International Journal of Engineering Research & Technology (1JERT)
NCITSF 14 Conference Proceedings
ISSN: 2278-0181

SOFTWARE ENGINEERING AND CAS

Karthik. Kamath, Narasimha. Prabhu, Sunil. Sridhar
Department Of Information Science and Engineering
Bangalore Institute of Technology

Abstract- Software Engineering is the application of a
systematie, disciplined, guantifiable approach to the
development, operation, and maintenance of
software; that is, the application of engineering to
software, More and more, individuals and society rely
on advanced software systems. We need to be able to
produce reliable amnd trustworthy — systems
economically and quickly. It is usually cheaper, in the
long run, to use software engineering methods and
techmiques for software systems. For most (ypes of
system, the majority of costs are the costs of changing
the software after it has gone into use.

Computer aided software engineering is the name
given to the software used to support software process
activities such as requirement engineering, design,
program development and (esting. CASE tools
therefore include design editors, data dictionaries,
compilers, debuggers, system building tools. CASE
technology provides software process support by
auntomating some process activities and by providing
information about the software that is being
developed.

Index Terms-—- CASE technology, CASE rools, process

to discover solutions to problems even when there
are no applicable theories and methods, Engineers
also recognize that they must work 1o
crganizational and financial constraints so they
look for solutions within these constraints.

II. SOFTWARE
MODELS

LIFE CYCLE

A software life cyele model is either a descriptive
or preseriptive characterization of how software is
orf should be developed. A descriptive model
describes the history of how a particular sofbware
svstem was developed. Descriptive models may be
used as the basis for understanding and improving
software development processes or for building
empirically - grounded preseriptive models. A
prescriptive model prescribes how a new software
systermn should be developed. Prescriprive models
are used as gudelines or frameworks (o organize
and structure how software development activitics

activity, software engincering methods, software should be performed, and in what order. Typically,
technigues. it is easier and more common to articulate a
: . escriptive life ¢ 2l for how software

I INTRODUCTION prescriptive life cycle model for how software

The development of software applications is rarely
carricd out by a single programmer, Rather, it
demands for participation of teams of people. The
interaction and exchange of nformation among
team members with the development of
economically software that is reliable and works
efficiently on real machines 15 termed as software
engineering. Software engineering is a part of
system engineering. Software engineers should
adopt a systematic and orgamsed approach to all
aspects of software development. The foundation
for software engineering is the process laver,
Software enginecring process is the glue that holds
the technology layers together and cnables rational
and timely development of computer software,
Process defines a framework for a set of key
process areas that must be established for effective
delivery of software engineering technology. The
key process areas form the basis for management
control of software projects and establish the
context in which technical methods are applied,
work products are produced, milestones are
established, quality is ensured. and change is
properly managed. Engineering discipline
Engineers make things work. They apply theories,
methods, and tools where these are appropriate.
However, they use them selectively and always try

137

systems should be developed. This means that
many idiosyncratic details that describe how
software Swyetems is buill in practice can be
ignored, generalized, or deferred for later
consideration. This, of course, should raise concern
for the relative validity and robustness of such life
cycle models, When developing different kinds of
application systemns, i different kinds of
development settings, using different programming
languages, with differentially skilled staff, ctc.
However, preseriptive models are also used to
package the development tasks and techniques for
using a given sct of softwarc cngincering tools or
environment during a Development project.
Descriptive life cyele models characterize how
particular software systems are actually developed
in specific settings, As such, they are less commaon
and more difficult to articulate for an obvious
reason: one must observe or collect data throughout
the hife cvele of a software system, a period of
elapsed vme often measured in vears. Also,
descriptive models are specific to the systems
wbserved and only generalizable through systematic
comparative analysis. Therefore, this supgesis the
prescriptive software life cyele models will
dominate attention until a sufficient base of
wbservational data 15 available o articulate
empirically grounded descriptive life cyele models.

www.ijert.org

International Journal of Engineering Research & Technology (1JERT)
NCITSF 14 Conference Proceedings
ISSN: 2278-0181

These two characterizations suggest that there are a

variety of purposes for articulating software life

cycle models, These characterizations serve as a

Guideline 1o organize, plan, stalf. budget, and

schedule and manage software project work over

organizational time. space. and compuling

environments. Basis for determining what software

engincering tools and methodologies will be most

appropriate to support different life cycle activities.

