
Software Defect Prediction System –Decision Tree

Algorithm With Two Level Data Preprocessing

Reena P
Department of Computer Science and Engineering

Sree Chitra Thirunal College of Engineering

Thiruvananthapuram, India

Binu Rajan

Department of Computer Science and Engineering

Sree Chitra Thirunal College of Engineering

Thiruvananthapuram, India

Abstract— Software systems play an important role in our

daily lives, and hence making quality software systems is a

critical issue. A lot of work is being done in this area. One of the

most important among them is Software Defect Prediction

(SDP). Defect Prediction is a binary Classification problem

where a particular software module will be classified as

defective if the error is greater than 0 and as Non-Defective if

the error is equal to 0. A number of software metrics and

statistical models have been developed for this purpose.

Majority of the Defect Prediction models are developed using

Machine Learning techniques. The performance of different

models can be compared using the parameters like Accuracy,

Hit Rate and False Alarm Rate. This paper covers a literature

review on the experiments done on the area of software defect

prediction in the past few years and finally a new system is

proposed.

Keywords—Defect prediction; Attribute selection; Instance

filtering; decision tree; Software metrics

I. INTRODUCTION

A software defect prediction framework refer to the
system that can predict whether a given software module is
defective or not. In general, a software defect prediction
model is trained using software metrics and defect data that
have been collected from previously developed software
releases or similar projects. The model can then be applied to
program modules with unknown defect data. The features or
attributes of software defect prediction data sets influence the
performance and effectiveness of the defect prediction model.
Most of the experiments related with Defect Prediction are
conducted in a Machine Learning tool or environment called
WEKA and some are done in MATLAB. Since every
organization will try to maintain their data secret, only few
datasets are available for public which can be used for
experiments. One of the most popular publicly available
datasets includes MDP and PROMISE repository provided by
NASA.

A. Metrics

Software metrics provide information for defect
prediction. At present there are plentiful metrics for assessing
software risks. And among them there are three categories that

contain the most widely used metrics. They are McCabe,
Halstead and lines of code (LOC) metrics. Metrics within
these categories are listed below. Metrics that does not come
under these three categories are given under others.

TABLE 1. SOFTWARE METRICS

Metrics Type Definition

McCabe
Complexity metrics

Cyclomatic complexity

Design complexity

Essential complexity

LOC

Loc_total

LOC_blank

LOC_code_and_comment

LOC_comments

LOC_executable

Number_of_lines

Operator

Number_of_operands

Number of _operators

Number_unique operands

Number_unique operators

Halstead metrics

Length

Volume

Level

Difficulty

Content

Error Estimate

Programming time

2294

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031988

Effort

Others

Branch count

Call_pairs

Condition_count

Decision_count

Decision_density/edge_count

Global_data_complexity

Global_data_sensity

Maintenance_severity

B. Data Sets

The software data sets provided by the NASA IV&V
Metrics Data Program – Metric Data Repository (MDP)

are

being used for majority of the experiments in software
engineering related fields. The data repository contains
software metrics as attributes in the data sets and also an
indication of whether a particular set of data is defective or
non-defective. All the data contained in the repository are
collected and validated by the Metrics Data Program.

Some of the product metrics that are included in the data
set are, Halstead Content, Halstead Difficulty, Halstead Effort,
Halstead Error Estimate, Halstead Length, Halstead Level,
Halstead Programming Time and Halstead Volume,
Cyclomatic Complexity and Design Complexity, Lines of
Total Code, LOC Blank, Branch Count, LOC Comments,
Number of Operands, Number of Unique Operands and
Number of Unique Operators, and lastly Defect Metrics; Error
Count, Error Density, Number of Defects (with severity and
priority information).

The details about some of the datasets used in the defect
prediction techniques are given below:

TABLE II. DATA SETS OVERVIEW

Name
Written
In #Modules % of N-Def % of Def

CM1 C 498 90.16 9.83

JM1 C++ 10885 80.65 19.35

KC1 C++ 2109 84.54 15.45

PC1 C 1109 93.05 6.94

II. A REVIEW ON EXISTING DEFECT PREDICTION

MODELS

A. A Software Defect Prediction System Using Two Level

Data Preprocessing

A two level data preprocessing has been introduced in the
field of software defect prediction [1].Two level data pre-
processing is done along with four different K-NN classifiers
and the same has been compared with the random forest
classifier. The method used for pre-processing includes
attribute selection and instance filtering. Attribute selection is
carried out in order choose an optimal subset of attributes.
Filtered Subset evaluation is used for attribute selection and
Greedy stepwise algorithm is used for searching.

