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Abstract—Empirical Wavelet Transform and Empirical 

Mode Decomposition are two powerful adaptive signal 

decomposition techniques. Although widely used, EMD method 

has some limitations in decomposing signals where amplitude-

frequency ranges are too close to each other. The aim of present 

paper is to review existing knowledge base for mode mix 

problem of two harmonics decomposition and introduce its 

solution using EWT for this topic. In this paper, the EWT 

decomposition is compared with the conventional EMD by 

numerical examples and the results of EWT decomposition are 

compared to original signal parameters such as energy, phase 

and amplitude. Finally, it is concluded from the parameters that 

EWT efficiently detects the components of the signals where 

EMD suffers mode mixing.  

Keywords— Empirical Mode Decomposition, Empirical 

Wavelet Transform, Two harmonic decomposition, mode mixing . 

I.  INTRODUCTION  

The adaptive data analysis method that has gained a lot of 

interest in signal processing since last decade is the algorithm 

called “Empirical Mode Decomposition” (EMD) proposed by 

Huang, et al. [1]. The purpose of this method is to decompose 

the signal into its principal “modes” (a mode corresponds to a 

signal which has a compactly supported Fourier spectrum). It 

has proven to be quite versatile in a broad range of 

applications for extracting signals from data generated in 

noisy nonlinear and non-stationary processes. These include  

study of wide variety of data including rainfall [2], 

earthquakes detection [3], Sunspot number variation, heart-

rate variability, financial time series, and ocean waves [4], 

fault diagnosis [5], signal denoising, image processing [6], 

biomedical signal processing, speech signal analysis [7], 

pattern recognition [8]. In addition to successful applications 

of the EMD methods, a large number of publications have 

attempted to improve, or at least to modify, the original 

method. These include modifying definition of Intrinsic 

Mode Function [9, 10], replacing cubic spline interpolation 

by some other higher order interpolation, choosing the 

stoppage criteria [11]. Concomitantly, studies devoted to 

analyze the important shortcomings of the EMD and its 

limitations in comparison with other decomposition methods 

began to appear. One of the first precincts found was the 

method’s rather low frequency resolution meaning that the 

EMD can resolve only distant spectral components differing 

by more than octave. Another was the problem of mode 

mixing i.e. it receives false artificial components not present 

in the initial composition. Also, the main issue of the EMD 

approach is its lack of mathematical theory. To overcome this 

and to propose a mathematical background for EMD ,  

Flandrin [12] show that EMD behaves like an adaptive filter 

bank. Rilling and Flandrin [13] provided analytical basis of 

EMD using two harmonic signals. Their work was further 

continued by Feldman [14] who proposed  a theoretical 

limiting amplitude-frequency resolution in EMD method and 

thus proposing conditions for mode mixing problem for two 

harmonics. The solution of mode mixing in EMD was 

provided by Shuen-De, et al. [9] .The author proposed two 

solutions, namely, to increase the number of EMD iterations 

and additional mathematical operations based on integration 

and differentiation both of them were  computationally 

expensive and integration process introduces errors. 

However, the Ensemble Empirical Mode Decomposition 

(EEMD) [15] method   largely overcomes the false mode 

mixing problem of the original EMD and provides physically 

unique decompositions but again is computationally 

expensive. 

A new adaptive data analysis method having a similar goal 

like EMD is the Empirical Wavelet Transform (EWT), 

proposed by Gilles [16] which explicitly builds an adaptive 

wavelet filter bank to decompose a given signal into different 

modes. It is a new approach to construct adaptive wavelets 

competent of extracting Amplitude modulated-Frequency 

modulated components of a signal which have a compact 

support Fourier spectrum (i.e. the modes). Separating various 

modes corresponds to segmentation of the Fourier spectrum 

and then applying some filter related to each detected 

support. The EWT performs local maxima detection of the 

Fourier spectra of the signal, then performs spectrum 

segmentation based on detected maxima and, finally, 

constructs a corresponding wavelet filter bank. This paper 

shows that the mode mixing problem in two harmonics can 

be solved using EWT decomposition. 

The paper is organized as follows. In Section II EMD & the 

problem of mode mixing is recalled. In Section III a review 

of EWT is presented. Section IV demonstrates results 

numerical examples of two harmonic decomposition using 

EWT and their comparison with conventional EMD. In 

addition, the results of EWT decomposition are compared to 

original signal parameters such as energy, phase and 

amplitude. 

II. EMPIRICAL MODE DECOMPOSITION & PROBLEM 

OF MODE MIXING 

In 1998, Huang, et al. [1] proposed an adaptive data analysis 
method called Empirical Mode Decomposition (EMD) which 
decomposes a signal into specific modes. The EMD works in 
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temporal space directly, is intuitive, direct, and adaptive, with  
a posteriori defined basis derived from the data. The 
decomposition works on a supposition that, at all instants, the 
data exists in simple oscillatory modes of considerably 
different frequencies, one overlaying on the other.  