Basis for conducting empirical studies to determine

whal afleels soltware productivity, cost and overall

quality.

The phases through which a product progresses is:
Requirements phase

Specification phase

Degign phase

Implementation phasc

Integration phasc

Maintenance phase

Retirement

" & & 5 8 @

SOFTWARE PROCESS MODEL
1), Watertall Madel

Each one follows the other sequentially and doesn’t
begin until the previous onc is finished. The
drawhack of the waterfall model is the difficulty of
accommuodating change afier the process is

analysis includes determining interaction
needed with other applications and
databases, performance requirements,
user interlace requircments, and so on.

1) Architectural designs: Determines the
sofiware framework of a system to mee
the specific requirements, This design
defines the major components and the
interaction of those components, but it
does not define the structure of each
component. The external interfaces and
tools used in the project can be
determined by the designer,

4y Detmiled designs: Examines the software
components defined im the archirectural
design stage and produces a specification
for how each component is implemented.

5y Coding: Implements the detailed design
specification,

) Testing: Determines whether the seliware
meets the specified requirements and
finds any errovs present in the code,

Ty Maintenance: Addresses problems and
enhancement requests after the software
releases. In some organizations, o change
control board maintains the quality of the
product by reviewing each change made
m the mamienance stage. Consider

underway. applying the full waterfall development

cycle model when correcting problems or

Requirements implementing these enhancement
'y W requests,

Design
5 "\

Tmplementation

Tn cach stage, documents that explain the objectives
and describe the requirements for that phase are
created. At the end of cach stage, a review to
determine whether the project can proceed to the
next stage 15 held, Your prototyping can also be

t w incorporated into any stage from the architectural
Integration design and after,
[Y ;
Walidation i
ry _\ IMI. ADVANCED SOFTWARE
] EMGINEERING
Deployment
Fig 1.1 Waterfall Model Campanent-hased softwave engineering:
1) Svstem requivements: Fstablishes the

components for building the system,
ncluding the hardware requirements,
software tools, and other necessary
components. Examples include decisions
on hardware, such as plug-in boards
{number of channels, acquisition speed,
and so on), and decisions on cxternal
pieces of software, such as databases or
libraries.

2y Software requirements: Establishes the
expectations for software functionality
and identifies which system requirements
the software affects. Requirements

138

Component-based software engineering (CUBSE)
emerged i the late 19905 as an approach to
soltware systems development based on reusing
software components, Its creation was motivated
by designers’ frustration that object-oriented
development had not led to extensive reuse, as had
been originally suggested. Single object classes
were too detailed and specific, and often had to be
bound with an application at compile time. You
had to have detailed knowledge of the classes to
use them, and this usuoally meant that vou had w
have the component source code. This meant that
selling or distributing objects as individual reusable
components Was practically impossible.

www.ijert.org

International Journal of Engineering Research & Technology (1JERT)
NCITSF 14 Conference Proceedings
ISSN: 2278-0181

Components are higher-level abstractions than
objects and are defined by their interfaces. They are
usually larger than individual objects and all
implementation details are hidden from other
components. CBSE s the process of defining,
implementing, and integrating or composing
loosely coupled independent componenis info
systlems. [has become as an important sollware
development approach because software svstems
are becoming larger and more complex. Customers
are demanding more dependable sollware thatl is
delivered and deployved maore guickly. The only
way that we can cope with complexity and deliver
better software more quickly is to reuse rather than
implement software components,

THE CBSE FROCESS

Component Compaonent

Selection Walidation

Fig 1.7 Component ldentlication Process
Fig 1.7 shows the principal sub activities within a
sub process, such as initial discovery of user
requirements, are carried out in the same way as in
other software processes. However, the essential
difference between these process and software

The essentials of component-based sofiware process based on original software development
enginecring are: are:
1) Independent components that are 1) The wuser requirements are initially

completely specified by their interfaces,
There should be a clear separation
between the component interface and its
implementation.
This means that one implementation of a
component can be replaced by another, without
changing other parts of the system.

