

Software Reliability Prediction : A Review

Suneel Kumar Rath
C. V. RAMAN Global

University

 Bhubaneswar, Odisha, India

Madhusmita Sahu
C. V. RAMAN Global

University

Bhubaneswar, Odisha, India

Shom Prasad Das
Birla Global University

Bhubaneswar, Odisha, India

Abstract—Software Reliability is the quality of a system that

performs its required operations under static conditions for

specific time. Due to the characteristics like determining quality

and improving factor of software system, now a days it has not

only been used in critical sectors but also in small organizations

too. In the early phase of development process reliability

prediction need to be done which provide quality enhancement,

resource allocation for development and confidence to build

quality software product. Based on the current scenario the

software development process is gradually changed to

component based development that increases the complexity of

software. The present development process is suitable only for

specific projects hence new development process using reliability

prediction models is required to build to achieve failure free

software. The main aim of this article is to suggest reliability

prediction models to generate fault free software.

Keywords—Software Reliability, Software Failure, Reliability

Prediction, Growth Model, Prediction Models

I. INTRODUCTION

The reliability defines approval or rejection of a software

product. Practitioners try to enhance software reliability, so

that they can minimize the development cost, economic

competitions in the world [1]. Early phase of software

development process is reliability prediction which offers

quality improvement, resource allocation for development,

testing purposes, which deliver outcomes on real time basis

while quality of software determine by its reliability [2]. In

other words, reliability prediction is helpful in acceptance of

software product. It measures the capability of software to

rectify failures. But some failures are irrevocable during

software development process [3]. Developers should

implement such features at the development process that can

identify the error. at the initial stage. Further, basing on the

criticality of identified errors, they are classified and try to

mitigate such errors in management process [14]. For

improving reliability of software such management process

can be used to reliability prediction methods to mitigate the

errors and faults.

 The article focuses on reliability models and their role in

real time systems [5]. Developers can use software reliability

prediction model which provides a large information to

estimate reliability[18]. A lot of growth models of software

reliability are developed by different authors. But all growth

models are not realizable except on particular data set or

project [6]. Therefore, there is a search of such software

reliability prediction model that suit to all data sets. The main

task is to scrutinize the applicability of each software

reliability prediction models that include features like

reliability, concerning issues ideas for enhancement. This

paper is totally focused on the reliability analysis models

which are already existed. This can be applied in the real time

software development process. All the reliability models are

designed based on the some factor like Attributes, Design

complexity, Reuse, Code Complexity, Post-delivery defects,

Inspection, Execution operation, and Process and product

metrics. There are two main types of software reliability

models one is deterministic and another one is the

probabilistic. The deterministic model is used to study the

number of distinct operators and operands in a program as

well as the number of errors and the number of machine

instructions in the program. Performance measures of the

deterministic type are obtained by analysing the program

texture and do not involve any random event.

II. SOFTWARE RELIABILITY:MODELLING

The term software reliability defines the software will not

arise any error in a particular environment for specific time

period [7]. Additionally, the performance of the software is as

expected in the pre-defined criteria without fail [9]. Quality of

software is defined by evaluation of reliability. Software

system is widely used by all organizations. In order to enhance

the productivity of such system reliability is required.

Reliability models provide information in respect of error

detect, removal and details of environment that minimize the

failure rate [10]. Hardware reliability could not be predicted

easily with time while software reliability gradually improves

throughout development process [8]. Software failures include

software design, poor quality control, marketplace, capability

profitable targets and engineering design estimation. Software

reliability is a key part in software quality. The study of

software reliability can be categorized into three parts:

modelling, measurement and improvement. Software

reliability modelling has matured to the point that meaningful

results can be obtained by applying suitable models to the

problem. Software reliability cannot be directly measured, so

other related factors are measured to estimate software

reliability and compare it among products. Software reliability

improvement is hard. Realistic constraints of time and budget

severely limits the effort put into software reliability

improvement. All reliability modelling can be divided into

two groups[11,12].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

140

www.ijert.org
www.ijert.org
www.ijert.org

• Black box software reliability models.

