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 Abstract :A simply connected Lie group is completely 

determined by its Lie algebra. By this, of course, we mean 

that it is determined to within isomorphism. We now discuss 

the possibilities for Lie groups which are not simply 

connected. We say a Lie group is connected if every two 

points of it can be joined by an arc lying in the group. If a Lie 

group is connected, we call it simply connected when every 

simple closed curve in the group can be continuously shrunk 

to a point without any part of it passing outside the group in 

the process. By a component of a Lie group we mean a 

maximal connected subset, i.e., all the elements which can be 

connected to some given element by arcs in the group. In this 

research we consider the situation where the Lie group is not 

connected. It can be shown that the component containing the 

identity is always a closed normal subgroup of the Lie group 

and that the components are precisely the cosets of this 

normal subgroup. We can regard this collection of cosets 

forming the quotient group, as an abstract group. (Indeed, if 

we take it to be a discrete group the natural mapping is 

analytic.) The study of the algebraic structure of a Lie group 

which is not connected can almost be broken into two  

parts:the structure of the connected subgroup forming the 

component of the identity and the structure of the discrete 

quotient group. 

  

INTRODUCTION 

The first step in the classification of Lie algebras was the 

consideration of classical Lie algebras. They were totally 

outlined over 𝐶 and 𝑅, but the problem is not so easy over 

an algebraically closed field of characteristic different from 

zero. This “new” Lie theory emerged around 1935 from the 

studies by Witt, who defined a simple Lie algebra (now 

called the Witt algebra W1) whose behavior was totally 

different from the Lie algebras studied till then, over 𝐶 or 

𝑅. Less than ten years later, Jacobson and Zassenhaus put 

some order in these new algebras, but it was not until the 

21st century when a clear classification came. In fact, is a 

survey on these specific classifications of simple finite-

dimensional Lie algebras over algebraically closed fields of 

characteristic 𝑝> 0. Roughly speaking, and being 𝑝 a prime 

greater than 3, the simple Lie algebras are either classical 

or finite dimensional Cartan Lie type (and their 

deformations) or Melikyian algebras. If the characteristic is 

big enough, some other interesting properties hold; for 

instance, for finite-dimensional Lie algebras over an 

algebraically closed field of characteristic = > 7, the 

existence of non-singular Casimir operators (i.e., dealing 

with a restricted Lie algebra) is equivalent to the 

decomposition of the algebra as a direct sum of classical 

simple Lie algebras. 

Literature review 

One of the most fundamental concepts in mathematics is 

that of a group. Germs of group was present, even in 

ancient times, in the study of motions in space, in the study 

of congruences of geometric figures. In the beginning of 

nineteenth century development of group theory started. 

Dedekind [1897] studied about groups all of whose 

subgroups are normal. 

Miller and Moreno [1903] studied groups all of whose 

proper subgroups are abelian. They studied that all such 

groups are solvable. Their orders cannot be divided by 

more than two distinct primes. 

Schmidt [1924]worked on groups every proper subgroups 

of which is special. 

Malcev [1945]determined the classification of complex 

solvable Lie algebras. 

Golfond [1948] determined groups all of whose proper 

subgroups are special. 

Chandra Harish [1955]representation of semi simple lie 

group. 

 

METHODOLOGY 

Definitions Solvable group:A group 𝐺 is called solvable if 

it has a subnormal series whose factor group are all abelian, 

that is, if there are subgroup {1} = 𝐺0 ≤ 𝐺1 ≤ . . … . ≤ 𝐺𝑘 =
𝐺 such that 𝐺𝑗−1 is normal 𝐺𝑗, and 𝐺𝑗 ∕ 𝐺𝑗−1 is an abelian 

group, for 𝑗 = 1,2,3 … … … 𝑘 . 

DefinitionsFunction space:A function space 𝑓(𝐼)is the 

collection of all real-valued continuous functions defined 

on some interval 𝐼. 𝑓𝑛(𝐼) is the collection of all function 

which belongs 𝑓(𝐼) with continuous 𝑛𝑡ℎderivatives. A 

function space is a topological vector space. 

DefinitionsOperator: An operator 𝐴: 𝑓𝑛(𝐼) → 𝑓(𝐼) assigns 

to every function 𝑓 ∈ 𝑓𝑛(𝐼). It is therefore a mapping 

between two function spaces. 

Definitions Commutator: Let 𝐺 be a group. An element of 

the form 𝑎𝑏𝑎−1𝑏−1 which is denoted by [𝑎, 𝑏] is called a 

commutator. The subgroup 𝐺′of 𝐺 generated by all 

commutator of 𝐺 is called commutator subgroup or the 

derived subgroup of 𝐺.  