2} Component standards that facilitate the
integration of components, These
standards are embodied in a component
model. They define, at the very minimum,
how component interfaces should be
specified and b COMponents
communicite. Some models go much
further and define interfaces that should be
implemented by all conformant
components. If components conform to
stangdards, then their operation s
mdependent of their programmung
language. Components written in different
languages can be integrated into the same
sysierm.

3y Middleware that provides software
support for component integration. To
make independent, distributed components

developed in outline rather than in detail,
and stakeholders are encouraged to be as
flexible as possible m defining their
requirements, Requirements that are too
specific limit the number of components
that could meet these requirements.
However, unlike incremental
development, vou need a complete set of
requirements so that you can identify as
many compaonents as possible for reuse.

2} Reguirements are refined and modified
carly in the process depending on the
compenents available, Tt the user
requirements cannot be satisfied from
available components, you should discuss
the related requirements thar can be
supported. Users may be willing to change
their minds if this means cheaper or
quicker system delivery,

3) There is a further component search and
design refinement activity after the system
architccture has been designed. Some
apparently usable components may turn
out to be unsuitable or do not work
properly with other chosen components,

work together, you need middleware Although not shown in Figure this implies
support that handles component that further requirements changes may be
communications, Middleware for necessary.
component support handles low-level 4) Development 15 a4 composifion process
issues cfficiently and allows you to focus where the discovered components are
on application-related problems. In mtegrated, This involves integrating the
addition, middleware for component components with the component model
support may provide support for resource mfrastructure and, often, developing
allocation, transaction management, adaptors that reconcile the interfaces of
security, and concurency. incompatible components. OF course,
4} A dwclqpmm]t process that 15 E-EEI.I'L‘EI to additional ﬁl'l'lC['il‘J'I’lH.]Iil’:\" may also be
mmpcﬂ]ent.basgd software engineeri“gr “I'qulil'ed over and above that rll"D‘r"IdEEI b’_‘g"
Component-based development embodies good reused components.,
software engineering practice. Tt makes sense to
design a system using components, even if you . EMERGING TECHNOLOGIES
have (o develop rather than rense these
components. 1.y Service Oriented Software Engineering
2.0 Aspect Oriented Software Engineering

139

www.ijert.org

International Journal of Engineering Research & Technology (1JERT)
NCITSF 14 Conference Proceedings
ISSN: 2278-0181

Service oriented software engineering

Service-oriented architectures (S0As) are a way of
developing distributed systems where the system
components are stand-alone services, executing on
geographically distributed Figure
encapsulates the idea of a SOA. Service providers
design and implement services and specify the
interface 1o these services. They also publish
information about these services in an accessible
registry. Service requestors (sometimes called
service clients) who wish o make use of a service
discover the specification of that service and locate
the service provider. They can then bind their
application to that specific service and
communicate with i, using standard service
protocols.

Fig 1.8 encapsulates the iden of a 50A. Service
providers design an implement services and specify
the interface to these services. Thev also publish
information about these services i an accessible
registty. Serviee
service clients) who wish to make use of a service
discovers the specification of that service and
locates the service provider. They can then bind
their application to that specific service and
communicate with
protogols,

From the outset, there has been an active
standardization process for S0A, working
alongside rechnical developments. All of the major
hardware and software companies are committed to
these standards. As a result, SOA have not suffered
from the incompatbilities that normally arise with
technical mnovations, where different suppliers

compulers.

requestors{ Sometimes called

it, using standard scrvice

When you intend to use a web service, you need to
know where the service is located (it’s URI) and
the details of its interface. These are described in a
service description expressed inoan XML-based
language called WSDL. The WSDL specification
defines three things about a web service: what the
service does, how it communicates, and where o
lind i

1}y The “what part of a WSDL document,
called an interface, specifies what
operations the service supports, and
defines the format of the messages that are
sent and received by the service?

2) The ‘how™ part of a WSDL document.,
called a binding, maps the ahstact
interface o a concrete set of protocols.
The binding specifics the technical details
of how to communicate with a web
service,

3) The ‘where” part of a WSDL document
describes the location of a specific web
service implementation (irs endpoint).

The WSDL conceptual model (Figure 1.11) shows
the elements of a service description. Each of these
s expressed in XML and may be provided in
scparate files. These parts arc:

a. An introductory part thar usually defines
the XML namespaces used and which may
include a documentation scction providing
additional information about the service,

b, An optional description of the tvpes used
in the messages exchanged by the service.

