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Abstract-The stream function-vorticity form of the unsteady 

Navier-Stokes equation is solved using second order accurate in 

space and first order accurate in time Crank-Nicholson scheme 

in a finite difference mesh. The scheme shows implicit in nature. 

The geometry of the problem is a lid-driven cavity. The solution 

is obtained up to maximum Reynolds number 22,500 in the grid 

size 129x129 and 257x257. The flow pattern is studied in the 

form of stream function & vorticity contours, central velocity 

profiles and location of the eddies.  

      Keywords - Unsteady, Incompressible, Crank-Nicholson 

scheme, Finite difference scheme. 

I. INTRODUCTION  

 

      The lid-driven cavity is a square cavity in which all 

the walls except the top lid are fixed. The top lid is allowed to 

move towards right with non-dimensional velocity unity. 

Initially, the cavity is filled with fluid which is at rest. When 

the lid starts moving towards right the fluid flow in the cavity 

is set up. The fluid is assumed to be viscous and 

incompressible. 

      In 1966, Burggraf[1] studied the viscous flow in two-

dimensional lid-driven cavity. He solved the stream function 

and vorticity form of the Navier-Stokes equation up to 

Reynolds number 400 in the grid size 40x40 and 60x60. He 

has proved analytically that the vorticity value at the centre of 

the primary vortex will not exceed -1.8859. Later Erturk et 

al.[2] solved the stream function-vorticity form of unsteady 

Navier-Stokes equation up to maximum Reynolds number 

21000 in the grid sizes 401x401, 501x501 and 601x601. 

Their solution for vorticity value at the centre of the primary 

vortex crosses the theoretical limit of -1.8859 within 

Reynolds number 21000. Erturk & Gockol[3] solved the 

stream function-vorticity form of the Navier-Stokes equation 

using fourth order accurate alternating direction implicit 

method upto Reynolds number 20,000 in the grid sizes 

401x401, 501x501 and 601x601. Here Erturk and 

Gockol’s[3] solution for vorticity value at the centre of the 

primary vortex does not cross the theoretical limit of -1.8859. 

Erturk[4] solved the stream function-vorticity form of the 

Navier-Stokes equation using Gauss-Seidel iteration 

techniques in a grid size 1025x1025. He observed that the 

vorticity value at the centre of the primary eddy does not 

cross the theoretical limit of -1.8859 within Reynolds number 

20000. 

     In this paper, the Navier-Stokes equation is solved in a 

lid-driven cavity using Crank-Nicholson scheme. The Crank-

Nicholson scheme has the flexibility of taking the average 

value at n+1 and n time steps. This scheme is implicit in 

nature.   

II. FORMULATION 

 

The governing equation in stream function-vorticity form 

is expressed as: 













+




=




+




+




2

2

2

2

Re

1

yxy
v

x
u

t


                 (1) 

The stream function equation is expressed as: 
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Where ψ, ω and Re represent the stream function, 

vorticity and Reynolds number respectively. u and v represent 

the components of velocities along x and y-directions 

respectively. 

The boundary conditions for the lid-driven cavity are:  
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Eq.(1) & (2) are discretised using Crank-Nicholson 

scheme in finite difference uniform mesh. 
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(4) 

The discretised equation (3) is first order accurate in time 

and second order accurate in space. 

Similarly, the stream function equation (2) is discretised 

using Crank-Nicholson scheme as: 

(5)                                        
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The equation (4) and (5) are second order accurate in 

space. Equation (4) and (5) produces the vorticity and stream 

function values respectively in new time steps (n+1). 

Applying Eq.(3) in Thom’s formula[1], the first order 

accurate boundary values for vorticity can be obtained. The 

discretised boundary conditions are represented as: 
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Where ‘N’ is the total number of grid points along i and j 

directions respectively. Here the boundary conditions are first 

order accurate in space. Since the discretised equations are 

implicit in nature, the change of time step does not have any 

effect to the convergence. The solution of the discretised 

equation (4) and (5) are obtained using Gauss-Seidel iteration 

techniques with relaxation parameter. The convergence of the 

solution is assumed to be the residue of discretised equation 

(1) and (2) approaches towards 10-10. The grid meshes used 

for the solution are 129x129, 257x257. 

III. RESULTS & DISCUSSION 

 

      The solution for the incompressible viscous flow in 

the lid-driven cavity is obtained up to Reynolds number 

22,500 in both grid sizes 129x129 and 257x257. It is 

observed that at lower Reynolds number 100, the stream 

function contour forms closed structures and its centre is 

towards right near the lid. This is named as primary eddy of 

the cavity. The location and strength of the primary eddy for 

various Reynolds numbers are shown in Table.1. There are 

small eddies at the corners along the lower wall of the cavity.  

As the Reynolds number increases, the stream function 

contours in the primary eddy become circular in nature and 

its centre moves towards the geometric centre of the cavity. 

As the Reynolds number increases more and more, the stream 

functions in the primary eddy become more circular in nature 

and the centre of the primary eddy moves towards the 

geometric centre of the cavity as shown in Fig.1. The number 

of secondary eddies increase in the lower corner of the cavity. 

