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Abstract :A simply connected Lie group is completely
determined by its Lie algebra. By this, of course, we mean
that it is determined to within isomorphism. We now discuss
the possibilities for Lie groups which are not simply
connected. We say a Lie group is connected if every two
points of it can be joined by an arc lying in the group. If a Lie
group is connected, we call it simply connected when every
simple closed curve in the group can be continuously shrunk
to a point without any part of it passing outside the group in
the process. By a component of a Lie group we mean a
maximal connected subset, i.e., all the elements which can be
connected to some given element by arcs in the group. In this
research we consider the situation where the Lie group is not
connected. It can be shown that the component containing the
identity is always a closed normal subgroup of the Lie group
and that the components are precisely the cosets of this
normal subgroup. We can regard this collection of cosets
forming the quotient group, as an abstract group. (Indeed, if
we take it to be a discrete group the natural mapping is
analytic.) The study of the algebraic structure of a Lie group
which is not connected can almost be broken into two
parts:the structure of the connected subgroup forming the
component of the identity and the structure of the discrete
quotient group.

INTRODUCTION
The first step in the classification of Lie algebras was the
consideration of classical Lie algebras. They were totally
outlined over C and R, but the problem is not so easy over
an algebraically closed field of characteristic different from
zero. This “new” Lie theory emerged around 1935 from the
studies by Witt, who defined a simple Lie algebra (now
called the Witt algebra W1) whose behavior was totally
different from the Lie algebras studied till then, over C or
R. Less than ten years later, Jacobson and Zassenhaus put
some order in these new algebras, but it was not until the
21st century when a clear classification came. In fact, is a
survey on these specific classifications of simple finite-
dimensional Lie algebras over algebraically closed fields of
characteristic p> 0. Roughly speaking, and being p a prime
greater than 3, the simple Lie algebras are either classical
or finite dimensional Cartan Lie type (and their
deformations) or Melikyian algebras. If the characteristic is
big enough, some other interesting properties hold; for
instance, for finite-dimensional Lie algebras over an
algebraically closed field of characteristic = > 7, the
existence of non-singular Casimir operators (i.e., dealing
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with a restricted Lie algebra) is equivalent to the
decomposition of the algebra as a direct sum of classical
simple Lie algebras.

Literature review

One of the most fundamental concepts in mathematics is
that of a group. Germs of group was present, even in
ancient times, in the study of motions in space, in the study
of congruences of geometric figures. In the beginning of
nineteenth century development of group theory started.
Dedekind [1897] studied about groups all of whose
subgroups are normal.

Miller and Moreno [1903] studied groups all of whose
proper subgroups are abelian. They studied that all such
groups are solvable. Their orders cannot be divided by
more than two distinct primes.

Schmidt [1924]worked on groups every proper subgroups
of which is special.

Malcev [1945]determined the classification of complex
solvable Lie algebras.

Golfond [1948] determined groups all of whose proper
subgroups are special.

Chandra Harish [1955]representation of semi simple lie

group.

METHODOLOGY
Definitions Solvable group:A group G is called solvable if
it has a subnormal series whose factor group are all abelian,
that is, if there are subgroup {1} =G, < G, <......< G, =
G such that G;_; is normal G;, and G; / G;_, is an abelian
group, forj =1,2,3 ...... ... k.
DefinitionsFunction space:A function space f(I)is the
collection of all real-valued continuous functions defined
on some interval I. f™(I) is the collection of all function
which belongs f(I) with continuous n‘*derivatives. A
function space is a topological vector space.
DefinitionsOperator: An operator A: f™*(I) = f(I) assigns
to every function f € f™(I). It is therefore a mapping
between two function spaces.
Definitions Commutator: Let G be a group. An element of
the form aba™'b~! which is denoted by [a, b] is called a
commutator. The subgroup G'of G generated by all
commutator of G is called commutator subgroup or the
derived subgroup of G.
Or
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Let 4,8 ...... be operators. Then the commutator of A and
B is defined as[4, B| = AB — BA.

DefinitionsJacobi identity: The Jacobi identity is the
relationship [4,[B,c]] +[B,[C,Al] +[C,[A,B]] =0
between three elements4, B and C, where [A,B] is the
commutator. The elements of a lie algebra satisfy this
identity.

RESULTS

In this section k and K are field satisfyingk € K < C,
(where C is a complex field) and all Lie algebras have k the
underlying field and are finite dimensional.
THEOREM 1: An n-dimensional Lie algebra g is solvable
if and only if there exists a sequence of subalgebras

