
Software Quality Measurement Through Testing

Dr. S. A. Sahaya Arul Mary

Dean Academics,

Jayaram College of Engineering & Technology,

Trichy.

M. Kavitha
Research Scholar, Dept. of Computer Science

Manonmaniam Sundaranar University,

Tirunelveli.

Abstract: Software complexity is measured by various metrics

of software. Software metrics play an important role in

analyzing and improving software quality. Some of the

metrics like reliability, reusability, size, etc are proposed by

early researchers and they were very useful in software

quality measurement. Software measurement faces a number

of challenges whose solution requires both innovative

techniques and borrowings from other disciplines. Over the

years, a number of techniques and measures have been

proposed and accessed via theoretical and empirical analyses.

This shows the theoretical and practical interest of the

software measurement field, which is constantly evolving to

provide new, better techniques to support existing and more

recent software engineering development methods. Software

metrics are often categorized into products and process

metrics. The aim of this paper is to discuss and analyse the

various metrics which is used for software quality

measurement proposed by early authors in this field. And

also find a new metrics to improvise the Network Oriented

Software Quality Measurement process.

Keywords-- Software Metrics; Quality Measurement; Metric;

Network Applications; OOS;

I. INTRODUCTION

Software is the sole of Microprocessor enabled devices.

The effective utilization of hardware components are

always decided by the quality of software. When talking

about the quality, it is must to follow it in every stage of

software. To find the quality of software, some of the

metrics are defined by researchers early in the field of

quality management. The first software metrics were

proposed in the mid 70s. After the first proposal a large

number of metrics have been proposed in the following

years. The more number of metrics was followed by more

practical proposals to find the results interpretation

techniques from metrics [1]; all those metrics are divided

into two major types as listed below,

 Internal product metrics: Measure attributes of the

product that can be measured directly by examining

the product on its own irrespectively on its behavior.

 External product metrics: Measure attributes of the

product that can be measured only with respect to how

the product relates to its environment.

Gurudev Singh et. al. [2] discussed the two types of

Metrics, Process Metrics: Process metrics are known as

management metrics and used to measure the properties of

the process which is used to obtain the software. Process

metrics include the cost metrics, efforts metrics,

advancement metrics, and reuse metrics. Process metrics

help in predicting the size of final system & determining

whether a project on running according to the schedule.

Products Metrics: Product metrics are also known as quality

metrics and is used to measure the properties of the

software. Product metrics includes product non reliability

metrics, functionality metrics, performance metrics,

usability metrics, cost metrics, size metrics, complexity

metrics and style metrics. Products metrics help in

improving the quality of different system component &

comparisons between existing systems. The various metrics

are discussed detailed in forthcoming sections.

The aim of proposing metrics are to find the Software

Quality Measurement. Various authors defined

Measurement as below.

Formally, measurement is defined as a mapping from the

empirical world to the formal, relational world.

Consequently, a measure is the number or symbol assigned

to an entity by this mapping in order to characterize an

attribute [3].

"Measurement is the assignment of numbers to objects

or events according to rule. [4] The rule of assignment can

be any consistent rule. The only rule not allowed would be

random assignment, for randomness amounts in effect to a

non rule." [5].

"Measurement is the process of empirical, objective,

assignment of numbers to properties of objects or events of

the real world in such a way as to describe them." [6].

"Measurement is the process by which numbers or

symbols are assigned to attributes of entities in the real

world in such a way as to characterize them according to

clearly defined rules." [7].

Measurement is "the act or process of assigning a

number or category to an entity to describe an attribute of

that entity." [8].

The Advantages of Software Metrics are extends to find

the critical study of various programming language and

characteristics of them, to perform comparative study of

design methodologies, to compare the capabilities of

productivity of people, to calculate the effort to be put in the

design of the software, to check the complexity of code, etc.

The distribution of object-oriented paradigm has led to

the need of cognitive complexity metrics. Several object-

oriented metrics have been proposed in recent years. In

order for those metrics to be usable metrics validation are

needed [9].

Even having advantages there are also some limitation in

software matrices. This literature Study is done to conclude

the Roll of different software testing metrics in the area of

product’s quality measurement and its limitations.