EMD aims to decompose a signal f(t) as a (finite) sum of N + 
1  Intrinsic Mode Functions (IMF)  fk (t) such  that  

 f(t) = ∑ fk
N
k=0 (t)                                                    (1) 

Mode mixing is defined as a single IMF either consisting of 
signals of widely dissimilar scales or a signal of a similar scale 
existing in different IMF components. Feldman [14] described 
the problem of mode mixing in two harmonic signals. The 
more frequencies are spaced from each other; the smaller 
amplitude ratio of two harmonics is suitable for EMD 
separation. The logical result of the provided theoretical 
analysis as provided by author [14] is that the frequency (ω) 
and amplitude (A) ratios of the harmonics can be separated in 
to three different groups:  

(i). Harmonics with very close frequencies and small 
amplitude  

 
𝐴2
𝐴1
 ≤  (

𝜔1
𝜔2

)
2

 

are unsuitable for EMD decomposition; 

(ii).  Close frequency harmonics 

(
𝜔1

𝜔2
)
2

 ≤
𝐴2

𝐴1
 < 2.4 (

𝜔1

𝜔2
)
1.75

  

requiring several sifting iterations; Mode mixing 
occurs typically in this case.  

(iii). Distant frequencies and large amplitude harmonics 

𝐴2

𝐴1
 ≥ 2.4 (

𝜔1

𝜔2
)
1.75

 

that are well separated for a single iteration. 

An example of mode mixing is illustrated in figure below this 
signal is taken from Shuen-De, et al. [9]: 

x(t) = sin (2πt) + 0.1207 sin (6.6πt)                             (2) 

Here, ω1 = 2, ω2 = 6.6, A1 = 1 & A2 = 0.01207.this signals 

satisfies condition (ii). 

 

 
Figure 1:Signal x(t)- example of  mode mixing  [9] 

 

 

Figure 2 : EMD Decomposition showing mode mixing [9] 

The IMF’s obtained from EMD decomposition clearly depict 
the problem of mode mixing (overlapping of frequencies).The 
author [9] proposed the solutions for the mode mixing 
phenomenon but the solutions itself introduces some errors.  

III. EMPIRICAL WAVELET TRANSFORM 

In 2013, Jerome Gilles [16] introduced a new adaptive data 

analysis method called Empirical Wavelet Transform which 

explicitly builds an adaptive wavelet filter bank to decompose 

a given signal into different modes. EWT also aim’s like the 

EMD, to extract AM-FM components from a signal.  The 

EWT works in frequency space unlike EMD, is intuitive, 

direct, and adaptive algorithm supported by a strong 

mathematical background. EWT proposes a method to build a 

family of wavelets adapted to the processed signal. 

In EWT, the Fourier support is divided into N contiguous 

segments, and then N-1 boundaries need to be extracted 

excluding 0 and π. To find the boundaries, the local maxima 

positions in the spectrum are detected and are sorted in 

decreasing order and boundaries are defined as average 

between the consecutive maxima’s. If we denote ωn to be the 

limits between each segments (where ω0=0 and ωn=π) and if 

each segment is denoted as, then   ⋃ ˄n = [0, π]N
n=0 . 

A transition phase Tn of width 2τn (such that where 0 < γ < 1) 

is defined around the centre of each ˄n. The empirical 

wavelets are defined as band pass filters on each ˄n. For this, 

the author, Gilles [16] has utilized the idea used in the 

construction of both Littlewood-Paley and Meyer’s wavelets. 

The Fourier transform of empirical scaling function and the 

empirical wavelets are defined by Equations (3) and (4), 

respectively   

 ∅̂n(ω) =

{

1    if |ω| ≤ (1 − γ)ωn

cos [π
2
β( 1

2γωn
(|ω|−(1−γ)ωn))] if (1 − γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise

 (3) 

 
 

And 

�̂�𝒏(𝝎) =

{
 
 

 
 

𝟏 𝒊𝒇(𝟏 + 𝜸)𝝎𝒏 ≤ |𝝎| ≤ (𝟏 − 𝜸)𝝎𝒏+𝟏

𝒄𝒐𝒔 [𝝅
𝟐
𝜷( 𝟏

𝟐𝜸𝝎𝒏+𝟏
(|𝝎|−(𝟏−𝜸)𝝎𝒏+𝟏))] 𝒊𝒇 (𝟏 − 𝜸)𝝎𝒏+𝟏 ≤ |𝝎| ≤ (𝟏 + 𝜸)𝝎𝒏+𝟏

𝒔𝒊𝒏 [𝝅
𝟐
𝜷( 𝟏

𝟐𝜸𝝎𝒏
(|𝝎|−(𝟏−𝜸)𝝎𝒏))] 𝒊𝒇 (𝟏 − 𝜸)𝝎𝒏 ≤ |𝝎| ≤ (𝟏 + 𝜸)𝝎𝒏

𝟎                                                     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