• White box software reliability models.

Black box models [13] applied to the different phases of

current software development methods. This cannot be

satisfying all the condition of component-based applications.

White box models [14] may be satisfying all the condition of

component based software. Now days it can be applied in the

software development life cycle.

III. TYPES OF RELIABILITY MODELLING

Here already discussed Reliability modelling classified

into two types Black box models, White box models

Reliability models which is based on black box approach

focus only the features of software’s without knowing what

happening inside knowledge of the structure. Black box

modelling built on using failure data of system, several

analytical models were proposed. Each model is categorized

according to the fault data study given below.

A. Black box software reliability models

i. Time between failure models

This models relies upon the time (T) prepared between

failure (n-1) and failure nth. Based on the value of time

(T),required boundaries, reliability of software and interim to

next failure will be estimated by the fitted model Here, the

assessment depends on the quantity of shortcomings stay in

the product during the interval time (T). Functional profile of

the software and the quantity of lines of code ought to be

reliable further- more, steady individually.

ii. The Jelinski-Moranda (J-M)Model

It is the best model [14] which is used for measurement of

software reliability. This model is totally based on unfeasible

assumptions. Because of its impracticable assumptions, this

model can’t cooperate in different data cases. The time

interval between each failure is significantly distributed and

unconventional. With a small time, all the ascertain faults are

removed which does not create new faults during the

execution process. The number of faults remaining in the

software Is proportional to the failure rate of software and also

it is constant in the failure interval.

iii. The Schick and wolverton (SW) model

This model[26] is similar to the Jelinski Morando model.

Here the failure rate is calculated to be proportional to the

actual fault material in the system, in addition to the time

elapsed. Here the failure rate increases with time from the last

execution at the nth time interval. In this model the failure

rate of software R may be specified between (n-1) and nth

failure.

iv. The Moranda geometric Poisson model

The Moranda geometric Poisson model (Moranda 1975)

con- cludes the fixed times T, 2T, of equal length intervals

and number of failures occurring at interval i, Ni, follows a

Pois- son distribution. The model [14] consider to obey a

Poisson distribution with intensity rate E mi-1 at fixed times

T, 2 T, 3 T, 4 T . . . of the equivalent length interval, and the

failures happening at an interlude i,ni. The process of

calculating re- liability and other performance in J-M model

is same in this model also.

v. The Goel and Okumoto imperfect debugging model and

Non-homogeneous Poisson process (NHPP) model

Goel and Okumoto [8] proposed an defective model of

executing by expanding the J-M model which, impertinent

that a defect is taken away with likelihood p each time a

failure arises. Models Goel and Okumoto [8] and J-M [24]

trusted that the faults are suppress with cast-iron certainty

when perceived but this won’t be possible practically. It was

expected to determine the imperfect debugging model. The

faults in this model is at time t, Z(t), is preserved as Markov

process where likelihood of imperfect debugging govern

transition probabilities. Goel and Okumoto model NHPP

model [24] assume that, the software put into failure activate

by the faults remain in the system at random time. This

paper also suggested the model to calculate the collected

number of failures during time t.

vi. Fault seeding models

Fault seeding models is the strategy for embedding a

known number of Fault or mistakes into the system where

there is now an obscure number of shortcomings. In view of

the additional or seeding issues into the program obscure

number of issues will be determined. By utilizing these

determined worth, required boundaries what’s more,

reliability analysis will be performed. The essential

presumption of this issue or blunder seeding model are the

seeding of the blunder or imperfection in the system follows

arbitrary Distribution and Genuine and seeded faults have

equivalent possibility of rev- elation .

vii. Input domain models

Sets of test cases are produced in input domain based models

from an input distribution that is supposed to be

representative of the program’s operational uses. This class of

models assesses a program or software’s reliability when the

test cases are randomly sampled from the well-known

operational distribution of the input domain. The input

domain is distributed in the equivalence classes group, each

of which is associated with the direction of the programme.