Software Technology is a growing field and its growing

level is too high than any other field. The metrics proposed

before the invention of new technology never satisfies the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

293

requirement of new software products produced by new

technologies. Michalis Xenos et. al. had focused on product

metrics and on how such metrics can aid in design,
prediction and assessment of the final product quality,

provide data used for decision-making, cost and effort

estimation, fault prevention, testing time reduction and,

consequently, aid in producing better software for E-

Government and E-Commerce systems and it is

summarized that metrics are an important instrument for the

development of software to be integrated into E-

Government and E-Commerce systems; metrics aid in

making estimations in the early phases of a project,

preventing problems in intermediate phases and evaluating

quality in the late project phases. [10].

Now a day’s applications are all converted into

standalone mode to web mode. So the network applications

are growing. The Metrics to qualify the good web

applications should be derived.

Further in Section 2 some of the Metrics are discussed,

in Section 3 the challenges in software Measurement are

discussed and in section 4 the roll of metrics are concluded.

II. LIST OF METRICS

When discussing about software metrics its nature that

the visible metrics come into the focus first. The metrics

listed below are most common for software measurement.

 File Level Metrics

 Class Level Metrics

 Method/Function Level Metrics

All the above Metrics are calculated using the Lines of

codes written, Number of variables declared, number of

methods, constructor, functions used, number of statements

used and type of statements etc.

Other Object Oriented Metrics are calculated based on

the above basic metrics. Chidamber et. al., proposed some

of the objected oriented metrics that are very famous in and

important. The metrics proposed are Weight Method Per

Class (WMC), Depth of Inheritance Tree (DIT), Number of

children (NOC), Coupling Between Objects (CBO),

Response For a Class (RFC), and Lack of Cohesion of

Methods (LCOM). These Metrics are called as CK

cognitive Metrics [11].

Weighted Class Complexity (WCC), Extended

Weighted Class Complexity (EWCC), Attribute Weighted

Class Complexity (AWCC), Cognitive Weighted Response

for Class (CWRFC) and Cognitive Weighted Coupling

Between Object (CWCBO) are known as cognitive Metrics.

All the above metrics are known as Cognitive Complexity

Metrics (CCMS).

Both CK cognitive and cognitive metrics are objected

oriented and they are calculated based on the basic metrics.

A. Weight Method per Class (WMC):

The understandability and reusability of software is

decided by this metric.

A class is a template from which objects can be created.

Classes with large number of methods are likely to more

application specific, limiting the possibility of reuse. This

set of objects shares a common structure and a common

behavior manifested by the set of methods.

The WMC is a count of the methods implemented

within a class or the sum of the complexities of the

methods. But the second measurement is more difficult to

implement because not all methods are accessible within the

class hierarchy because of inheritance.

The larger the number of methods in a class is the

greater the impact may be on children, since children inherit

all of the methods defined in a class.

B. Response for Class (RFC):

A message is a request that an object makes to another

object to perform an operation. The operation executed as a

result of receiving a message is called a method.

The RFC is the total number of all methods within a set

that can be invoked in response to message sent to an

object. This includes all methods accessible within the class

hierarchy.

This metrics is used to check the class complexity. If the

number of method is larger that can be invoked from class

through message than the complexity of the class is

increase.

C. Lack of Cohesion of Methods (LCOM)

Cohesion is the degree to which methods within a class

are related to one another and work together to provide well

bounded behavior.

LCOM uses variable or attributes to measure the degree

of similarity between methods. We can measure the

cohesion for each data field in a class; calculate the

percentage of methods that use the data field. Average the

percentage, then subtract from 100 percent. Lower

percentage indicates greater data and method cohesion

within the class. High cohesion indicates good class

subdivision while a lack of cohesion increases the

complexity.

D. Coupling between Object Classes (CBO)

Coupling is a measure of strength of association

established by a connection from one entity to another.

Classes are couple in three ways. One is, when a message is

passed between objects, the object are said to be coupled.

Second one is, the classes are coupled when methods

declared in one class use methods or attributes of the other

classes.