Or   
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Let 𝐴̃, 𝐵̃ … … be operators. Then the commutator of 𝐴̃ and 

𝐵̃ is defined as[𝐴̃, 𝐵̃] = 𝐴̃𝐵̃ − 𝐵̃𝐴̃. 

DefinitionsJacobi identity: The Jacobi identity is the 

relationship [𝐴, [𝐵, 𝐶]] + [𝐵, [𝐶, 𝐴]] + [𝐶, [𝐴, 𝐵]] = 0 

between three elements𝐴, 𝐵 and 𝐶, where [𝐴, 𝐵] is the 

commutator. The elements of a lie algebra satisfy this 

identity. 

 

RESULTS 

In this section 𝑘 and 𝐾 are field satisfying 𝑘 ⊆ 𝐾 ⊆ 𝐶, 

(where 𝐶 is a complex field) and all Lie algebras have 𝑘 the 

underlying field and are finite dimensional. 

THEOREM 1: An 𝑛-dimensional Lie algebra 𝑔 is solvable 

if and only if there exists a sequence of subalgebras  

𝑔 = 𝑎0 ⊇ 𝑎1 ⊇ ⋯ 𝑎𝑛  = 0 

Such that, for each 𝑖,  𝑎𝑖+1 is ideal in 𝑎𝑖 and dim 

(𝑎𝑖 𝑎𝑖+1⁄ ) = 1. 
PROOF: Let g be solvable. Form the commutator series 𝑔𝑗 

and interpolate subspace 𝑎𝑖 in the sequence so that dim 

(𝑎𝑖 𝑎𝑖+1⁄ )=1 for all i. We have  

𝑔 = 𝑎0 ⊇ 𝑎1 ⊇ ⋯ 𝑎𝑛  = 0. 

For any 𝑖, we can find 𝑗 such that𝑔𝑗 ⊇ 𝑎𝑖 ⊇ 𝑎𝑖+1 ⊇ 𝑔𝑗+1. 

Then  

[𝑎𝑖 , 𝑎𝑖] ⊆ [𝑔𝑗 , 𝑔𝑗] = 𝑔𝑗+1 ⊆ 𝑎𝑖+1. 

Hence 𝑎𝑖 is a subalgebra for each 𝑖, and 𝑎𝑖+1 is an ideal 𝑎𝑖. 

Conversely let the sequence exist. Choose 𝑥𝑖 so that𝑎𝑖 =
𝑘𝑥𝑖 + 𝑎𝑖+1 . 

We show by induction that𝑔𝑖 ⊆ 𝑎𝑖 , so that 𝑔𝑛 = 0 . In 

fact, 𝑔0 = 𝑎0 .If  𝑔𝑖 ⊆ 𝑎𝑖 , then     

𝑔𝑖+1 = [𝑔𝑖 , 𝑔𝑖] ⊆ [𝑘𝑥𝑖 + 𝑎𝑖+1, 𝑘𝑥𝑖 + 𝑎𝑖+1] ⊆ [𝑘𝑥𝑖 , 𝑎𝑖+1] +
[𝑎𝑖+1, 𝑎𝑖+1] ⊆ 𝑎𝑖+1 , 

and the induction is complete. Hence 𝑔 is solvable   

The kind of sequence in the theorem is called an 

elementary sequence. The existence of such a sequence has 

the following implication. Write 𝑎𝑖 = 𝑘𝑥𝑖⨁𝑎𝑖+1 . Then 𝑘𝑥𝑖 

is a 1-demensional subspace of  𝑎𝑖 , hence a subalgebra. 

Also 𝑎𝑖+1 is ideal  𝑎𝑖 . In a view of proposition 1.22   

……….. 

𝑎𝑖 is exhibited as a semidirect product of a 1-dimensional 

Lie algebra and 𝑎𝑖+1 . The theorem says that solvable Lie 

algebra are exactly those that can be obtain from 

semidirectproduct , starting from 0 and adding one 

dimension at a time .  

Let 𝑉 be vector space over 𝐾, and 𝑔 be a Lie algebra. A 

representation of 𝑔 on 𝑉 is homomorphism of Lie algebra  

𝛼: 𝑔 → (𝐸𝑛𝑑𝑘𝑉)𝑘 , which we often write simply as   

𝛼: 𝑔 → 𝐸𝑛𝑑𝑘𝑉. Because of the definition of bracket in  

𝐸𝑛𝑑𝑘𝑉 , the conditions on 𝛼 are that it be 𝑘 linear and 

satisfy  

𝛼([𝑋, 𝑌]) = 𝛼(𝑋)𝛼(𝑌) − 𝛼(𝑌)𝛼(𝑋)  for all  𝑋, 𝑌 ∈ 𝑔 .                                  