By finding all unique paths in the program and then execute

each and every path is possible to guarantee that everything is

tested. The basic assumption of this input domain model is

Random testing has been used, partitioning the input domain

into different groups and Known distribution of the input

domain.

B. White box software reliability models

The key aim of White Box Reliability Models is to

evaluate reliability by evaluating the internal coding structure

and modular operating system interaction. This white box re-

liability models also called as architecture based reliability

analysis modelling. This architecture based reliability analysis

modelling offers many advantage.These models of re-

liability analysis allow one to compare the reliability of the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

141

www.ijert.org
www.ijert.org
www.ijert.org

application with its design and the reliability of individual

components. By using this model’s reliability of the

application software will be measured early in the life cycle

pro- cess. It enables us to correct the architectural design if

there is any measured reliability. The intension of the

architecture- focused software reliability analysis was to

achieve a software reliability estimate based on the reliability

of the components and software design [2,15].

i. Path based models

In a path-based model of reliability examination, the

product’s failure rate would be identified with the general

paths execution recurrence. The software reliability is

assessed by considering the conceivable execution paths of

the program [12]. Numerous path based reliability analysis

models have been proposed by scientists. The path based

models expect that, every one of the segments are

autonomous in nature. Failure of one segment won’t influence

another. Here programming design is joined with parts and

interfaces. Un- wavering quality on the paths is controlled by

increasing the dependability of the grouping of executed

parts. Finally system reliability is estimated by averaging all

the computed path reliabilities.

ii. State based models

Software architecture is addressed by the CFG (Control

Flow Graph) in these classes of models. CFG is utilized to

analyze the program code which has modules and choice

focuses. This class of models expected to be that, move of

control between modules has a Markov property which

implies that the future conduct of the framework is

restrictively free of the past conduct. The state based models

used to address software architecture take record of a discrete-

time Markov chain (DTMC), a continuous time Markov chain

(CTMC), or a semi-Markov process.

iii. Additive models

This kind of model won’t unequivocally think about the

software system architecture. All things considered, they

center on assessing the generally software reliability

information from part or (node) failure. This model is additive

since each part reliability is demonstrated by the Non-

homogeneous Poisson process model. The amount of part

failure intensity can be used to communicate the general sys-

tem failure intensity.

iv. The Markov Structure Models

The property of this model is the future behavior of the

process only depends on the current state and is independent

of its past history. This Model is general way of representing

the software failure process also it is used to study the

interrelationship of the different modules and the reliability. It

is also assumed the failures of the different modules are

independent of each other. This expectation appear sensible at

the mod- ule level as long as they can be designed, coded and

tested separately but may not be true at the system level.

v. The Gokhale’s model

This model[9] takes into account the time-dependent

failure rates and the usage of the modules via the average

estimated time spent in the module per run. In this method it

provided via an absorbing Discrete-time markov chain. In this

model it lies in the attempt of experimentally testing the

application to determine component reliability analysis and

software architecture. The upgraded non-homogeneous

Poisson process model indicates the failure behavior of each

variable using a time-dependent block coverage calculation of

the failure intensity during application testing.

vi. The Vivek Goswamis’s model

Vivek Goswamis’s model [19] examine the reliability of

software system by using discrete element reliability and the

us- age of each element. The ratio of each element is

calculated using the operational profile of software systems.

Each element reliability is calculated by mathematical

formula.

vii. Littlewood model

This is an earliest software reliability model [21] based on

software architecture. It is trusted that an irreducible semi-

Markov processes will define the software architecture while

generalizing the earlier work expressing the software

architecture with the Continuous Time Markov Chain. Here

the software needed a proper finite number of modules and

then control transfer between different modules. Every

module when they are executed they loss their constant

failure rates and also the component interface fail. This model

is only validating using an imagined example.

viii. The H. Singh’s Bayesian model

H. Singh method is used to imagine component based

soft- ware system (CBS) reliability). This model [16] uses the

Unified Modeling Language (UML) to derive the design of

soft- ware system and its state that, reliability can be predicted

in the system design level before starting the development.