Third one is, inheritance introduced significant tight

coupling between super class and subclass. CBO is a count

of the number of other classes to which a class is coupled. It

is measured by counting the number of distinct non

inheritance related class hierarchy on which a class depends.

Excessive coupling is detrimental to modular design and

prevent reuse. If the number of couple is larger in software

than the sensitivity will affects the other parts of design.

E. Depth of Inheritance Tree (DIT)

Inheritance is a type of relationship among classes that

enables programmers to reuse previously defined objects,

including variables & operators. Inheritance decrease the

complexity by reducing the number of operations and

operators, but this abstraction of objects can make

maintenance and design more difficult.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

294

Depth of class within the inheritance hierarchy is the

maximum length from the class node to the root of the tree,

measured by the number of ancestor classes.

The deeper a class within the hierarchy, the greater the

number of methods and is likely to inherit, making it more

complex to predict its behavior. A support metric for DIT is

the number of methods inherited.

F. Number of Children (NOC)

The number of children is the number of immediate

subclasses subordinates to class in the hierarchy. The

greater the number of children, the greater the parent

abstraction. The greater the number of children, greater the

reusability, since the inheritance is a form of reuse. If the

number of children in class is larger than it require more

testing time for testing the methods of that class.
TABLE 1

SHOWS THE COMPARISON OF USAGE OF METRICS IN VARIOUS SOFTWARE

COMPONENTS

G. Weighted Class Complexity (WCC)

This metrics is proposed by Mishra[12] by modifying

CC metric. This metrics is calculated by assuming that the

class is a set of data and set of method accessing them. So

the complexity of the class is measured by the complexity

of methods and the attributes. The formula given below is

designed by them to calculate WCC.

WCC = 𝑁𝑎 + ∑ MCp𝑛
𝑝=1 (1)

Where,

Na is the Number of Attribute

MC is the Method Complexity

H. Extended Weighted Class Complexity (EWCC)

Arockiam et. Al. [13] proposed this metrics by

extending the WCC metrics. EWCC is the sum of weights

of attributes and methods of the class and derived class.

This metrics includes the cognitive complexity due to

Inheritance. The below formula is used to find EWCC.

EWCC = 𝑁𝑎 + ∑ MCi𝑛
𝑖=1 + ∑ ICCj𝑚

𝑗=1 (2)

Where,

Na is the total Number of attributes,

MC is the method complexity,

ICC is the inherited class complexity which is

calculated by the below given formula

ICC = (𝐷𝐼𝑇 𝑥 𝐶𝑙) 𝑥 ∑ RMCi𝑛
𝑖=1 + RNa (3)

Where,

N is the number of inherited methods

RNa is the reused method complexity

ICC is the inherited class complexity

DIT is the Depth of Inheritance Tree

CL is the cognitive complexity of Lth level

Metrics
Basic

Metrics

Object Oriented

Class Inheritance Couplings Response
Method

Cohesion

File Level Metrics Yes No No No No No

Class Level Metrics Yes Yes No No No No

Method/Function Yes No No No No No

WMC Yes Yes No No No No

DIT Yes Yes Yes No No No

NOC Yes Yes Yes No No No

CBO Yes Yes Yes Yes No No

RFC Yes Yes Yes Yes Yes No

LCOM Yes Yes Yes Yes Yes Yes

WCC Yes Yes Yes No No No

EWCC Yes Yes Yes Yes No No

AWCC Yes Yes Yes Yes Yes Yes

CWRFC Yes Yes Yes Yes Yes Yes

CWCBO Yes Yes Yes Yes Yes Yes

Software Metrics

Basic Metrics

File Metrics

Class Metrics

Function Metrics

Object Oriented Metrics

CK Metrics Other Metrics

WMC, NOC,
DIT, CBO, RFC,

LCOM

WCC, EWCC,
AWCC, CWRFC,

CWCBO

Fig. 1 List of Various Metrics

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

295

I. Attribute Weighted Class Complexity (AWCC)

This is derived to calculate the complexity of class using

Method complexity, attribute complexity and the inherited

complexity. This is also the extension of WCC. This

metrics is proposed by L. Arockiam et. al. [14]. The below

formula is used to calculate AWCC.

