

Software Defined Networking – an Overview

B. Susila

Dept. of Communication Systems

M.Kumarasamy College of engineering

Karur, Tamilnadu.

C. Veeralakshmi

Dept. of ECE

M.Kumarasamy College of engineering

Karur, Tamilnadu.

Abstract— Today’s networks have grown leap and bounds,

demand for bandwidth increase every day. Multimedia,

streaming and public cloud infrastructure has increased the

demand for bandwidth. Ever changing network demands needs

change in internet architecture. Decoupling of control plane and

data plane helps to have reliable network architecture. But still

the number of protocols makes it very difficult to have a direct

control over the network. Virtualization plays a major role in

computing, storage and networking. Network overlays achieve

the ever changing demands of today’s bandwidth intensive

application. Software Defined Networking (SDN) has changed

the way we look at the network. SDN truly divides the control

plane and data plane and paves the way to have direct control

over the networks. The programmability of data plane using

simple match and action condition has simplified the way the

data path is controlled by control plane. Network Function

Virtualization (NFV) is complementary to SDN and it helps to

virtualize the middlebox functionalities. This paper discusses the

underlying concepts of Software Defined Networking.

Index Terms— Software defined networking, OpenFlow, control

plane, data plane, virtualization, Programmable networks.

I. INTRODUCTION

The internet has led to the creation of digital society where

everything is connected and it can be accessible from

anywhere. Despite their wide spread adoption, the traditional

IP networks are hard to manage and configure them based on

the predefined policies. Traditional IP networks are dynamic

and more complex to reconfigure incase of any faults, load

and changes. Computer networks can be divided into three

planes of functionality, which includes data, control and

management planes. Control plane functions, such as

participating in routing protocols, run in the architectural

control element. Control plane is used to populate forwarding

tables. It will also perform service provisioning, reachability

information exchange and connectivity management. The

Management plane protocols like SNMP can be used to

monitor the device operation, its performance, interface

counters etc. The data plane will forward transit traffic. The

network policies are defined in management plane, the

control plane enforces the policies and the data plane

executes the policies by forwarding the data based on the

defined policies.

In traditional IP networks the control plane and the data

planes are tightly coupled. Network includes numerous types

of devices such as routers, switches, firewalls and numerous

types of middleboxes to perform various types of operations.

The network operators are responsible for configuring and

managing them. The network misconfiguration related errors

are common in today’s network. Misconfiguration of a single

device may create a bigger problem in the network. The

vertical integration of today’s networks reduces the flexibility

and making difficult to the evolution and innovation for the

networking infrastructure.

The idea of programmable networks has been proposed to

facilitate the network evolutions. Software Defined

Networking (SDN) is an emerging new paradigm where the

vertical integration of control and data planes is decoupled,

and the control plane is programmable. Central software

program called controller will act as a brain of the network,

will direct the entire network behavior. SDN dramatically

simplify the network management and improve the network

innovation and evolution. In SDN the network intelligence is

logically centralized by programming control planes and the

data plane will act as just a forwarding device. The open

interfaces are used to program the network (eg. ForCES [1],

OpenFlow [2] etc).

The field of Software Defined Network is quite recent and

growing very fast and it is gaining wide acceptance in

industries as well as academia. SDN started as a cleanslate

project in Stanford University as academic research and it’s

becoming new evolution in the networking world. SDN

makes it easier to create and introduce new abstractions in

networking, simplifying network management and facilitating

network evolution.

In this article we explore the SDN architecture and

implementation, various programming languages used for

Programming the controller, Benefits of SDN, Security and

SDN applications.

II. SDN ARCHITECTURE AND ITS IMPLEMENTATION

The Open Networking Foundation (ONF) [3] is the group

that is most associated with the development and

standardization of SDN. The architecture of SDN is shown in

figure.1. According to the ONF, “Software-Defined

Networking (SDN) is an emerging architecture that is

dynamic, manageable, cost-effective, and adaptable, making

it ideal for the high-bandwidth, dynamic nature of today’s

applications. This architecture decouples the network control

and forwarding functions enabling the network control to

become directly programmable and the underlying

infrastructure to be abstracted for applications and network

services. The OpenFlow protocol is a foundational element

for building SDN solutions.” The standard SDN architecture

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

1

[4] consist of Southbound APIs, Controller and Northbound

APIs.