g=a,2a,2-a, =0
Such that, for eachi, a;,, is ideal in a; and dim
(ai/ai+1) = 1. )
PROOF: Let g be solvable. Form the commutator series g’
and interpolate subspace a; in the sequence so that dim
(a;/a;+1)=1 for all i. We have
g=a,2a, =2-a, =0.
For any i, we can find j such thatg’ 2 a; 2 a;,, 2 g’*.
Then
la;, a;] € [97,97] = g'*' € ayyy.
Hence a; is a subalgebra for each i, and a;,, is an ideal a;.
Conversely let the sequence exist. Choose x; so thata; =
kx; +a;.q .
We show by induction thatg’ € a; , so that g" =0 . In
fact, g° = a, .If g' € a; , then
97" =19' g1 € [kx; + apyq, kx; + agyq] € [kxg, apq] +
[@is1, Qig1] € Qigr
and the induction is complete. Hence g is solvable
The kind of sequence in the theorem is called an
elementary sequence. The existence of such a sequence has
the following implication. Write a; = kx;®a;., . Then kx;
is a 1-demensional subspace of a; , hence a subalgebra.
Also a;,, is ideal a; . In a view of proposition 1.22
a; is exhibited as a semidirect product of a 1-dimensional
Lie algebra and a;,; . The theorem says that solvable Lie
algebra are exactly those that can be obtain from
semidirectproduct , starting from Oand adding one
dimension at a time .
Let V be vector space over K, and g be a Lie algebra. A
representation of g on V is homomorphism of Lie algebra
a:g — (End,V)* , which we often write simply as
a:g - End,V. Because of the definition of bracket in
End,V , the conditions on « are that it be k linear and
satisfy
a([X,YD) =aX)a(Y) —a(¥)a(X) foral X,Yeg .
)

THEOREM 2: Let g be solvable, let V#0 be a
fintedimensional vector space over K, and let a: g —
EndgV be a representation. If K is algebraically closed,
then there is a simultaneous eigenvector v = 0 for all the
members a(g) . More generally (for K).there is a
simultaneous eigenvector if all the eigenvalues of all
a(X),Xeg,lieinK.

REMARK
1. When g is a solvable Lie algebra and « is representation,
a(g) is solvable. This follows immediately from
2. The theorem is the base step in an induction that will
show that V has a basis in all the matrices of a(g) are
triangular. This conclusion appears as theorem 3 below. Ifg
is solvable lie algebra of matrices and « is the identity and
one of the conditions on K is satisfied, then g can be
conjugated so as to be triangular.
PROOF: We induct on dimg = 1, then a(g) consist of
the multiples of a single transformation, and the results
follows.
Assume the theorem for all solvable Lie algebras of
dimension less than dim g satisfying the eigenvalue
condition. Since g is solvable, [g,g] € g. choose a
subspace h of codimension 1 in g with [g, g]  h. then
[h,g] € [g9,9] € h, and h is an ideal. So h is solvable.
(also the eigenvalue condition holds for h if it holds for g.)
By inductive hypothesis we can choose e € V with a(H)e
=B(H)e for all H € h, where S(H)e is a scalar valued
function defined for H € h.
e.1 =0, ep=¢e e, = a(X)e,_y

and let E = span{e,..... ep...}. Then (X)E € E . Letv
be an eigenvalue for a(X) in E. We show that v is an
eigenvalue for each (H) , H € h.
First we show that

a(H)e, = f(H)e, mod span{ey, .....,e,_1}

1)
For all H € h. We do so by induction on p. Formula (1) is
valid for p = 0 by definition of e,. Assume (1) for p. then

a(H)epsr = a(X)a(H)e,
=a([H,X]) + a(X)a(H)e,

= B([H,XDe,
+ a(X)a(H)e, mod spanfe,, .....,ep_1}

(By induction)
= B([H,XDey

+ B(H)a(X)e, mod span{e, .....,ep_1, a(X)ey, .....,a(X)e,_4.

(By induction) =
B(H)a(X)e, mod span{eo, ) ep}

= f(H)epq mod span{eg, ..., ep}
This proves (1) for p+1 and completes the induction.
Next we show that
B([H,X}) =0 forall He h.

)

In fact, (1) says that a(H)E < E and that, relative to
the basis ey, ey, ..., the linear transformation a(H) has
matrix

By - -
a(h) = ( : : >

Thus Tr a(H) = B(H) dim E, and we obtain
B([H,X]) dim E = Tr a([H,X}) =Tr[a(H),a(X)] =
0.
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Since our fields have characteristic 0, (2) follow,

Now we can sharpen (1) to
a(H)e, = B(H)e,
3)
To prove (3), we induct on p. for p = 0, the formula is the
definition of e,. Assume (3) for p. then

a(H)e, 1 = a(H)a(X)e,
= a([H,XDe, + a(X)a(H)e,

for all HEeh.

= B([H,XDe, + a(X)B(H)e,

(by
induction)

=0+p(H)eps by ()

=B(H)epss

This completes the induction and proves (3). Because of
(3), a(H)x = B(H)x for all x € E and in particular forx =
v. Hence the eigenvector v of a(X) is also an eigenvector
of a(h). The theorem follows.

Before carrying out the induction indicated in Remark 2,
we observe something about eigenvalues in connection
with representations. Let a be a representation of g on a
finite dimensional V, and let U SV be an invariant
subspace: (g)U < U. Then the formula a(X)(v+U) =
a(X)v + U defines a quotient representation of g on V/U.
The characteristic polynomial of a(X) on V is the product
of the characteristic polynomial on U and that on V /U, and
hence the eigenvalues for V /U are a subset of those for V.

CONCLUSION

THEOREM 1: An n-dimensional Lie algebra g is solvable
if and only if there exists a sequence of subalgebras

g=a,2a,2-a, =0
Such that, for eachi, a;,; is ideal in a; and dim
(ai/ai41) = 1.
THEOREM 2 : Let g be solvable, let V # 0 be a finte
dimensional vector space over K, and let « : g = EndgV
be a representation. If K is algebraically closed, then there
is a simultaneous eigenvector v =0 for all the
membersa(g) More generally (for K).there is a
simultaneous eigenvector if all the eigenvalues of all
a(X),Xeg,lieinkK.
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