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Abstract— Software systems play an important role in our 

daily lives, and hence making quality software systems is a 

critical issue. A lot of work is being done in this area. One of the 

most important among them is Software Defect Prediction 

(SDP). Defect Prediction is a binary Classification problem 

where a particular software module will be classified as 

defective if the error is greater than 0 and as Non-Defective if 

the error is equal to 0. A number of software metrics and 

statistical models have been developed for this purpose. 

Majority of the Defect Prediction models are developed using 

Machine Learning techniques. The performance of different 

models can be compared using the parameters like Accuracy, 

Hit Rate and False Alarm Rate. This paper covers a literature 

review on the experiments done on the area of software defect 

prediction in the past few years and finally a new system is 

proposed. 

Keywords—Defect prediction; Attribute selection; Instance 

filtering; decision tree; Software metrics 

I.  INTRODUCTION 

A software defect prediction framework refer to the 
system that can predict whether a given software module is 
defective   or not.  In general, a software defect prediction 
model is trained using software metrics and defect data that 
have been collected from previously developed software 
releases or similar projects. The model can then be applied to 
program modules with unknown defect data. The features or 
attributes of software defect prediction data sets influence the 
performance and effectiveness of the defect prediction model. 
Most of the experiments related with Defect Prediction are 
conducted in a Machine Learning tool or environment called 
WEKA and some are done in MATLAB. Since every 
organization will try to maintain their data secret, only few 
datasets are available for public which can be used for 
experiments. One of the most popular publicly available 
datasets includes MDP and PROMISE repository provided by 
NASA.  

A. Metrics 

Software metrics provide information for defect 
prediction. At present there are plentiful metrics for assessing 
software risks. And among them there are three categories that 

contain the most widely used metrics. They are McCabe, 
Halstead and lines of code (LOC) metrics. Metrics within 
these categories are listed below. Metrics that does not come 
under these three categories are given under others. 

TABLE 1.      SOFTWARE METRICS 

Metrics Type Definition 

 

 

McCabe 
Complexity metrics 

 

Cyclomatic complexity 

Design complexity 

Essential complexity 

 

 

 

LOC 

 

Loc_total 

LOC_blank 

LOC_code_and_comment 

LOC_comments 

LOC_executable 

Number_of_lines 

 

Operator 

 

Number_of_operands 

Number of _operators 

Number_unique operands 

Number_unique operators 

 

 

Halstead metrics 

 

Length 

Volume 

Level 

Difficulty 

Content 

Error Estimate 

Programming time 
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Effort 

 

 

Others 

Branch count 

Call_pairs 

Condition_count 

Decision_count 

Decision_density/edge_count 

Global_data_complexity 

Global_data_sensity 

Maintenance_severity 

 

B. Data Sets 

The software data sets provided by the NASA IV&V 
Metrics Data Program – Metric Data Repository (MDP)

 
are 

being used for majority of the experiments in software 
engineering related fields. The data repository contains 
software metrics as attributes in the data sets and also an 
indication of whether a particular set of data is defective or 
non-defective. All the data contained in the repository are 
collected and validated by the Metrics Data Program. 

Some of the product metrics that are included in the data 
set are, Halstead Content, Halstead Difficulty, Halstead Effort, 
Halstead Error Estimate, Halstead Length, Halstead Level, 
Halstead Programming Time and Halstead Volume, 
Cyclomatic Complexity and Design Complexity, Lines of 
Total Code, LOC Blank, Branch Count, LOC Comments, 
Number of Operands, Number of Unique Operands and 
Number of Unique Operators, and lastly Defect Metrics; Error 
Count, Error Density, Number of Defects (with severity and 
priority information).  

The details about some of the datasets used in the defect 
prediction techniques are given below: 

TABLE II.  DATA SETS OVERVIEW 

Name 
Written 
In #Modules % of N-Def % of Def 

CM1 C 498 90.16 9.83 

JM1 C++ 10885 80.65 19.35 

KC1 C++ 2109 84.54 15.45 

PC1 C 1109 93.05 6.94 

 

 

 

II. A REVIEW ON EXISTING DEFECT PREDICTION 

MODELS 

A. A  Software Defect Prediction System Using Two Level 

Data Preprocessing 

A two level data preprocessing has been introduced in the 
field of software defect prediction [1].Two level data pre- 
processing is done along with four different K-NN classifiers 
and the same has been compared with the random forest 
classifier. The method used for pre-processing includes 
attribute selection and instance filtering. Attribute selection is 
carried out in order choose an optimal subset of attributes. 
Filtered Subset evaluation is used for attribute selection and 
Greedy stepwise algorithm is used for searching.  