Using some case studies validation of this model is done. This

model also guide examine the effect of replacing them with

the more/less reliable ones and process of identifying critical

Components. In the Bayesian estimation framework, posterior

probability of failure is calculated from the test failure data

and priors.

IV. IMPORTANCE OF SOFTWARE RELIABILITY

PREDICTION

 Everyone feels the need of software system in all fields

that impact in each sector of the society [6]. This promotes

the development of failure free software [8]. Such type of

software applications requires labor intensive technique [5].

Hence it is required the development of reliable software that

provide reliability accurately. The software failures have vital

impact on economy as well as other factors. In order to avoid

soft- ware failure the following parameters like error

prevention, fault detection are checked. Currently different

software metrics are available to measure the software and its

reliability. Presently, a number of Software Reliability

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

142

www.ijert.org
www.ijert.org
www.ijert.org

Growth Models are found in the market but the prediction is

not reached its highest. Higher reliability can be achieved by

using better development process, risk management process,

configuration management process, etc. Software failure is a

common drawback in the present time as it could not reach

the expected performance.

 During each phase of software development, reliability

factor is predicted. Plenty of growth models are developed for

evaluation or operation phases while very less research is

available for post-delivery phase. It is difficult to distinguish

during developing software which effects more on reliability

due to bug and defects. While measuring the reliability

through the user experience, that will vary person to person,

because each user experiencing different path or module of

the software system [15]. Probability-based modeling has

been suggested to resolve these issues to analyze and fore-

cast the reliability of a software system with some hypothesis

[1]. Each and every model is unique and based on the failure

history of software, not a single model fit into all the cases.

Every model has some advantages and limitations. Precise

model needs to be chosen based on the software system,

development process, input parameters available and

assumptions to analyze the reliability of software System

[10]. Still, many models are proposed by the researcher to

assess the re- liability with limited assumption. Designing

generic model is still a challenging issue in this research area

[11].

V. SUGGESTIONS FOR PRACTITIONERS

During software development process errors are

identified, detected and removed through software testing.

The importance of preserving quality throughout software

development has been examined and reviewed by Raksawat

and Charoen- porn [17]. They addressed various software

testing standards, such as ISO/IEC/IEEE 29119 ISO 29119,

that can be used to conduct out software testing. The process

of removing such error is called software reliability. The

growth model of reliability is based on previous failures,

which improves the quality of the software [1]. Reliability

prediction determines faults and measurement of reliability.

The reliability prediction is determined in the initial stage

because it is difficult to examine at the end product. This

article summarizes the following points.

• No thorough literature review of reliability modeling

during development.

• Only a few tools of reliability modeling are merely used in

real time systems.

• Almost all the models and methodologies have been

implemented only on small and limited data sets. Hence

need to conduct more experiments over large data sets and

real world scenarios to extract concrete conclusion about

the implication of software reliability growth models.

• This study emphasis on reliability prediction model which

can produce reliable as well as usable software with the

perspective of real time system.

Software Reliability is well-clearly said as a likelihood of the

system functioning without failure for a definite duration in

definite background [1] and also defined in such a way that,

probability of software system or component will deliver its

anticipated functionalities with excellence for a stated

duration under the identified circumstances or software

system deficiencies don’t cause a fault during the

predetermined time frame and condition. Modeling of

reliability has been suggested to forecast and estimate the

information systems re- liability. This modeling may useful in

various stages of the software life cycle process [13]. Some

modeling may be implemented in the initial development

process and others may be implemented in the design or

coding process, or in the test or repair phase. Each model has

its advantages and limitations.