Fig.1 SDN Architecture

Southbound APIs: SDN protocols (OpenFlow, XMPP, BGP).

Controller: Considered as an operating system for networks,

one that provides a centralized access to the entire network.
Northbound APIs: An interface for application developers to

extract information about the network.

The SDN architecture has several advantages. The SDN

architecture is

 Directly programmable.

 Agile.

 Centrally managed.

 Programmatically configured.

 Open standards-based and vendor-neutral.

Based on the SDN concept it can be defined by three

levels of abstractions: (i) Forwarding (ii) Distribution and (iii)

Specification.
Forwarding abstraction allows any forwarding behavior

desired by the network applications. OpenFlow is a

realization of one such abstraction.

Distribution abstraction making distributed control

problem as centralized one. Network Operating System

(NOS) is the realization of distributed abstraction.

Specification abstraction allows network application to

express the desired behavior of the network. It can be

achieved through the network virtualization and

programming languages.

A. Infrastructure

An SDN architecture consist of different layers each layer

will perform specific functions. The infrastructure will

discuss about different networking equipments. The SDN

architecture is same as that of traditional networks composed

of different networking equipments includes switches, routers

and middlebox appliances. In SDN the logical intelligence is

separated from the data plane and the controller is

centralized. The configuration and communication between

different control and data planes can be achieved by using the

standard open interfaces like OpenFlow.
SDN architecture consist of two main elements the

forwarding device and the controller. The forwarding device

includes matching rules, matching packets and counters. The

controller will define the handling of packets through a

sequence of flow tables. A rule can be defined by combining

different matching fields. The priority of rules will follow the

sequence number.

OpenFlow enabled switches are available in the market

have Ternary Content Addressable memory (TCAM) of up to

8K entries to store the forwarding rules from the controller.

Software based Openflow switches includes OpenvSwitch,

OFsoftSwitch, Pica8 to name a few.

B. OpenFlow

With the OpenFlow protocol [5], a form of software-

defined networking, a network can be managed as a whole

rather than as a number of individual devices. OpenFlow

moves the forwarding decision from individual switches to a

controller, typically a server or workstation. The OpenFlow

specification defines a protocol between the controller and

the switches and a set of operations on the switches.

Each switch maintains a number of flow tables, with

each table containing a list of flow entries. Table 1 shows the

main components of a flow entry in a flow table.

TABLE 1: MAIN COMPONENTS OF A FLOW ENTRY IN A FLOW

TABLE.

Match Fields Counter Instructions

(1) Match field, to match against packets consist of the

ingress port and packet headers, and optionally metadata

specified by a previous table.

 (2) Counters to update the matching packets such as

reachability information, number of packet received and

duration.

(3) Set of instructions used to handle the matching packets.

C. Data Plane Devices

Hardware or software based forwarding devices will

perform set of operations. The data plane devices are having

well defined instruction sets used to perform operations based

on the incoming packets. The operation includes drop or

forward the packet, forward to the specific port etc. Generally

the data plane devices are southbound API. Which includes

OpenFlow [2] enabled switches, ForCES [1]. The forwarding

devices can be connected by wireless channels and wired

cables. The network consists of interconnected forwarding

devices. The instruction set for forwarding devices are

defined by southbound interfaces. It will also define the

communication protocol for data plane devices.

The hybrid switches also used in current networks to

perform the data plane operation. The operation includes (1)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

2

Installing the forwarding rules, (2) Processing the forwarding

rules. Installing the rules requires more memory. Memory is

the main consideration in OpenFlow network. Normal open

flow switches support only few hundred to few thousands of

flow entries. TCAM memories are used to store the

forwarding rules. TCAM is expensive and power

consumable. Some proposals are applied to limit the memory

issue of OpenFlow switches. DevoFlow is an extension to

OpenFlow to address the memory issue. DIFANE [6], Palette

[7] and One Big Switch [8] are some of the proposals to

manage the forwarding rule space.