¢, A description of the service interface; that
is. the operations that the service provides
for other services or users,

d. A description of the nput and output
miessages processed by the service.

maintain their proprietary version of the

technology. Figure 1.8 shows the stack of key : . s
i WSDL service defimition

standards that have been established to support web PSP service delinition

services. Because of this carly standardization,

problems, such as the muliple incompatible Tntro

component models in CBSE, discussed i Chapter
17, have not arisen in servicc-oriented system

development. Abstract inlerface
.) Concrete
) ' implementation
Find Publish —— — —

Bind (SOAP)

Fig 1.8 Service Oriented Architecture

140

www.ijert.org

Fig 111 Organization of a WSDL speci hcation

{ oriented software engineering
Aspect-oriented software engineering
(ADSE) 15 an approach to software
development that is intended o address

International Journal of Engineering Research & Technology (1JERT)
NCITSF 14 Conference Proceedings
ISSN: 2278-0181

this problem and so make programs easier

Lo
Maintain and reuse. AOSE is based around
abstractions called aspects. which implement
system functinnality that may be reguired at several
different places in a Program. Aspecis encapsulate
tunctionality that cross-cuis and coexisis with other
{unctionality that is included in a system. They arc
used alongside other abstractions such as objects
and methods. An executable aspect-oriented
program is crealed by aulomatically combining
{weaving) objects, methods, and aspects, according
to specifications that are included in the program
source code. An important characteristic of aspeots
is that they include a definition of where they
should be included in a program. as well as the
code implementing the crosscutting concern. You
carl specify that the cross-culting code should be
included before or afier a specific method call or
when an atwibute is accessed. Essentially, the
aspect is waoven into the core program to create a
new augmented system. The kev benefit of an
aspect-oriented approach is that it supports the
separation of concerns. Separating concerns into
mdependent elements rather than including
different concerns in the same logical abstraction is
good software engineering practice. By
represeniing cross-culling concerns as aspects,
these concerns can be understood. reused, and
modified independently, without regard for where
the code is used. For example, user authentication
may be represented as an aspect thal reguests 4
login name and password, This can be
automatically woven into the program wherever
authentication is required.
Say vou have a requirement that user anthentication
15 required before any change to personal details 15
made in a database. You can describe this in an
aspect by stating that the authentication code
should be included before each call to methods that
update personal details. Subsequently, you may
extend the requirement for authentication to all
database updates. This can easily be implemented
by modifying the aspect. You simply change the
definition of where the authentication code is to be
woven info the system. You do not have to search
through the system looking for all occurrences of
these methods, You arc therefore less hikely to
make mistakes and introduce accidental security
vulnerabilities into your program. Research and
development in aspect-orientation has primarily
focused on aspect oriented programming. Aspect-
oriented programming languages such as Aspect J
have been developed that extend object-oriented
Programming to inchide aspects. Major companies
have wsed aspect-oriented programmng. Major
companies have used aspect-oriented
programning,
Aspect Weavers are exXtensions o compilers that
process the definition of aspects and the object

141

classes and methods that define the system. The
weaver then generates a new program with the
aspects included at the specified join points, The
aspects are integrated so that the cross-cutling
concerns are execited at the right places in the final
system,
Figure 1.15 illustrates this aspect weaving for the
authentication and logging aspects that should be
included i the MHC-PMS. There are three
different approaches 1o aspect weaving:
1y Sowrce code pre-processing, where a
weaver takes source code input and
generates new source code in a language
such as Java or C++, which can then be
compiled using the standard language
compiler. This approach has been adopted
for the Aspect-X language with its
associated X-Weaver,

Anthenticatio
n aspect

—_——
Update details

Fig 1.15 Aspect Weaving

Link time weaving, where the compiler 15
maodified to include an aspect weaver. An
aspect-oriented langnage such as Aspect-J
is processed and standard Java byte code
i5 generated. This can then be exccuted
directly by a Java interpreter or fiwther
processed o generate native maching
code,

Dynamic weaving at execution time. In
this case, join points are monitored and
when an event that 15 referenced m a point
cut oceurs, the comresponding advice is
integrated with the executing program.