(1) 

 

THEOREM 2: Let g be solvable, let 𝑉 ≠ 0 be a 

fintedimensional vector space over 𝐾, and let 𝛼 ∶ 𝑔 →
 𝐸𝑛𝑑𝐾𝑉 be a representation. If 𝐾 is algebraically closed, 

then there is a simultaneous eigenvector 𝑣 ≠ 0 for all the 

members  𝛼(𝑔) . More generally (for 𝐾).there is a 

simultaneous eigenvector if all the eigenvalues of all  

𝛼(𝑋), 𝑋𝜖 𝑔 , lie in 𝐾. 

 

 

REMARK 

1. When g is a solvable Lie algebra and 𝛼 is representation, 

𝛼(𝑔) is solvable. This follows immediately from                                                                                                   

2. The theorem is the base step in an induction that will 

show that 𝑉 has a basis in all the matrices of 𝛼(𝑔) are 

triangular. This conclusion appears as theorem 3 below. If𝑔 

is solvable lie algebra of matrices and 𝛼 is the identity and 

one of the conditions on 𝐾 is satisfied, then g can be 

conjugated so as to be triangular. 

PROOF: We induct on dim 𝑔 = 1, then 𝛼(𝑔) consist of 

the multiples of a single transformation, and the results 

follows. 

Assume the theorem for all solvable Lie algebras of 

dimension less than dim g satisfying the eigenvalue 

condition. Since g is solvable, [𝑔, 𝑔] ⊂ 𝑔. choose a 

subspace ℎ of codimension 1 in g with [𝑔, 𝑔] ⊂ ℎ. then 

[ℎ, 𝑔] ⊆ [𝑔, 𝑔] ⊆ ℎ, and ℎ is an ideal. So ℎ is solvable. 

(also the eigenvalue condition holds for h if it holds for 𝑔.) 

By inductive hypothesis we can choose 𝑒 ∈ 𝑉 with 𝛼(𝐻)𝑒 

= 𝛽(𝐻)𝑒 for all  𝐻 ∈ ℎ, where 𝛽(𝐻)𝑒 is a scalar valued 

function defined for  𝐻 ∈ ℎ. 

𝑒−1 = 0, 𝑒0 = 𝑒              𝑒𝑝 = 𝛼(𝑋)𝑒𝑝−1 

and let 𝐸 = 𝑠𝑝𝑎𝑛{𝑒0. . . . . 𝑒𝑝 … . }. Then (𝑋)𝐸 ⊆ 𝐸 . Let 𝑣 

be an eigenvalue for 𝛼(𝑋) in 𝐸. We show that v is an 

eigenvalue for each (𝐻) , 𝐻 ∈ ℎ. 

First we show that  

𝛼(𝐻)𝑒𝑝 ≡ 𝛽(𝐻)𝑒𝑝 𝑚𝑜𝑑 𝑠𝑝𝑎𝑛{𝑒0, … . . , 𝑒𝑝−1}                

(1) 

For all 𝐻 ∈ ℎ. We do so by induction on 𝑝. Formula (1) is 

valid for 𝑝 = 0 by definition of  𝑒0. Assume (1) for 𝑝. then               

𝛼(𝐻)𝑒𝑝+1 =  𝛼(𝑋)𝛼(𝐻)𝑒𝑝 

= 𝛼([𝐻, 𝑋]) + 𝛼(𝑋)𝛼(𝐻)𝑒𝑝 

 
≡ 𝛽([𝐻, 𝑋])𝑒𝑝

+ 𝛼(𝑋)𝛼(𝐻)𝑒𝑝   𝑚𝑜𝑑 𝑠𝑝𝑎𝑛{𝑒0, … . . , 𝑒𝑝−1} 

                                                                                      

(By induction) 

≡ 𝛽([𝐻, 𝑋])𝑒𝑝

+      𝛽(𝐻)𝛼(𝑋)𝑒𝑝   𝑚𝑜𝑑 𝑠𝑝𝑎𝑛{𝑒0, … . . , 𝑒𝑝−1, 𝛼(𝑋)𝑒0, … . . , 𝛼(𝑋)𝑒𝑝−1} 

                                                                                       

(By induction)   ≡

𝛽(𝐻)𝛼(𝑋)𝑒𝑝 𝑚𝑜𝑑 𝑠𝑝𝑎𝑛{𝑒0, … . . , 𝑒𝑝} 

= 𝛽(𝐻)𝑒𝑝+1 𝑚𝑜𝑑 𝑠𝑝𝑎𝑛{𝑒0, … . . , 𝑒𝑝} 

This proves (1) for p+1 and completes the induction. 