AWCC = ∑ ACi𝑛
𝑖=1 + ∑ MCj𝑚

𝑗=1 + ∑ ICCk𝑚1
𝑘=1 (4)

Where,

AC is the attribute complexity

MC is the method complexity

ICC is the inherited class complexity

Attribute complexity is calculated by using the following

formula

AC= (PDT * Wb) + (DDT * Wd) +(UDDT * Wu) (5)

Where, PDT is the number of Primary Data Type

attributes,

DDT is the Number of Derived Data Type attributes,

UDDT is the Number of User Defined Data Type

attributes,

Wb is the cognitive weights of the PDT attributes,

Wd is the cognitive weights of the DDT attributes,

Wu is the cognitive weights of the UDDT attributes,

J. Cognitive Weighted Response for a Class (CWRFC)

A metric namely Cognitive Weighted Response For a

Class (CWRFC) proposed by Aloysius et al.[14] In

CWRFC, the cognitive weights are assigned to the function

call statement based on the effort needed to understand their

type of function calls due to message passed by an object of

that class. CWRFC is used to calculate the complexity of

the class using the Response Set complexity. If there are m

numbers of response sets in a class, then the CWRFC of that

class can be calculated by using the below formula.

CWRFC = ∑ RSCj𝑚
𝑗=1 (6)

Where, RSC is the response set complexity, which can be

calculated as below,

RSC=M+∀iRi (7)

Where M is set of all methods, R is set of methods called by

any of those methods and it is calculated as below

R=DF * (CWt + WFd) + PBV * (CWt + WFv) + PBR * (CWt

+ WFr) (8)

Where, DF is the total number of default function call

PBV is the total number of pass by value function call

PBR is the total number of pass by reference function

call

CWt is the Cognitive weights of the function call

WFd is the Weighting Factor of the DFC statements,

WFv is the Weighting Factor of the PBV statements,

WFt is the Weighting Factor of the PBR statements

K. Cognitive Weighted Coupling Between Object

(CWCBO)

Aloysius et al. [14] proposed a metric called cognitive

weighted coupling between objects (CWCBO). Which

considers the cognitive complexity of the different types of

coupling such as data coupling, control coupling, global

coupling and interface coupling, “unnecessary object

coupling needlessly decreases the reusability of the coupled

objects”, “ Unnecessary object coupling also increases the

chances of system corruption when changes are made to one

or more of the coupled objects. The following formula is

designed by them.

CWCBO= ((CC*WFCC) + (GDC*WFGDC) +

(IDC*WFIDC) + DC*WFDC) + (LCC*WFLCC) (9)

CC is the total number of modules that contains control

coupling,

GDC is the count of Global Data coupling

IDC is the count of internal data coupling

DC is the count of Data Coupling

LCC is Count of lexical Content Coupling

WFCC is the Weighting factor of control coupling

WFGDC is the Weighting factor of Global Data Coupling

and its weight is given as 1

WFIDC is the Weighting factor of internal Data coupling

and its weight is given as 2.

WFDC is the weighting factor of data coupling and its

weight is given as 3

WFLCC is the weighting factor of lexical content

coupling and its weight is given as 4.

III. CHALLENGES IN SOFTWARE

MEASUREMENT

Software measurement poses a number of challenges,

from both a theoretical and practical points of view. To face

these challenges, we can use a number of techniques that

have been developed over the years and/or have been

borrowed from other fields.

First, we need to identify, characterize, and measure the

characteristics of software processes and products that are

believed to be relevant and should be studied. This is very

different from other engineering branches, where

researchers and practitioners directly use measures without

further thought. In those disciplines, there no longer is a

debate on what the relevant characteristics are, what their

properties are, and how to measure these characteristics. In

software engineering measurement, instead, we still need to

reach that stage. There is not as much intuition about

software product and process characteristics (e.g., software

cohesion or complexity) as there is about the important

characteristics of other disciplines. Therefore, it is important

that we make sure that we are measuring the right thing, i.e.,

it is important to define measures that truly quantify the

characteristic they purport to measure. This step—called

theoretical validation—is a difficult one, in that it involves

formalizing intuitive ideas around which there is limited

consensus. To this end, one can use Measurement Theory,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

296

which has been developed in the social sciences mainly in

the last 60 years, or property-based approaches, which have

been used in Mathematics for a long time.