The use of different types of filtering before classification
enhances the accuracy, AUC (Area under ROC curve) and PD
(probability of detection) values. Accuracy is the ratio of
correctly predicted and precision is the ratio of modules
correctly predicted as defective to the number of entire
module predicted as defective. The datasets used are CM1,
JM1, KC1,PC1 and KC2 from NASA repository.

Four data analysis technique namely IB1, IBK, KSTAR
and LWL have been carried out and are compared with
rf(random forest). In instance filtering, Re- sample is used.
The results are found better when both filters i.e. Attribute
Selection and Instance Filter (Resampling) are used together,
than using these filters separately. The performance measures
considered for comparison are accuracy, AUC (Area Under
Curve), and PD (Probability of detection) . Except LWL
algorithm, all other algorithms discussed above achieved
better performance with two level preprocessed data sets. A
detailed performance comparison of all the above mentioned
techniques with and without preprocessing has been given in
the paper. The two filters were used independently and in
combined form in experiments. The performance was better
when the two filters were used independently. Accuracy was
improved from 88.15% to 94.37% when single level
preprocessing (Attribute Selection) was moved to two levels
of preprocessing.

B. A General Software Defect-Proneness Prediction

Framework

The defect prediction framework presented in this paper
involves two stages, evaluation and prediction [2]. A learning
scheme consists of: A data preprocessor, an attribute selector
and a learning algorithm. Best learning scheme is selected in
the evaluation stage and in the prediction stage the best
learning scheme is used to build a predictor with all historical
data. Here historical data is used to build the learner and
entirely new data is given for testing. A wrapper method is
used for preprocessing where preprocessing is not done
independently over the dataset but is bind with the learning
algorithm. MGF’s study [6] was taken as baseline experiment
and all the comparisons were performed with it.

12 learning schemes, two feature selectors, and three
classification algorithms are used. For attribute selection, two
different strategies based on greedy algorithms (Forward
selection and Backward elimination) are used. Three learning
algorithms used are Naive Bayes (NB), J48 and OneR.
Twelve learning schemes resulting from the combination of
two data preprocessors, two attribute selectors, and three

2295

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031988

learning algorithms yields a total of 12 different learning
schemes which are : NB + Log + FS , J48 + Log + FS , OneR
+ Log + FS , NB + Log + BE , J48+ Log + BE , OneR + Log
+ BE , NB + None + FS , J48 + None + FS , OneR + None +
FS , NB + None + BE , J48 + None + BE , OneR + None +
BE. For each data set, one set of values were taken as log of
their actual values and same learning algorithms are applied
over them. 17 datasets are used in the experiments out of
which 13 are taken from NASA MDP repository and
remaining 4 from PROMISE repository. The measures used
for evaluating performance include AUC (Area Under ROC
curve), Balance and Diff. Diff was introduced to compare the
performance of this framework with the one proposed by
MGF [6].

Analyzing the experiment results, the mean prediction
performance of framework proposed in this paper is better
than that of MGF [6] , indicating improved performance in
both evaluation and prediction. This paper concludes that no
learning scheme dominates, and different learning schemes for
different data sets should be chosen. And consequently the
evaluation and decision process is important.

C. Effective Estimation Of Module’s Metrics In Software

Defect Prediction

The existing and already proposed methods for defect
prediction use datasets available in NASA MDP repository.
These datasets includes a combination of high level design
and code metrics for different modules in the specified project.
Finding out the pattern in the values of these metrics and
dependency among them is not an easy task. For some
matrices it’s easy but very complex for others.

The defect prediction technique introduced in this paper
allows the user to estimate the value of hard -to-obtain
features (Type –1– Features) from its specified determinants
(easy to obtain features or Type–2–Features) for any of
modules [5]. Some probable hidden relations among different
metrics are discovered and an estimation system is built to
estimate some metrics’ values from a combination of others.
So the user is required to provide not many metric values.