The use of different types of filtering before classification 
enhances the accuracy, AUC (Area under ROC curve) and PD 
(probability of detection) values. Accuracy is the ratio of 
correctly predicted and precision is the ratio of modules 
correctly predicted as defective to the number of entire 
module predicted as defective. The datasets used are CM1, 
JM1, KC1,PC1 and KC2 from NASA repository.  

Four data analysis technique namely IB1, IBK, KSTAR 
and LWL have been carried out and are compared with 
rf(random forest). In instance filtering, Re- sample is used. 
The results are found better when both filters i.e. Attribute 
Selection and Instance Filter (Resampling) are used together, 
than using these filters separately. The performance measures 
considered for comparison are accuracy, AUC (Area Under 
Curve ), and PD (Probability of detection) . Except LWL 
algorithm, all other algorithms discussed above achieved 
better performance with two level preprocessed data sets. A 
detailed performance comparison of all the above mentioned 
techniques with and without preprocessing has been given in 
the paper. The two filters were used independently and in 
combined form in experiments. The performance was better 
when the two filters were used independently. Accuracy was 
improved from 88.15% to 94.37% when single level 
preprocessing (Attribute Selection) was moved to two levels 
of preprocessing. 

B. A General Software Defect-Proneness Prediction 

Framework   

The defect prediction framework presented in this paper 
involves two stages, evaluation and prediction [2]. A learning 
scheme consists of: A data preprocessor, an attribute selector 
and a learning algorithm. Best learning scheme is selected in 
the evaluation stage and in the prediction stage the best 
learning scheme is used to build a predictor with all historical 
data. Here historical data is used to build the learner and 
entirely new data is given for testing. A wrapper method is 
used for preprocessing where preprocessing is not done 
independently over the dataset but is bind with the learning 
algorithm. MGF’s study [6] was taken as baseline experiment 
and all the comparisons were performed with it.  

12 learning schemes, two feature selectors, and three 
classification algorithms are used. For attribute selection, two 
different strategies based on greedy algorithms (Forward 
selection and Backward elimination) are used.  Three learning 
algorithms used are Naive Bayes (NB), J48 and OneR. 
Twelve learning schemes resulting from the combination of 
two data preprocessors, two attribute selectors, and three 
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learning algorithms yields a total of 12 different learning 
schemes which are : NB + Log + FS , J48 + Log + FS , OneR 
+ Log + FS , NB + Log + BE , J48+ Log + BE , OneR + Log 
+ BE , NB + None + FS , J48 + None + FS , OneR + None + 
FS , NB + None + BE , J48 + None + BE , OneR + None + 
BE. For each data set, one set of values were taken as log of 
their actual values and same learning algorithms are applied 
over them. 17 datasets are used in the experiments out of 
which 13 are taken from NASA MDP repository and 
remaining 4 from PROMISE repository. The measures used 
for evaluating performance include AUC ( Area Under ROC 
curve ), Balance and Diff. Diff was introduced to compare the 
performance of this framework with the one proposed by 
MGF [6].  

Analyzing the experiment results, the mean prediction 
performance of framework proposed in this paper is better 
than that of MGF [6] , indicating improved performance in 
both evaluation and prediction. This paper concludes that no 
learning scheme dominates, and different learning schemes for 
different data sets should be chosen. And consequently the 
evaluation and decision process is important. 

C. Effective Estimation Of Module’s Metrics In Software 

Defect Prediction 

The existing and already proposed methods for defect 
prediction use datasets available in NASA MDP repository. 
These datasets includes a combination of high level design 
and code metrics for different modules in the specified project. 
Finding out the pattern in the values of these metrics and 
dependency among them is not an easy task. For some 
matrices it’s easy but very complex for others. 

The defect prediction technique introduced in this paper 
allows the user to estimate the value of hard -to-obtain 
features (Type –1– Features) from its specified determinants 
(easy to obtain features or Type–2–Features) for any of 
modules [5]. Some probable hidden relations among different 
metrics are discovered and an estimation system is built to 
estimate some metrics’ values from a combination of others. 
So the user is required to provide not many metric values.  