D. Controller

The controller is the brain of the network. The forwarding

devices are programmed in control plane. Typically it is a

northbound interface to abstract the low level instructions

from southbound interfaces to program the forwarding

devices. All control logic from applications and controllers

will form the control plane.

The control plane can be programmed using high level

languages such as java, python. The controller is also called

as Network Operating System (NOS). Different SDN

controller includes NOX [12], POX [16], Trema [17],

floodlight [13], Open daylight [15] controller. The SDN

controller typically contains number of pluggable modules

that can perform different tasks. The controller can perform

orchestration of new rules throughout the network and can

perform analysis of running algorithms.

E. Programmability of SDN Networks

The software-defined networking (SDN) is developed to

create an infrastructure that is much more agile and flexible.

It should perform network automation and orchestration that

better supports the dynamic changing demands of users, as

well as the devices and data accessing the network. One of

the ways SDN delivers this agility and flexibility is by

making the network more programmable.

There are three use cases to defining what

programmability means for SDN networks:

 Adjusting the Flows – Mainly focuses on protocols

such as OpenFlow that enable SDN Controllers to

interact with routers and switches in the forwarding

plane to adjust the traffic flow in the SDN Networks.

This helps networks respond to the dynamic

changing.

 Supporting the Applications – Concerned with the

coordination, automation, and exception handling of

a network to, better align with the needs of the

applications running on it. The languages such as

JavaScript Object Notation (JSON) or Extensible

Messaging and Presence Protocol (XMPP) can be

used to support rapid deployment of new

applications based on the automation configuration.

 Automating SDN Networks – This use case

focuses on SDN networks doing what they are

supposed to do without interference from a network

administrator. When something changes, the

network should figure out how to address the change

automatically.

Much of the programmability of the network relies on the

northbound and southbound open application programmable

interfaces (APIs) communications between the SDN

Controller and the applications and switches/routers,

respectively. The programmability of the network enables

better bandwidth utilization, performance, and operational

efficiency.

III. TOOLS AND PLATFORMS FOR SDN

SDN is currently used for new network evolution and

innovation and it is gaining wide acceptance in the

networking industry. This section will provide an overview of

various open source SDN tools and platforms that enable

research and experimentation with SDN technologies.

A. Emulation and Simulation

Emulation and Simulation is software used for testing and

prototyping the topology without the need of expensive

physical devices. Mininet [9] is the emulation tool which is

commonly used in SDN. Mininet is the emulator which can

generate larger network with limited resource. It provides a

simple and inexpensive network test bed for developing

OpenFlow applications. Mininet-HiFi is an evolution of

mininet, it enhances the container based emulation to provide

resource provisioning, performance isolation, and accurate

performance monitoring.

The Simulation of OpenFlow devices can be achieved by

NS-3 [10] simulation Software. SDN troubleshooting

Simulator (STS) [11] is designed to apply and specify a

number of test cases to examine the network.

B. Programming Languages

Programming languages usually referred as high level

languages, each language has a syntax and unique set of

keywords. The programmable networks provide the ability to

program the network from machine level language to many

high level languages like Java and Python. Different types of

open controllers are used to program the network. Table 2

provides the list of open source controller with programming

languages. The programmability in the networks move from

low level language to high level language to promote the

code reusability, simplifying the task and network

virtualization.

TABLE.1 LIST OF OPEN SOURCE CONTROLLER WITH THE PROGRAMMING

LANGUAGES

Controller Language Description

POX [16]

Python

OpenFlow controller

written in python runs
under various network

conditions.

NOX [12]

C++/Python

Openflow controller

developed by Nicira
networks, the first openflow

controller.

Beacon [14]

Java

Java based openflow
controller, cross-platform

supports event based

operations.

Floodlight [13]

Java

Java based controller based
on beacon implementation.

Opendaylight [15]

Java

Hosted by Linux foundation

it has no restrictions on the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

3

OS.

Trema [17]

C and Ruby

Developed by NEC, a

framework for developing
Openflow controller using

Ruby and C.

Nodeflow [18]

Javascript

Independent developers.
The controllers can be

developed using Javascript.

The programming languages can provide the specialized

abstraction to survive other network management

requirements such as combining the results, monitoring, and

counter polling. The programming languages provide the

portability to the developers so they do not need to re-

implement the application for different controller platforms.