3

Computer-anded software engineering (CASE) s
the scientific application of a set of tools and
methods to a sofrware system which is meant to
result in gh-quality, defect-free. and mamtamable
software products. Tt also refers to methods for the
development of information systems together with
aulomaled Lools thal can be used in the soliware

www.ijert.org

Patient

Authentication

codc

Update Details

(.}

Logging code

International Journal of Engineering Research & Technology (1JERT)
NCITSF 14 Conference Proceedings
ISSN: 2278-0181

development process. The term "computer-aided
software engineering” (CASE) can refer to the
software used for the automated development of
systems soliware, Le., computer code. The CASE
tunctions include analysis, design. and
programming. CASE tools automaie methods tor
designing, documenting, and producing structured
computer code in the desired programming
language. CASE software supports the software
process activities such as requirement engineering,
design, program development and Llesting.
Therefore, CASE tools include design editors, data
dictionaries, compilers, debuggers, sysiem building
tools, cte. CASE also refers to the methods
dedicated w an engineering discipline for the
development of information sysiem using
automated tools. CASE is mainly used for the
development of quality software which will
perform effectively. CASE history in a nutshell,
Soltware designers have used diagrammatic
representations of their designs since the earliest
davs of software development. Over time the natre
of these design diagrams has changed and so have
the tools used to produce them. Much like early
word processors replaced typewriters, carly CASE
tools served as clectronic replacements for paper,
pencil, and stencil, Many of these early CASE tools
became unused “shelf ware” because thev did not
provide significant valuc to softwarc designers.
Later CASE tools added sophisticated code
generation, reverse engineering, and version
control features. These features add value via
increased automation of some design tasks, for
example, converting a design into a source code
skeleton. However, current CASE tools fail to
address the essential cognitive challenges facing
software designers. International Data Corporation
(IDC), a market research firm that collects data on
all aspects of the computer hardware and software
industries, has published a series of 2 reports on
OQOAD tools.

CASE tool and its seape

A CASE (Compurer Anded Software Engineering)
tool is a generic term used to denote any form of
automated support for software engineering. In a
more testriciive sense, a CASE ool means any tool
uscd to automate somc activity associated with
software development. Many CASE (ools arc
available, Some of these CASE tools assist in phase
related tasks such as specification, structured
analysis, design, coding, testing, ete.; and others to
non-phase activities such as project management
and configuration management.

142

Benefits of CASE:
Several benefits accrue from the use of a CASE
environment or even isolated CASE tools. Some of
those benefits are:

¢ A key benefit arising out of the use of a
CASE environment is cost saving through
all development phases, Difierent siudies
carry oul to measure the impact of CASE
put the effort reduction hetween 30% to
40%,

e Use of CASE wols leads to considerable
improvements to quality. This is mainly
due o the facts that one can effortlessly
itcrate through the different phases of
software development and the chances of
human error are considerably reduced.

¢ CASE tools take oul most of the drudgery
im a soliware engineer’'s work, For
example, they need not check
meticulously the balancing of the DFDs
but can do it effortlessly through the press
of a button,

e CASE tools have led to revolutionary cost
saving i software maintenance efforts.
This arises not only due to the wemendous
value of a CASE environment in
traceability and consistency checks, but
also due 1o the systemaric information
capture during the various phases of
software development as a result of
adhering to a CASE environment,

[I. COMNCLUSION

We believe that the software engineering has
provided us with some valuable insights into
methods of software production and development,
Software engineering research has progressed
much since the early days. It has provided an
effective means for efficient software development
with the advance in emergent technologies like
scrvice and aspect oriented software engineering,
the domain of software development has been
cxpunded (o focus on guality of service and
customer satisfaction,

REFERENCES
[

[2]
[3]

Walt Scacchi, (Febrmuary 2001) “Process Modals m
Software Engincering”

lan Somerville, “Software Engincering”, Addison
Wesley, 7" editions, 2004,

MNabil Mohammed Al Munassar and A. Govardhan
“Comparizon beowesa five models of software
engincering”

[an Somerville, “Software Engineering”, Addison
Wesley, 9 editians, 2004,

Jongmoon Baik, (December 2000% “The effects of
case tools on software development™

[4]

[5]

www.ijert.org