The defect prediction system consists of three key 
components: Approximate Dependency Miner, The Estimator 
Part and Fuzzy Rule-Based Classifier. AD-Miner 
(Approximate Dependencies) is used in the dependency 
mining part of the system. A functional dependency (FD) is 
said to be valid in a given relation r over R if : 

t[X1]=u[X1] for all Xi in X which implies t[A]=u[A] where 
t[X] is the value assigned to the attribute x of tuple t. 

Any existing dependency between the values of Type-1-
Features and Type-2-Features are discovered in this part using 
AD miner algorithm.  

In the fuzzy estimation part, Wang and Mendel’s fuzzy 
rule learning method is used to develop a set of fuzzy 
modeling systems with similar structures. These fuzzy 
modeling systems are used to estimate the value of Type-2-
Feature using a combination of Type-1-Feature as its 
determinants once the user provide the Type 1 features as 
input to the classifier. The input is provided online.  

The MSE(Mean Square Error) value for each features are 
determined and are used for result evaluation. NASA data sets 

are used for the experiment. It’s observed that using this 
system all the hard-to-measure features are automatically 
estimated with high accuracy. Evaluation results of estimation 
system is shown in the below table. 

TABLE III.  RESULTS OF EFFECTIVE ESTIMATION   [5] 

Estimation(Type-1-Feature  --
>Type-2-Feature) 

MSE on 
Train data 

MSE on 
Test data 

Branch_Count → 
Cylomatic_Complexity 0.05 0.09 

Branch_Count,Num_Operand
s→ Design_Complexity 0.07 0.1 

Branch_Count,Loc_Blank→ 
Essential_Complexity 0.04 0.04 

Num_Unique_Operands,Loc_
Executable→ Halstead_content 0.81 0.93 

Branch_Count , Loc_Blank  
→ Halstead_difficulty 0.35 0.38 

Branch_Count , Loc_Total → 
Halstead_Effort 4.82 6.03 

Num_Operands , 
Loc_Executable → 
Halstead_Error-Est 0.009 0.01 

Num_Operands,Num_Operat
ors→ Halstead_Length 1.24 1.11 

Branch_Count , Loc_Blank  
→ Halstead_Level 0.02 0.08 

Num_Unique_Operands,Bran
ch_Count→ Halstead_ProgTime 3.5 5.13 

Num_Operands,Num_Operat
ors→ Halstead_Volume 2.8 3.43 

 

D. Software Defect Prediction: Heuristics For Weighted 

Naïve Bayes 

A Naïve Bayes classifier assumes that the presence or 
absence of a particular feature is not related to the presence or 
absence of any other feature, when the class variable is given. 
It stresses upon the equal importance and independence of 
every features [8]. But this may not work well in all cases. 
And an extension of Naïve Bayes predictor which is built on 
weighted features called Weighted Naïve Bayes is introduced 
in this paper. The main aim is to use the software metrics 
depending on their importance in defect prediction. Weight 
Assignment is done in three ways : GainRatio Based WA, 
InfoGain Based WA and PCA Based WA. GainRatio and 
InfoGain are mainly used in decision tree construction. Both 
the above ranking estimates are converted into feature 
weights. Experiments were performed on 8 data sets available 
in NASA MDP repository and were carried out in MATLAB.  

Performance measures considered are probability of 
detection (pd), probability of false alarm (pf) and Balance. An 
ideal case is to maximize pd and minimize pf. The 
performance measure balance is used to choose the optimal 
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(pd, pf) pair. The performance of Standard Naïve Bayes was 
compared with the three weighted Naïve Bayes. The 
performance of Standard Naïve Bayes and PCA based WA 
were outperformed by other methods. GainRatio Based WA 
and InfoGain Based WA approach showed better 
performance. That is non-linear methods for feature weighting 
give very good performance improvement over Naïve Bayes 
compared to linear methods. 

E. Emperical Assessment Of Machine Learning Based 

Software Defect Prediction Techniques 

A detailed analysis of some of the existing machine 
learning techniques for Defect Prediction has been carried out 
[4]. Four different data sets namely CM1, JM1 , KC1 and PC1 
from NASA MDP repository are used for the same. 70% of 
the data was used as training data and 30% as test data.  