To avoid overlapping of rules and efficiently express the

packet forwarding rules other SDN programming languages

such as Pyretic, Frenetic and Netcore were used to perform

simultaneous and parallel operations.

IV. NETWORK FUNCTION VIRTUALIZATION

Network functions virtualization (NFV) offers a new way

to design, deploy and manage networking services. NFV

decouples the network functions, such as network address

translation (NAT), firewalling, intrusion detection, domain

name service (DNS), and caching, to name a few, from

proprietary hardware appliances so they can run in software.

It’s designed to consolidate and deliver the networking

components needed to support a fully virtualized

infrastructure including virtual servers, storage, and even

other networks. It utilizes standard IT virtualization

technologies that run on high-volume service, switch and

storage hardware to virtualize, the network functions. It is

applicable to any data plane processing or control plane

function in both wired and wireless network infrastructures.

The growing adoption of software-defined networking

(SDN), network functions virtualization (NFV), and network

virtualization have begun the trend toward modernizing the

IP Infrastructure that runs today’s networks. SDN, NFV, and

network virtualization, as well as white box switching, are all

fundamental pieces of a new type of IP Infrastructure being

deployed today. We define the key technologies for this next

generation of IP Infrastructure as:

 SDN offers a centralized way to orchestration and

control the network. A key component to SDN is

an SDN Controller which has the ability to act as the

brain of the network. The SDN Controller receives

information and orchestrates traffic on the network

to switches and routers via southbound APIs, and to

the applications with northbound APIs. Openflow is

the protocol which is mostly used by SDN networks.

 NFV is the virtualization of network services. NFV

came to realization when service providers

attempted to speed up deployment of new network

services in order to bring up revenue and growth

plans. Noticing that hardware-based appliances

limited their ability to achieve these goals, they

looked to standard IT virtualization technologies and

discovered that NFV helped accelerate service

innovation and provisioning. This led to the creation

of ETSI NFV, which sets NFV basic requirements

and architecture.

 Network virtualization (NV) creates a logical,

virtual network, by decoupling network functions

from the hardware that deliver them. All network

functionality is separated from the underlying

hardware and simulated as a “virtual instance” that

can be loaded onto general, off-the-shelf platforms;

a single hardware platform can be used to support

multiple virtual network instances.

 White box networking are network devices, such as

switches and routers, that are based on “generic”

merchant silicon networking chip set available for

anyone to buy, as opposed to proprietary silicon

chips designed by and for a single networking

vendor.

V. SDN SECURITY

As software-defined networking (SDN) environments

continue to grow, security is essential to protect the

availability and privacy of all connected resources and

information, but securing SDN can be difficult. We can

predict different attack vectors on SDN system. The SDN

security concern includes security at different layers of SDN

architecture.

Data plane layer, the attacker can target the different

networking elements within the network. An attacker can

gain unauthorized access to the network and destabilize the

network elements and this type attack is called fuzzing attack.

To secure the data plane layer the organizations prefer to use

Transport Layer Security (TLS) to authenticate the traffic

between network element and the controller. The other

protocols SNMPv3 and SSH can also be used to authenticate

the network elements and encrypt the data between them.

The controller layer is the main target to the attacker. The

controller is the central decision point, it should be secured

tightly. The availability of the SDN controller should be

maintained. The security should be deployed, maintained and

controlled to develop an environment with more scalable,

efficient and secure. The next generation environments

created a new category called Software Defined Security

(SDSec), which decouples the security control plane from the

security processing and forwarding planes and it can be

maintained as single logical system. The SDSec will function

like Network Function Virtualization (NFV).

VI. BENEFITS OF SOFTWARE-DEFINED

NETWORKING

Following are the benefits offered by the Software Defined

Networking.

Automation — SDN allows for automation of complex

operational tasks that make networks faster, more efficient

and easier to manage.

Increased uptime — SDN has proven effective in reducing

deployment and configuration errors that can lead to service

disruptions.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

4

Less drain on resources — SDN gives administrators

control over how their routers and switches will operate in a

single and virtual workflow. This helps the key staff to focus

on more important tasks.

Better visibility — With SDN, system administrator’s gain

improved visibility into overall network function, allowing

them to allocate resources more effectively.