VI. SOFTWARE RELIABILITY GROWTH MODELS

 The Software Reliability Growth Model[23,25] needed

having a best performance in terms of goodness-of-fit,

determinateness, and so away. In order to guess as well as to

Forecast the reliability of software systems, failure data

required to be accurately measured by different means during

software development and operational phases. Any software

needed to control reliably must still go through substantial

testing and executing. This can be a expensive and time

consuming pro- cess, and managers needs proper information

about how soft- ware reliability developed as a result of this

process in order to productively control their budgets and

projects. The total effects of this process, by which it is

expected software is made more reliable, can be matched

through the use of Soft- ware Reliability Growth Models,

here after consulted to as SRGMs. Research efforts in

software reliability engineering have been guide over the

past three decades and many soft- ware reliability growth

models (SRGMs) have been put for- ward. These models

contribute a means of describing the development process

and enable software reliability specialist to make guess about

the expected future reliability of soft- ware under

development. Such techniques allow managers to exactly

allocate time, money, and human resources to a project,

and estimate when a piece of software has arrived a point

where it can be released with some level of confidence in its

reliability. Unfortunately, these models are often inaccurate.

i. Times between Failures Models

In this class of models, the interaction under examination is

the time between failures. The most widely recognized

methodology is to expect that the time between a

dissemination whose boundaries rely upon the quantity of

issues staying in the program during this span. Evaluations of

the boundaries are gotten from the noticed upsides of times

among failures and appraisals of programming dependability,

mean chance to next failures, and so forth, are then acquired

from the fitted model. Another methodology is to treat the

failures as acknowledge of a stochastic cycle and utilize a

fitting time- series model to portray the fundamental failures

measure.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

143

www.ijert.org
www.ijert.org
www.ijert.org

ii. Fault Seeding Models

The fundamental methodology in this class of models is to

”seed” a known number of flaws in a program which is

accepted to have an obscure number of native faults. The pro-

gram is tried and the noticed quantities of seeded and native

issues are checked. From these, a gauge of the shortcoming

content of the program preceding seeding is gotten and used

to evaluate software reliability and other pertinent measures.

iii. Input Domain Based Models

The fundamental methodology taken here is to create a bunch

of test cases from an information appropriation which is

thought to be delegate of the functional use of the program. In

view of the trouble in getting this circulation, the info space is

divided into a bunch of equality classes, every one of which is

generally connected with a program path. A gauge of pro-

gram reliability is gotten from the failures saw during

physical or emblematic execution of the experiments tested

from the input domain.

VII. APPLICABILITY OF SOFTWARE RELIABILITY MODELS

We consider the four classes of Software Reliability

Models and assess their applicability during the design, unit

testing, integration testing, and operational phases of the

software development process. During the design phase, faults

might be distinguished outwardly or by other formal or casual

methods. Existing software reliability models are not pertinent

during this stage in light of the fact that the experiments

expected to uncover. Blames as needed by fault seeding and

input area based models don’t exist, and the failure history

needed by time subordinate models isn’t accessible. During

the unit testing phase, the ordinary climate during module

coding and unit testing stage is to such an extent that the

experiments produced from the module input space don’t

frame an agent test of the functional use distribution. The

time dependent models, particularly the time between failures

models, don’t appear to be pertinent in this environment since

the autonomous occasions between failures supposition that

is genuinely violated. A regular environment during

integration testing is that the modules are co- ordinated into

incomplete or entire systems and experiments are created to

check the accuracy of the incorporated frame- work. Test

cases for this reason might be produced arbitrarily from an

info conveyance or might be created deterministically

utilizing a solid test procedure, the last being most likely

more successful. The uncovered flaws are revised and there is

a solid chance that the expulsion of uncovered deficiencies

may present new blames.

VIII. A SOFTWARE RELIABILITY MODELING EXAMPLE

We'll now use the technique outlined above to demonstrate

how to create a software reliability model using failure data

from a real-time command and control system. Bell

Laboratories built this system, which had a total of 21 700

delivered object instructions. The problems observed during

system testing over a period of 25 hours were reported by

Musa [28], and they represent the failures encountered during

system testing. The NHPP model of Goel and Komodo [29]

is used in this example. We do so because of its simplicity

and applicability across a wide range of testing scenarios, as

indicated by Misra [30].