Experiments were conducted in WEKA machine learning 
tool kit and SAS tool. The following learning methods were 
considered for experiment : 

1. Decision Trees – J48 Trees 

2. Naïve Bayes Classifier 

3. Logistic Regression – LoR ,  

4. Support Vector Logistic Regression - SVLR  

5. Neural Network for Discrete goal field - NND 

6. I-Rule (IR) 

7. Instance Based Learning for 10 nearest 
neighbors (IBL) 

MAE (Mean Absolute Error) was considered for 
performance assessment. Based on analysis , NB , IBL  and 
NND performed better than other prediction models discussed 
above. Moreover the paper conclude that the selection of best 
learning technique depends on the data in sight at that point in 
time. 

F. How Many Software Metrics Should Be Selected For 

Defect Prediction 

Software metrics are collected during various stages of 
development for various purposes. Performance of a Software 
Defect Prediction Model can be improved significantly if we 
choose the software metrics wisely. The proposed technique 
centers on threshold based feature selection technique to 
remove irrelevant and redundant features [7]. The process of 
removing the redundant and irrelevant features and choosing 
the highly informative features is called feature selection. A 
feature selection technique can either be associated with a 
learner or can be applied independently.  

In this proposed feature selection technique, first of all 
each attributes values are normalized between 0 and 1. And 
these values are considered as posterior probabilities. Each 
non-class attribute is then paired individually to the class 
attribute. A Threshold Based Feature Selection technique 
(TBFS) is conducted. Performance Metrics considered are 
Mutual Information (MI), Kolomogorov-Smirnov (KS) , 
Deviance (DV) , Area Under ROC curve and Area Under 
Precision Recall Curve(PRC). Mutual Information measures 
the mutual dependence of two random variables. 
Kolomogorov-Smirnov measure is used to measure maximum 

difference between the curves generated by the true positive 
and false positive rates as the threshold changes between 0 
and 1. Deviance represents sum of squared errors from mean 
class.  

The three classifiers used in the proposed framework are 
Multilayer Perceptron, k-Nearest Neighbors and Logistic 
Regression.  Data sets for experiment were taken from eclipse 
project available in PROMISE data repository. All the 
experiments were conducted in WEKA tool. Classification 
models built with smaller feature subsets showed better 
performance than models with complete feature set.  

G. Data Mining Static Code Attributes To Learn Defect 

Predictors 

Defect predictors can be built with all available attributes 
followed by sub setting to find the most appropriate particular 
subset for a particular domain [6]. 

 8 Data sets from NASA MDP repository were chosen for 
experiments in WEKA toolkit. The datasets consisted of entry 
for each module which describe the attributes for that module 
and number of defects in that module. During preprocessing, 
depending on the number of defects, that column was 
converted to Boolean attribute which describe whether its 
defective or not. Also all the data was passed through one of 
two filters: None (no change) or logarithmic filtering ( Log of 
the number were taken). No other preprocessing is performed. 

Three learning algorithms OneR, J48 and Naïve Bayes 
were applied on the preprocessed dataset. OneR stands for 
One Rule and it builds prediction rule based on simple 
threshold values of a single attribute, any one of software 
metrics in this case. In simple words OneR would build a 
defect predictor in the form of a decision tree of maximum 
length 1. J48 learner is JAVA implementation of decision tree 
algorithm. The algorithm recursively splits a data set 
according to tests on attribute values in order to separate the 
possible predictions and builds predictor in the form of a 
decision tree of any depth. The third classifier, Naïve Bayes is 
based on Bayes’ Theorem. For building the defect predictor 
the posterior probability of the class attribute will be 
calculated and each module would be assigned to the class 
with highest probability.  

The posterior probability is calculated using the formula:  

       ------> (1) 

Where Ei refers to fragments of evidence and P(H) refer to 
prior probability for a class. 

The performance of the learners was assessed using ROC 
(Receiver Operator) curves, Probability of Detection (Pd) and 
Probability of False alarm (Pf) and Balance. Probability of 
Detection (Pd) and Probability of False alarm (Pf) are 
respectively the Y–axis and X- axis of ROC curve. A good 
predictor should have Pd very high and Pf very low. Two 
performance factors were considered for final performance 
assessment of learners and are : Balance(bal) and Pd. Balance 
or bal is calculate using the formula :  
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Balance = 2)1()0(1 22 pdpf   

                                                                             ------>   (2) 

The table given below gives a performance comparison of 
all the three learning algorithms. 