Second, we need to show that measuring these

characteristics is really useful, via the so-called empirical

validation of measures. For instance, we need to show if and

to what extent these characteristics influence other

characteristics of industrial interest, such as product

reliability or process cost. It is worthwhile to measure them

and use them to guide the software development process

only if they have a sufficiently large impact. To this end,

experiments must be carried out and threats to their internal

and external validity must be carefully studied.

In addition, the identification and assessment of

measures may not be valid in general. Nothing guarantees

that measures that are valid and useful in one context and

for some specified goal are as valid and useful for another

context and goal. Goal oriented frameworks that have been

defined for software measurement can be used.

IV. CONCLUSION

Delivering a quality product is the key axiom of every

software development team. To make the product quality it

is must the measure the quality of software by using strong

valid well furnished metrics. In this paper some of the early

proposed metrics are discussed. But no metrics is useful to

check the quality measurement of network oriented

applications. From the survey made on this paper it is

concluded that researcher should kick start to derive the

network oriented metrics in future.

REFERENCES

[1] Shepperd, M., & Ince, D. (1990). The Use of Metrics in the Early

Detection of Design Errors. Proceedings of Software Engineering.

[2] A Study of Software Metrics Gurdev Singh, Dilbag Singh, Vikram

Singh IJCEM International Journal of Computational Engineering &
Management, Vol. 11, January 2011 ISSN (Online): 2230-7893

[3] Cem Kaner,Senior Member,IEEE, and Walter P.Bond, “Software

Engineering Metrics:Whay Do They Measure and How Do We
Know?”

[4] S. S. Stevens, "On the Theory of Scales of Measurement," Science,

vol.103, pp. 677-680, 1946.
[5] S.S.Stevens,Psychophysics: Introduction to its Perceptual, Neural,

and Social Prospects. New York: John Wiley & Sons, 1975.

[6] L. Finkelstein, "Theory and Philosophy of Measurement," in
Theoretical Fundamentals, vol. 1, Handbook of Measurement

Science, P. H. Sydenham, Ed. Chichester: John Wiley & Sons, 1982,

pp.1-30.
[7] N. E. Fenton and S. L. P fleeger, "Software Metrics: A Rigorous and

Practical Approach," 2nd Edition Revised ed. Boston: PWS

Publishing, 1997.
[8] IEEE, "IEEE Std. 1061-1998, Standard for a Software Quality

Metrics Methodology, revision." Piscataway, NJ,: IEEE Standards

Dept., 1998.
[9] Hericko, M, Rozman. I, Horvat. R, Domjinko. T, Gyorkos. J, “OO

Metrics data gathering enrironment, in: Proceedings of Technology

of Object Oriented Languages” (Tools 24), 1998, pp.80-85.
[10] Michalis Xenos,”Software Metrics and Measurements”, In

“Encyclopedia of E-Commerce, E-Government and Mobile

Commerce”, Mehdi Khosrow-Pour (Ed.), Idea Group Publishing,
ISBN: 1-59140-799-0, pp. 1029-1036, 2006.

[11] Chidamber. S, Kemerer. C, “A Metrics Suite for Object Oriented

Design”, IEEE Transaction on Software Engineering 20(6) (1994)
476-493.

[12] Sanjay Misra and k. Ibrahim Akman, “Weighted Class Complexity:

A Measure of Complexity for Object Oriented System,” Journal of
Information Science and Engineering, 2008, pp.1689-1708.

[13] L. Arockiam, A. Aloysius and J. Charles selvaraj, “Extended

Weighted Class Complexity: A new of software complexity for
objected oriented systems”, Proceedings of International Conference

on Semantic Ebusiness and Enterprise computing (SEEC), 2009, pp.

77-80.
[14] A. Aloysius, L. Arockiam, “Maintenance effort prediction model

using cognitive complexity metrics”, International Journal of

Advanced Research in computer Science and Software Engineering,
Vol 3, issue 11 November 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080184

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

297