Step 1: The original data was presented as a count of how

long it took for a failure to occur. We aggregated the data into

numbers of failures per hour of execution time to overcome

the potential lack of independence among these values. Table

I summaries the information. Figure 1 shows a plot of the

hourly data as well as a plot of N(t), the cumulative number

of failures with time. A study of the data in Table II and of

the plotting Fig. 2 indicates that the failure rate (number of

The failure rate (number of failures per hour) appears to be

decreasing with test time, according to the data in Table I and

the charting in Fig. 2. As a result, an NHPP with a mean

value function should be a suitable model for describing the

failure process.

m(t) = a(1− e−bt)

Step 2: Two parameters, a and b must be determined from

the failure data for the aforementioned model. For this, we

choose to apply the greatest likelihood method [31],[32]. â =

142.32 and b = 0.1246 are the estimated values for the two

parameters. Remember that is an estimate of the total number

of faults likely to be discovered, whereas b is the number of

problems found every hour.

Step 3: The fitted model based on the data of Table I and

the parameters estimated in Step 2 is

m(t)=142.32(1-e -0.1246t)

Fig 1: Plot of the number of failures per hour.

Table 1: Failures in 1 hour (execution time) intervals and

cumulative failures

Hour Number of failures Cumulative failures

1 27 27

2 16 43

3 11 54

4 10 64

5 11 75

6 7 82

7 2 84

8 5 89

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

144

www.ijert.org
www.ijert.org
www.ijert.org

9 3 92

10 1 93

11 4 97

 12 7 104

 13 2 106

 14 5 111

 15 5 116

 16 6 122

 17 0 122

 18 5 127

 19 1 128

 20 1 129

 21 2 131

 22 1 132

 23 2 134

 24 1 135

 25 1 136

Step 5: To check the model's adequacy, we utilized the

Kolmogorov-Smirnov goodness-of-fit test in this example.

See Goal [33] for more information on this test. Essentially,

the test is a statistical comparison of the actual data with the

model chosen in Step 2. Step 3 of the fitted modeling passed

this test, indicating that it is a fair description of the data in

Table I. The plots in Fig. 2 also serve as a visual evaluation

of the models goodness-of-fit.

Fig 2: Cumulative number of failures as a function of execution time and

confidence bounds.

Step 6: We computed only one performance metric, the

predicted number of remaining errors, at varied testing times

for demonstration purposes. Figure 3 depicts a plot of these

values. Figures 2 and 3 provide plots of the confidence

bounds for the estimated cumulative number of failures and

the expected number of residual defects. 6 and 7 are the

corresponding numbers. An examination of these plots

reveals that the chosen NHPP model provides an excellent

match to the data and may be used to describe failure

behaviour as well as anticipate future failure processes.

Fig 3: Estimated remaining number of faults and confidence bounds.

Step: 5 The model described above can be used to answer

a range of questions regarding the failure process, as well as

to determine how much more testing is needed until the

system is ready for release. This type of information can be

requested at any moment, and it is not necessary to wait until

the completion of the testing process. Assume for the sake of

illustration that failure data from only 16 hours of testing is

available; with a total of 122 failures (see Table I). The fitted

model is based on these facts

m(t) = 138.37 (1-e -0.1332t)

Assume that the amount of residual defects is used to

determine whether or not software should be released for

operational usage. Assume we would release the system if the

predicted number of remaining faults was less than or equal

to ten. We can see from the preceding analysis that the best

estimate of this quantity at this time is 16.37, which implies

we should keep testing in the hopes of finding and removing

more problems. If we repeated the analysis after each

additional hour of testing, the estimated number of residual

defects after 20 hours would be 9.85, allowing us to meet the

stated release condition. The purpose of the foregoing basic

example was to demonstrate the type of information that a

software dependability model can provide.

IX. CONCLUSION

 Software reliability is a concept that involves taking a

step towards improvement and measurement of reliability.