Cost savings — SDN can lead to significant overall costs

savings. It also reduces the cost of the devices among the

network infrastructure.

VII. SDN APPLICATIONS

An SDN application is a software program designed to

perform a task in a software defined networking (SDN)

environment. SDN applications can replace and expand upon

functions that are implemented through firmware in hardware

devices in a conventional networking environment. SDN

application definition can be extended to data plane, control

plane, network functions and L4-L7 layer applications.

The Software Defined Networking can be deployed in any

traditional networks from home network to enterprise

networks. SDN has been proposed for new innovation in the

networking environment that can provide more flexibility and

extensibility in the network architecture. New features and

services can be added to SDN based network by upgrading

the control plane. Network features and services can be added

dynamically in the form of network application as a

management function. The application includes Traffic

engineering, Server load balancing, Virtualization, and inter

domain routing.

A. Traffic Engineering

There are several traffic engineering methods that has been

proposed which includes ALTO [19], Hedera [20], QoS

framework [22], QNOX [21]. The main goal of this

application includes minimizing power consumption,

maximizing network utilization, optimized load balancing,

and traffic optimization.

Load balancing was the main application envisioned in the

OpenFlow based SDN. Several techniques and algorithms

have been proposed for this purpose [23]. The main goal of

this application is to provide scalability. The Wild card based

rules is a technique to provide scalability and to perform

proactive load balancing [23]. The wild card rules can be

used in cloud based networks. In the context of data center

synchronization and communication effective resource

utilization can be achieved with SDN and OpenFlow. SDN

eases the introduction of new protocol in the network. IP

multicasting [22] can be implemented in the control plane

using OpenFlow by handling multicast request in the control

software. The control software will install the forwarding

rules in the switches according to the multicast

application.SDN can also used to provide fully automated

system for controlling the configuration of network devices.

It is useful in the scenario of virtual aggregation it allows the

network operators to reduce the data replication in the routing

table. Another interesting application for large scale service

provider is Traffic optimization. The other applications that

are provided by traffic engineering include application-aware

video streaming, QoS Provisioning.

B. Wireless and Mobility

The distributed control plane in the current wireless

networks it is hard to manage limited spectrum, allocating the

resources, handling the interference, and efficient load

balancing between the cells. SDN based approach is an

opportunity to ease and manage the different wireless

networks like cellular networks [24] and WLAN [25]. The

dynamic spectrum usage, load balancing, creation of virtual

access points, seamless hand-over, inter-cell interference

coordination,Qos and access control policies, deployment of

new applications can be achieved through SDN. Realizing

these features can be achieved by allowing programmability

in the stack layer of wireless networks. A heterogeneous

wireless network is also a target for SDN.

C. Optical Transport Networks

SDN technology is largely used in Cloud and Large data

center application. Now the research interest has turned to

extend the programmability in the optical transport networks

[26]. The advantages of SDN include optimizing the network

resource usage, simplify the service creation and specify

resource requirements. SDN must be pushed beyond the

capability to handle the Ethernet network infrastructure and

architectures of Optical networks.

The transport networks were built to support long distance

communication such as voice and data traffic with high

reliability. Transport networks are more complex, they vary

in terms of architecture and the type of cross connects which

act as switches between links. SONET- a ring based network

offers more reliability due to their ability to switch the traffic

from working path to protection path in case of any failure.

Optical Cross connects terminate links and switch the data

streams towards destination. Add-drop multiplexers add or

drop the data from multi wavelength data stream and redirect

it to the destination. Reconfigurable Optical ADMs provide

more flexibility in the network.

A single source to destination path may cross multiple

links. The SDN controller should recognize the capability and

restriction of network architecture and equipment. The

controller should optimize the resource requirements and the

resource allocation. SDN can be applied to multilayer

architecture in optical networks.