The number of secondary eddies become more than the right 

corner as the Reynolds number increases. The number of 

secondary eddies also increase in the left vertical wall of the 

cavity after Reynolds number 2500 as shown in Fig.1. The 

vorticity contours also show large variation near to the walls 

of the cavity. The centre of the primary eddy becomes 

constant vorticity core with increase of Reynolds number as 

shown in Fig.2. The radius of the constant vorticity core 

increases with increase of Reynolds number.  

 
TABLE I: Location and strength of the centre of the primary eddy 

 

Re Grid x y ψ ω Ref. 
 
100 

129x129 0.617 0.734 -0.100 -3.046  

257x257 0.617 0.738 -0.102 -3.121  

 

400 

129x129 0.563 0.609 -0.107 -2.156  

257x257 0.555 0.606 -0.111 -2.231  

 

1000 

129x129 0.531 0.563 -0.107 -1.855  

257x257 0.531 0.566 -0.113 -1.966 

601x601 0.530 0.565 -0.119 -2.067 Ref[2] 

 
2500 

129x129 0.523 0.539 -0.101 -1.632  
 257x257 0.523 0.543 -0.112 -1.814 

601x601 0.520 0.543 -0.121 -1.974 Ref[2] 

 

5000 

129x129 0.524 0.531 -0.101 -1.632  

 257x257 0.511 0.535 -0.108 -1.706 

601x601 0.515 0.536 -0.122 -1.936 Ref[2] 

 
7500 

129x129 0.523 0.531 -0.084 -1.312  
 257x257 0.516 0.531 -0.104 -1.633 

601x601 0.513 0.532 -0.122 -1.919 Ref[2] 

 

10000 

129x129 0.523 0.531 -0.078 -1.211  

 257x257 0.516 0.527 -0.101 -1.573 

601x601 0.512 0.530 -0.122 -1.908 Ref[2] 

 
12500 

129x129 0.523 0.523 -0.073 -1.129  
 257x257 0.516 0.527 -0.098 -1.522 

601x601 0.512 0.528 -0.121 -1.899 Ref[2] 

 

15000 

129x129 0.523 0.523 -0.069 -1.060  

 257x257 0.516 0.527 -0.095 -1.477 

601x601 0.510 0.528 -0.121 -1.893 Ref[2] 

 

17500 

129x129 0.523 0.523 -0.065 -1.001  

 257x257 0.516 0.527 -0.093 -1.436 

601x601 0.510 0.527 -0.121 -1.887 Ref[2] 

 

20000 

129x129 0.523 0.523 -0.062 -0.095  

 257x257 0.516 0.523 -0.090 -1.399 

601x601 0.510 0.527 -0.121 -1.881 Ref[2] 

22500 129x129 0.523 0.523 -0.059 -0.906  

 

The u and v-velocity profiles along the centre of the 

cavity at different Reynolds numbers are shown in Fig.3 and 

4 respectively. Both the velocity profiles match very well up 

to Reynolds number 5000. At Reynolds number 10,000 and 

20,000 the computed velocity profiles do not match perfectly 

with Erturk et al[2].  This happens due to large grid size 

difference with Erturk et al[2]. The computed velocity 

profiles are at grid size 257x257 whereas Erturk et al’s.[2] 

grid size is 401x401. Here the important point is to be 
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observed that the vorticity contour plot at Reynolds number 

20,000 show zig-zag nature near the top right corner of the 

cavity in the grid size 257x257 which shows the insufficient 

grid resolution at that Reynolds number because the u & v-

velocity profiles do not match with Erturk et al.[2]. So the 

Crank-Nicholson scheme seems to produce better result than 

Erturk et al’s[2] result but accuracy is the main point of 

concern. 

 

 

 

 

Figure: 1 Stream function contour plots at various Reynolds numbers 
 

 

 

Figure: 2 Vorticity contour plots at various Reynolds numbers 

 

 
Figure: 3 u-velocity profiles along the centerline of the cavity at 

different Reynolds numbers 

 

 
Figure: 4 v-velocity profiles along the centerline of the cavity at different Re 

      From Fig.5 it is seen that the vorticity value in the 

grid size 257x257 crosses the theoretical limit value of -

1.8859 near to Re=2000 which is much earlier than Erturk et 

al[2]. So, it seen that though the high Reynolds number 
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solution is obtained at lower grid size but the accuracy is very 

poor. From Fig.6 comparing the magnitude of the velocity 

values along the centre of the cavity, it seen that as the 

Reynolds number increases the length of the central portion 

of linear profile increases. The linear nature of the velocity 

profile shows the constant vorticity region which increases 

with increase of Reynolds number. The velocity profiles 

become closer to the wall with increase of Reynolds number 

which indicates the presence of boundary layers on the walls. 

This type of flow feature can also be verified from the 

vorticity contour plot in Fig.2. 

 

 
    Figure: 5 Vorticity value at the centre of the primary eddy with Re 

 

 
Figure: 6 u and v-velocity profiles along the centreline of the cavity with Re 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
IV CONCLUSION 

      The stream function vorticity form of the Navier-

Stokes equation is solved using Crank-Nicholson scheme. 

The solution is obtained up to maximum Reynolds number 

22,500 using the grid size 129x129 and 257x257. The Crank-

Nicholson scheme produces better result at lower grid size 

than that of Erturk et al but the accuracy of the former 

scheme is very poor.  
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