The reliability decides the acceptance or rejection of a

software product. Generalized reliability prediction models

are suggested by authors that can implement in each phase of

development. This generalization will also reduce the time

and cost spent on application of different reliability prediction

tools at different phases. The main intension of this study is

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

145

www.ijert.org
www.ijert.org
www.ijert.org

to energizing the young researchers to grow the new

reliability survey frame- work which can be best and suitable

for the modern software development methodology. Because

all the developed models are having some pros and cons, due

to this it can be suitable only to the specific projects and

processes. The objective was to provide a user an insight into

the usefulness of such models that will be helpful in

determining which model to use in a given software

development environment. At the time of acceptance testing,

inputs based on functional usage are produced to verify

software acceptability. In this phase, seeding of faults is not

practical and the exposed faults are not usually immediately

corrected. The fault spreading and times between failures

models are thus not relevant. During the working phase, the

user inputs may not be irregular. This is the reason user may

use the same software function or path on a scheduled basis.

In real-time systems Inputs may also be agreed, thus losing

their randomness. Additionally, faults are not always

instantly corrected. In this environment, fault- count models

are likely to be most relevant and could be used for observing

software failure rate or for determining the optimum time for

installing a new release.

X. REFERENCES

[1] Kaswan KS, Choudhary S, Sharma K., Software Relia- bility Modeling
using Soft Computing Techniques: Critical Review. J Inform Tech
SoftwEng 5:144. 2015.

[2] C.Y. Huang, M.R. Lyu, Estimation and Analysis of Some Generalized

Multiple Change-Point Software Reliabil- ity Models, IEEE
Transaction on Reliability, Vol. 60, no. 2, pp. 498-514, 2011.

[3] J. E. Gaffney and J. Pietrolewiez. An Automated Model for Software

Early Error Prediction. In Proc. of 13th Minnow Brook Workshop on
Software Reliability, Blue Mountain Lake, NY,45-57, 1990.

[4] K. S. Trivedi, M. Malhotra . Markov Reward Ap- proach

toPerformabilityand Reliability Analysis. In Proc. of International
Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, IEEE,7-11, 1994.

[5] J. D. Musa and K.Okumoto. Application of Basic and Logarithmic
Poisson Execution Time Models in Soft- ware Reliability

Measurement. Software System Design Methods, Springer, Berlin,
Heidelberg, 275-298, 1986.

[6] V.Goswami and Y. B. Acharya. Method for Relia- bility Estimation of

COTS Components based Software Systems. In International
Symposium on Software Re- liability Engineering, 2009. [Online].
Available at: http://2009.issre.net/papers/issre2009 193.pdf

[7] M. Bisi and N. K. Goyal. Software Reliability Prediction using Neural
Network with Encoded Input.International Journal of Computer
Applications, 47(22),46-52, 2012.

[8] A. L. Goeland K. Okumoto. Time-Dependent Error- Detection Rate

Model for Software Reliability and Other Performance Measures. IEEE
Transactions on Reliability, 28(3), 206-211, 1979.

[9] S. S. Gokhale. Architecture-Based Software Reliability Analysis:

Overview and Limitations. IEEE Transactions on Dependable and
Secure Computing, 4(1), 32-40, 2007.

[10] M. Xie, 1991. Software reliability modelling (Vol. 1). World

Scientific., ISBN 981-02-0640-2.

[11] M.R. Lyu. 1996. Handbook of software reliability engineering. IEEE
Computer Society Press and McGraw- Hill., ISBN 0-07-039400-8.

[12] C.J. Hsu, C.Y. Huang, An adaptive reliability anal- ysis using path

testing for complex component-based software systems, IEEE Trans.
Reliab. 60 (1) (2011) 158–170, https://doi.org/10.1109/tr.2011.2104490

[13] S. Kaliraj, N. Chandru, A. Wahi. 2013. A Relia- bility Framework of

Component Based Software System Using Kal-Chan Path Selection

Algorithm. International Review on Computers and Software
(IRECOS), 8(2), pp.605- 612. Available from:

http://www.praiseworthyprize.org/.

[14] Z. Jelinski, P.B. Moranda. 1972. Software reliability research,

Statistical Computer Performance Evaluation, W. Freiberger (ed.),
465–484. DOI: 10.1016/b978-0-12-266950- 7.50028-1.