VIII. CONCLUSION

Traditional IP networks are hard to manage. One of the

reasons is that it is vendor specific and the control plane and

data planes are tightly coupled. Each line of products has its

own configuration and management interfaces. It will lead to

long cycles for product update. Software Defined Networking

(SDN) created an opportunity to solve this long-standing

problem. It provides the dynamic programmability of

network using open interfaces by decoupling the control and

data planes and the global view of network through logically

centralized network controller. Further research in Software

defined networking environment works towards extending

SDN capabilities to carrier transport network, cloud

computing paradigm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

5

ACKNOWLEDGMENT

I would like to thank authors, mentioned in the

references which are citied below for their valuable research

works which helped me to gain knowledge. And also I thank

my guide for her precious guidance.

REFERENCES

[1] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,R.

Gopal, and J. Halpern. Forwarding and Control Element Separation
(ForCES) Protocol Specification. RFC 5810 (Proposed Standard),

March 2010.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson,J. Rexford, S. Shenker, and J. Turner. Openflow: enabling

innovation in campus networks. ACM SIGCOMM Computer

Communication Review,38(2):69–74, 2008.
[3] Open networking foundation https://www.opennetworking.org/about.

[4] ONF, “Software-Defined Networking: The New Norm for

Networks,”Mar.13,2012,https://www.opennetworking.org/images/stori
es/downloads/white-papers/wp-sdnnewnorm.pdf.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,

no. 2, pp. 69–74, Mar. 2008.

[6] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable Flow-Based
Networking with DIFANE. In Proc. SIGCOMM, 2010.

[7] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing

tables in software-defined networks. In INFOCOM, pages 545–
549,2013.

[8] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker.

Optimizing the one big switch abstraction in software-defined
networks.

[9] Mininet at https://github.com/mininet/mininet/wiki/Introduction to

mininet.
[10] Ns-3 project, “ns-3: OpenFlow switch support,” 2013. [Online].

Available:

http://www.nsnam.org/docs/release/3.13/models/html/openflowswitch.
html

[11] ucb-sts, “STS - SDN troubleshooting simulator,” 2013. [Online].

Available: http://ucb-sts.github.io/sts/
[12] Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.;

Shenker, S. NOX:Towards an Operating System for Networks. ACM

SIGCOMM Comput. Commun. Rev. 2008, 38, 105–110.
[13] Floodlight, an open sdn controller. http://floodlight.openflowhub.org/.

[14] Beacon. https://openflow.stanford.edu/display/Beacon/Home.

[15] http://www.opendaylight.org/. Opendaylight, 2013.

[16] Pox. http://www.noxrepo.org/pox/about-pox/.

[17] Trema openflow controller framework.

https://github.com/trema/trema.

[18] The nodeflow openflow controller. http://garyberger.net/?p=537.

[19] M. Scharf, V. Gurbani, T. Voith, M. Stein, W. Roome, G.
Soprovich,and V. Hilt, “Dynamic VPN optimization by ALTO

guidance,” in Software Defined Networks (EWSDN), 2013 Second

European Workshop on, Oct 2013, pp. 13–18.
[20] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.

Vahdat, “Hedera: dynamic flow scheduling for data center networks,”

in Proceedings of the 7th USENIX conference on Networked systems
design and implementation, ser. NSDI’10. Berkeley, CA, USA:

USENIX Association, 2010, pp. 19–19.

[21] K. Jeong, J. Kim, and Y.-T. Kim, “QoS-aware Network Operating
System for software defined networking with Generalized OpenFlows,”

in Network Operations and Management Symposium (NOMS), 2012

IEEE, april 2012, pp. 1167 –1174.
[22] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P.

Yalagandula, “Automated and scalable QoS control for network

convergence,” in Proceedings of the 2010 internet network
management conference on Research on enterprise networking, ser.

INM/WREN’10. Berkeley, CA, USA: USENIX Association, 2010, pp.

1–1.
[23] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown,

G. Parulkar, A. Akella, N. Feamster, R. Clark, A. Krishnamurthy, V.

Brajkovic, and T. A. and, “Aster*x: Load-Balancing Web Traffic over
Wide-Area Networks,” 2009.

[24] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks:
a survey,” Communications Magazine, IEEE, vol. 46, no. 9, pp. 59–67,

September 2008.

[25] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with Odin,” in

Proceedings of the first workshop on Hot topics in software defined

networks, ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp.
115–120.

[26] Optical transport working group otwg. In Open Networking

Foundation ONF, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 07

Special Issue - 2015

6