TABLE IV.PERFORMANCE  OF DIFFERENT ALGORITHMS  [6] 

Preprocessing Method  Median 

Pd  

LogNums Naïve Bayes 52.4 

None Naïve Bayes 0.0 

None J48 0.0 

LogNums J48 0.0 

None OneR -16.7 

LogNums OneR -16.7 

NotPf=100 –Pf 

LogNums J48 0.0 

None J48 0.0 

LogNums OneR .3 

None OneR .3 

None Naïve Bayes -2.3 

LogNums Naïve Bayes -26.0 

Balance 

LogNums Naïve Bayes 22.1 

None Naïve Bayes 3.7 

None J48 0.0 

LogNums J48 0.0 

LogNums OneR -11.8 

None OneR -11.8 

 

All the 38 attributes were used in the initial stage to build 
the defect predictor using three learning algorithms. After that 
subsetting was done in order to find out the most suitable 
particular subset for a particular domain. Naïve Bayes with 
log-transform performed best when all the 38 attributes in the 
dataset were considered. J48 Decision Tree algorithm 
performed better than OneR learner. Out of the six methods 
described above only Naïve Bayes with LogNums had a 
median performance both large and positive. Finally MGF 
concludes that a defect predictor cannot be assessed using a 
single data set and only one learner. 

III. CONCLUSION AND FUTURE WORK 

Defect Prediction is a two class classification problem 
which would classify a software module as Defective (If error 
count > 0) and Non-Defective (If error count = 0). The two pre 
requisites are source code and software metrics (Static code 
Attributes) for the module. 

 A defect prediction system  based on decision tree 
algorithm can be implemented as a future work which is 
expected to perform better than  all the techniques described 
above. The system will consists of two components: A 
preprocessor and a Classifier.  

Four data sets from NASA MDP repository are to be 
collected for the experiment and they are CM1, PC1, JM1 and 
KC1. The data set contain continuous valued attributes. The 
preprocessor is responsible for preprocessing of data before 
loading them into the classifier. The redundant and missing 
data are already preprocessed in the MDP repository. The 
preprocessor in the proposed system consist of two steps : 
Attribute Selection and Re-Sampling. Attribute selection is 
carried out in order to reduce the size of attribute space by 
removing irrelevant and less informative attributes. The 
attribute selection in the proposed system is done based on 
correlation among attributes. Pearson’s correlation coefficient 
is chosen for the same as it works well on continuous valued 
attribute values. Pearson’s coefficient can be calculated using 
the formula: 

 

 

                                                                            ------>    (3) 

Re-Sampling is done in order to reduce the class 
imbalance problem. Out of two approaches oversampling and 
under sampling, under sampling the minority data has been 
chosen for Re-sampling in the proposed framework. 

Once the data is preprocessed, it is to be fed into the 
decision tree learner. Here 70% of the historical data used for 
training and the rest 30% for testing or feeding into the 
classifier. For building the decision tree, first step is to rank 
the attributes based on their priority or frequency of their 
values. The rank of attributes can be calculated using their 
entropy InfoGain (Information Gain) values. Information Gain 
of an attribute can be calculated using the equation: 

)(
||

||
)(),(

)(

SvEntropy
S

Sv
SEntropyASGain

Avaluev




 

                                                                        ------>(4) 

Decision tree is a classifier in the form of a tree structure. 
Decision tree classify instances by starting at the root of the 
tree and moving through it until a leaf node. The attribute 
having the highest information gain would be placed at the 
root of the decision tree. The construction of tree can be 
stopped when all the selected attributes has already been 
included along the path. 

The performance measures to be considered are Accuracy, 
Pd (Hit Rate), Pf (False Alarm rate) and RMSE (Root Mean 
Square Error). For an ideal case Pd should be high and Pf 
should be low. These measurements are given by: 

 

                                                                      ------> (5) 
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                                                  ------>                     (6) 

Where TP refers to True Positive and  

TN refers to True Negative. 

 Once the proposed system is built on standard data 
sets, its performance can be compared with already 
established techniques for defect prediction. 
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