         

(4) 
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where β(x) is an arbitrary Ck ([0,1]) function such that 

𝛽(𝑥) = {
0 𝑥 ≤ 0
1 𝑥 ≥ 0

𝑥4(35 − 84𝑥 + 70𝑥2 − 20𝑥3) 𝑥 ∈ [0,1]
         (5) 

and  

𝛽(𝑥) + 𝛽(1 − 𝑥) = 1    ∀ 𝑥 ∈ [0,1]                                        (6) 

After defining the empirical wavelet and scaling function, the 

empirical wavelet transform, 𝑊𝑓
∈(𝑛, 𝑡) of a signal f(t) is 

defined in a way similar to the classic wavelet transform. The 

detail coefficients are given by the inner products with the 

empirical wavelets. 

𝑊𝑓
∈(𝑠, 𝑡) = 〈𝑓, 𝜓𝑛〉 = ∫ f(τ)ψn(τ − t)dτ                            (7) 

And the approximation coefficients by the inner product with 

the scaling function 

Wf
∈(0, t) = 〈f, ∅1〉 = ∫ f(τ)∅1n(τ − t)dτ                           (8) 

The results of two harmonic decomposition by EWT and 

their comparison with those obtained by [9] are described in 

the next section. 

IV. NUMERICAL SIMULATIONS USING EWT & 

COMPARISON WITH EMD 

Picking the example described above using equation 4, taken 

from [9],(represents condition (ii) as described by Feldman) 

the results obtained after EWT decomposition of the signal ae 

shown in figure 3. On comparison of results obtained from 

EMD & EWT decomposition (Figure 2 & Figure 3) 

respectively, it’s obvious that EWT frequency to amplitude 

ratio for decomposing two harmonics is lower than obtainable 

via EMD. 

 

Figure 3: EWT Decomposition of signal x(t) 

Also, as observed from figure 4(Magnitude spectrum), the 

EWT components obtained after decomposition have almost 

same frequency as in original signal. 

 

Figure 4: Magnitude spectrum of the components obtained in figure 3. 

Another example from [9] where EMD fails, (it represents 

condition (i)) to separate signal into its components while 

EWT successfully does it is y(t) represented in equation (9) 

and shown in figure(5). 

y(t) = sin(2πt) +  0.02 sin(8πt)  (9) 

 

Here, ω1 = 2, ω2 = 8, A1 = 1 & A2 = 0.02. 

The EMD & EWT decomposition of y (t) is shown in figures 

6 & 7 respectively. 

 

Figure 5: Signal y(t) 

 

Figure 6: EMD decomposition of y(t) [9] 

 

On comparison of Figure 6 & 7 it can clearly be seen that the 

standard EMD method collapsed.IMF 2 represents very low 

signal level 10-16, while the EWT decomposition of the same 

signal gives its components. Although the second component 

suffers a little mode mixing, but with EWT one gets to know 

which frequencies are present in the signal. 
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Figure 7: EWT Decomposition of signal x(t) 

 

Figure 8: Magnitude spectrum of the components obtained in figure 7. 

As concluded from the table 1, signal 1 which suffers from 

mode mixing in EMD, can be decomposed easily by EWT. 

While signal 2, where EMD method fails, EWT is able to 

extract components but in IMF 2, mode mixing occurs 

slightly. 

Table 1: Parameters of IMF’S of   x(t) and y(t) obtained by EWT 

Decomposition 

Sign
al 

Magnitude at 
Frequency Peak Phase 

difference 

(degrees) 

Energy 

 True 
Extract

ed 
True Extracted % 

Signal x(t) = sin (2πt) + 0.1207 sin (6.6πt) 

Imf 1 1250 1250 -0.2078 3.1705e+006 
3.1690e+ 

006 
99.9 

Imf 2 94.62 13.91 0.0298 4.5527e+004 
1.5470e+ 

003 
34.3 

Signal y(t) = sin(2πt) + 0.02 sin(8πt) 

Imf 1 1250 1249 -0.1971 3.1250e+006 
3.1210e+ 

006 
99.8 

Imf2 25 19.03 0.0096 1.2500e+003 240.82 19.9 

 

 

V. CONCLUSION 

 EMD & EWT both are promising adaptive time frequency 

representation techniques, where, EMD has already been 

explored in vast engineering and related applications and 

proves to be potential, it still lacks mathematical background. 

EWT is an emerging technique with immense potential to be 

explored. The solution for the mode mixing problem in the 

two harmonic signals obtained are provided by EWT, 

however the critical frequency limit for the difference in 

frequencies between two signals remain to be the same as 

proposed by Feldman.The frequency to amplitude ratio for 

two harmonics signals which is proved that will be lower for 

EWT can be explored further. 
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