does not hop 

between the wells. We see that there is a repetition of period 

one, period two behavior which ultimately leads to chaotic 

behavior.   

2. PERIODIC AND CHAOTIC BEHAVIOR 

Next we concentrate our study in phase portrait and Poincare 

sections along with x vs t  graph. 

A useful way of analyzing chaotic motion is to look at the 

phase plane and Poincare section. Phase plane gives us a 

continuous curve indicating a periodic orbits whereas 

Poincare section is just the discrete set of phase space points 

of the particle of every points of the driving force i.e., at 



2 ,


4 ,


8  etc. Clearly for a periodic orbit the Poincare 

section is a single dot, when the period is doubled there is 

double dot and the process goes on. [3] 

    Phase portrait along with their respective Poincare return 

maps are presented in the figures shown below. When   0.1< 

F < 0.4123, there is a period-one harmonic solution of period 



2 . which is depicted as a closed curve in the phase plane 

and as a single dot in the Poincare section.  When F=0.6402 

period-two cycle of period  


4  appears which is represented 

by double dot in the Poincare section. A period three cycle of 

period 


8  is observed when F=0.9553, that is centered at O 

and surrounds both -1 and 1. When F=1.229  our model 

shows chaotic behavior. A  single trajectory plotted  in the 

phase plane intersect  itself many times and the portrait soon 

becomes messy. Again at F=1.901 there is once more a stable 

period one solution.  At F=2.693 there is a period two cycle, 

at F=2.899 there is a period four cycle and again chaotic 

behavior is observed at 3.341.Thus we observe that there is a 

repetition of periodic orbits and chaotic behavior as the 

driving force increases.  
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Fig-2: left shows phase portrait and right shows Poincare sections at  

𝛾=0.1, 𝛼=-2, 𝛽=2, 𝜔=1.2, p1=1 ,p2=0.4 is plotted at F=0.4123, 

F=0.6402,F=0.9553 and F=1.229. 
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Fig-3: left shows phase portrait and right shows poincare sections at  

𝛾=0.1, 𝛼=-2, 𝛽=2, 𝜔=1.2, p1=1, p2=0.4 at 

F=1.901,F=2.693,F=2.899 and F=3.341 

 

3. TIME SERIES 

A plot of  )(tx  over the time interval 200.....0t  for the 

inverted Duffing equation is shown below. Here  𝛾=0.1, 

𝛼=-2, 𝛽=2, 𝜔=1.2, p1=1, p2=0.4  and the initial conditions 

are taken as 0)0(,1)0( 


xx . The figure shows period-

one, period-two, period-three, period-four for different 

values of F. At F=1.229, 3.341, etc. are quite irregular 

with no obvious pattern emerging even if a longer time 

range is chosen. It is chaotic solutions. 
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                           (e)                                                       (f)  

Fig-4: graph for  with initial conditions  𝛾=0.1, 𝛼=-2, 𝛽=2, 𝜔=1.2, 
p1=1, p2=0.4  at (a) F =0.413,(b) F=0.6402, (c) F=0.9553 (d) 

F=2.899 shows periodic behavior and (e) F=1.229 (f) F=3.341 

shows chaotic behavior. 

 
 

 

4. STRANGE ATTRACTORS 

The strange attractors are a set of limiting points to which the 

trajectory tends (after the initial transient) every period of the 

driving force. The term strange is most often used as a name 

for attractors that exhibit chaotic behavior  i.e., sensitivity to 

initial conditions. Here we have observed the chaotic behavior 

at five different values of F keeping all other terms constant 

i.e. 

 𝛾=0.1, 𝛼=-2, 𝛽=2, 𝜔=1.2, p1=1, p2=0.4  with initial 

conditions 0)0(,1)0( 


xx . 

        

(a)                                                   (b) 

 

        

                            (c)                                                    (d) 

            

                        (e) 

Fig-5: Chaotic   attractors at  𝛾=0.1, 𝛼=-2, 𝛽=2, 𝜔=1.2, p1=1, 

p2=0.4  with initial condition 0)0(,1)0( 


xx   and  F=1.307, 

F=3.164, F=6.5, F=12.34 and F=14.86 
 

5. DETECTION OF HOMOCLINIC BIFURCATION IN 

OUR MODEL 

Some of the theory involved in the bifurcations to chaos for 

flows and maps is a result of the behavior of the stable and 

unstable manifolds of saddle points. The stable and unstable 

manifolds can form homoclinic and heteroclinic orbits as a 

parameter is varied. Homoclinic bifurcation occurs   if a 
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stable (unstable) branch of a saddle point crosses the unstable  

(stable) branch of the same saddle point. In our model we 

noticed appearance of homoclinic orbits as the parameter 

values are increased or decreased. We  found that if we take 

damping factor as zero  i.e.,   and decrease the value of 

the nonlinear  (cubic) stiffness parameter to 0.001 i.e., 

 keeping  and varying the forced 

parameter to a larger value, it always shows homoclinic 

behavior. There may be further changes in its behavior for 

even higher of F but  we  have observed  that the range within 

which we have chose the value of F, it always shows 

homoclinic nature. 
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Fig-6: Homoclinic bifurcation occurs at 𝛾=0, 𝛼= -2.8, 𝛽=0.001, 

𝜔=1.2 with initial condition 0)0(,1)0( 


xx  and F=10, F=100, 

F=250, F=500, F=750 and F=1000 

 

 

 

 

CONCLUSION 

This paper reported a systematic investigation in the phase 

space of the double well Duffing   oscillator. We used 

bifurcation diagram to show the region characterized by the 

parameters for which one finds periodic solutions, aperiodic 

solutions. When driving force is increased there is a series of 

parallel "islands" of parameters characterized by aperiodic 

attractors with wide basis of attractors. We have found that  

even the model is perturbed by linear term it shows periodic 

and chaotic behavior. Next we observed that when damping 

coefficient is taken  as zero  and  the nonlinear stiffness 

parameter is taken sufficiently small, the model shows 

homoclinic nature for whatever be the value of force. 
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