Next we show that  

𝛽([𝐻, 𝑋}) = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻𝜖 ℎ.                                                    
(2) 

In fact, (1) says that 𝛼(𝐻)𝐸 ⊆ 𝐸 and that, relative to 

the basis 𝑒0, 𝑒1, … .,  the linear transformation 𝛼(𝐻) has 

matrix  

𝛼(ℎ)  =  (
𝛽(𝐻) ⋯ ∗

⋮ ⋱ ⋮
0 ⋯ 𝛽(𝐻)

) 

Thus Tr 𝛼(𝐻) = 𝛽(𝐻) dim E, and we obtain 

𝛽([𝐻, 𝑋]) dim E = Tr 𝛼([𝐻, 𝑋}) =Tr[𝛼(𝐻), 𝛼(𝑋)] =
0. 
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Since our fields have characteristic 0, (2) follow, 

Now we can sharpen (1) to  

𝛼(𝐻)𝑒𝑝 = 𝛽(𝐻)𝑒𝑝       for all 𝐻 ∈ ℎ.                                            

(3) 

To prove (3), we induct on 𝑝. for 𝑝 = 0, the formula is the 

definition of 𝑒0. Assume (3) for p. then  

𝛼(𝐻)𝑒𝑝+1 = 𝛼(𝐻)𝛼(𝑋)𝑒𝑝 

= 𝛼([𝐻, 𝑋])𝑒𝑝 + 𝛼(𝑋)𝛼(𝐻)𝑒𝑝 

= 𝛽([𝐻, 𝑋])𝑒𝑝 + 𝛼(𝑋)𝛽(𝐻)𝑒𝑝 

                                                                                         (by 

induction)                           

= 0 + 𝛽(𝐻)𝑒𝑝+1        by (2)                                                                   

= 𝛽(𝐻)𝑒𝑝+1.  

This completes the induction and proves (3). Because of 

(3), 𝛼(𝐻)𝑥 = 𝛽(𝐻)𝑥 for all 𝑥 ∈ 𝐸 and in particular for𝑥 =
𝑣. Hence the eigenvector 𝑣 of 𝛼(𝑋) is also an eigenvector 

of 𝛼(ℎ). The theorem follows. 

Before carrying out the induction indicated in Remark 2, 

we observe something about eigenvalues in connection 

with representations. Let 𝛼 be a representation of 𝑔 on a 

finite dimensional 𝑉, and let 𝑈 ⊆ 𝑉 be an invariant 

subspace: (𝑔)𝑈 ⊆ 𝑈. Then the formula 𝛼(𝑋)(𝑣 + 𝑈) =
𝛼(𝑋)𝑣 + 𝑈 defines a quotient representation of 𝑔 on 𝑉/𝑈. 

The characteristic polynomial of 𝛼(𝑋) on 𝑉 is the product 

of the characteristic polynomial on 𝑈 and that on 𝑉/𝑈, and 

hence the eigenvalues for 𝑉/𝑈 are a subset of those for 𝑉. 

 

CONCLUSION 

THEOREM 1: An 𝑛-dimensional Lie algebra 𝑔 is solvable 

if and only if there exists a sequence of subalgebras  

𝑔 = 𝑎0 ⊇ 𝑎1 ⊇ ⋯ 𝑎𝑛  = 0 

Such that, for each 𝑖,  𝑎𝑖+1 is ideal in 𝑎𝑖 and dim 

(𝑎𝑖 𝑎𝑖+1⁄ ) = 1. 
THEOREM 2 : Let g be solvable, let 𝑉 ≠ 0 be a finte 

dimensional vector space over 𝐾, and let 𝛼 ∶ 𝑔 →  𝐸𝑛𝑑𝐾𝑉 

be a representation. If 𝐾 is algebraically closed, then there 

is a simultaneous eigenvector 𝑣 ≠ 0 for all the 

members𝛼(𝑔) . More generally (for 𝐾).there is a 

simultaneous eigenvector if all the eigenvalues of all  

𝛼(𝑋), 𝑋𝜖 𝑔 , lie in 𝐾. 
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