[15] K. Gosˇeva-Popstojanova, K.S. Trivedi, Architecture- based approach

to reliability assessment of software systems, Perform. Eval. 45 (2)
(2001) 179– 204, https://doi.org/10.1016/s0166-5316(01)00034-7.

[16] K. Go, M. Hamill, 2007, July. Architecture-based software reliability:

Why only a few parameters matter?. In Computer Software and
Applications Conference.

[17] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, V. Bharadwaj, 2001,

November. A bayesian approach to reliability prediction and
assessment of component based systems. In Software Reliability

Engineering, 2001. ISSRE 2001. Proceedings. 12th International
Symposium on (pp. 12-21). IEEE. DOI: 10.1109/issre.2001.989454.

[18] Chadatarn Raksawat and Pattama Charoenporn, ”Soft- ware Testing

System Development Based on ISO 29119,” Journal of Advances in
Information Technology, Vol. 12, No. 2, pp. 128-134, May 2021. doi:
10.12720/jait.12.2.128-134

[19] Seppo J. Sirkemaa, ”Key Perspectives in Informa- tion Technology
Infrastructure Management,” Journal of Advances in Information

Technology, Vol. 10, No. 3, pp. 100-103, August 2019. doi:
10.12720/jait.10.3.100-103

[20] V. Goswami, Y.B. Acharya. 2009. Method for re- liability estimation

of COTS components based software systems. In Proceedings of 20th
International Symposium on Software Reliability Engineering, ISSRE.
Available from: https://www.researchgate.net.

[21] Y. Si, X. Yang, X. Wang, C. Huang, A.J. Kavs, 2010, April. An

architecture-based reliability estimation framework through component

composition mechanisms. In Computer Engineering and Technology
(ICCET), 2010 2nd International Conference on (Vol. 2, pp. V2-165).
IEEE. DOI: 10.1109/ iccet.2010.5485256.

[22] B. Littlewood, A reliability model for systems with Markov structure,
Appl. Stat. (1975) 172–177, https://doi.org/10.2307/2346564.

[23] K.Sahu and R. K. Srivastava. Revisiting Software Reliability, Data
Management, Analytics and Innova- tion.Advances in Intelligent
Systems and Computing, Springer, 221-235, 2019.

[24] Mohd Razeef and Mohsin Nazir, “Reliability of Software Development

using Open Source Technology”, in IJARCS, vol2, No. 5, pp. 479-485,
Sept-Oct 2011

[25] A.L.Goel, “Software Reliability Models: Assump- tions, Limitations,

and Applicability”, IEEE Trans. On Software Engineering, vol. Se-11,
no. 12, pp. 1411-1423, December 1985.

[26] T. A. Thayer, M. Lipow, and E. C. Nelson, ”Soft- ware reliability
study,” Rep. RADC-TR-76-238, Aug. 1976.

[27] G.J. Schick, R.W. Wolverton, 1973. Assessment of software

reliability. In Vortra¨ge der Jahrestagung 1972 DGOR/Papers of the

Annual Meeting 1972 (pp.395-422). Physica-Verlag HD. DOI:
10.1007/978-3-642-99746-430.

[28] J. D. Musa, "Software Reliability Data," DACS, RADC, New York,
1980.

[29] H. D. Mills, "On the statistical validation of computer programs, "IBM
Federal Syst. Div., Gaithersburg, MD, Rep. 72-6015, 1972.

[30] P. N. Misra, "Software reliability analysis," IBM Syst. J., vol. 22,no. 3,
pp. 262-270, 1983.

[31] A. L. Goel,"A software error detection model with applications,"
J.Syst. Software, vol. 1, pp. 243-249, 1980.

[32] A. L. Goel, "A guidebook for software reliability assessment," Rep.
RADCTR-83-176, Aug. 1983.

[33] A. L. Goel, "Software reliability modellingand estimation techniques,"
Rep.RADC-TR-82-263, Oct. 1982.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS090056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 09, September-2021

146

www.ijert.org
www.ijert.org
www.ijert.org