The defect prediction system consists of three key
components: Approximate Dependency Miner, The Estimator
Part and Fuzzy Rule-Based Classifier. AD-Miner
(Approximate Dependencies) is used in the dependency
mining part of the system. A functional dependency (FD) is
said to be valid in a given relation r over R if :

t[X1]=u[X1] for all Xi in X which implies t[A]=u[A] where
t[X] is the value assigned to the attribute x of tuple t.

Any existing dependency between the values of Type-1-
Features and Type-2-Features are discovered in this part using
AD miner algorithm.

In the fuzzy estimation part, Wang and Mendel’s fuzzy
rule learning method is used to develop a set of fuzzy
modeling systems with similar structures. These fuzzy
modeling systems are used to estimate the value of Type-2-
Feature using a combination of Type-1-Feature as its
determinants once the user provide the Type 1 features as
input to the classifier. The input is provided online.

The MSE(Mean Square Error) value for each features are
determined and are used for result evaluation. NASA data sets

are used for the experiment. It’s observed that using this
system all the hard-to-measure features are automatically
estimated with high accuracy. Evaluation results of estimation
system is shown in the below table.

TABLE III. RESULTS OF EFFECTIVE ESTIMATION [5]

Estimation(Type-1-Feature --
>Type-2-Feature)

MSE on
Train data

MSE on
Test data

Branch_Count →
Cylomatic_Complexity 0.05 0.09

Branch_Count,Num_Operand
s→ Design_Complexity 0.07 0.1

Branch_Count,Loc_Blank→
Essential_Complexity 0.04 0.04

Num_Unique_Operands,Loc_
Executable→ Halstead_content 0.81 0.93

Branch_Count , Loc_Blank
→ Halstead_difficulty 0.35 0.38

Branch_Count , Loc_Total →
Halstead_Effort 4.82 6.03

Num_Operands ,
Loc_Executable →
Halstead_Error-Est 0.009 0.01

Num_Operands,Num_Operat
ors→ Halstead_Length 1.24 1.11

Branch_Count , Loc_Blank
→ Halstead_Level 0.02 0.08

Num_Unique_Operands,Bran
ch_Count→ Halstead_ProgTime 3.5 5.13

Num_Operands,Num_Operat
ors→ Halstead_Volume 2.8 3.43

D. Software Defect Prediction: Heuristics For Weighted

Naïve Bayes

A Naïve Bayes classifier assumes that the presence or
absence of a particular feature is not related to the presence or
absence of any other feature, when the class variable is given.
It stresses upon the equal importance and independence of
every features [8]. But this may not work well in all cases.
And an extension of Naïve Bayes predictor which is built on
weighted features called Weighted Naïve Bayes is introduced
in this paper. The main aim is to use the software metrics
depending on their importance in defect prediction. Weight
Assignment is done in three ways : GainRatio Based WA,
InfoGain Based WA and PCA Based WA. GainRatio and
InfoGain are mainly used in decision tree construction. Both
the above ranking estimates are converted into feature
weights. Experiments were performed on 8 data sets available
in NASA MDP repository and were carried out in MATLAB.

Performance measures considered are probability of
detection (pd), probability of false alarm (pf) and Balance. An
ideal case is to maximize pd and minimize pf. The
performance measure balance is used to choose the optimal

2296

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031988

(pd, pf) pair. The performance of Standard Naïve Bayes was
compared with the three weighted Naïve Bayes. The
performance of Standard Naïve Bayes and PCA based WA
were outperformed by other methods. GainRatio Based WA
and InfoGain Based WA approach showed better
performance. That is non-linear methods for feature weighting
give very good performance improvement over Naïve Bayes
compared to linear methods.

E. Emperical Assessment Of Machine Learning Based

Software Defect Prediction Techniques

A detailed analysis of some of the existing machine
learning techniques for Defect Prediction has been carried out
[4]. Four different data sets namely CM1, JM1 , KC1 and PC1
from NASA MDP repository are used for the same. 70% of
the data was used as training data and 30% as test data.

Experiments were conducted in WEKA machine learning
tool kit and SAS tool. The following learning methods were
considered for experiment :

1. Decision Trees – J48 Trees

2. Naïve Bayes Classifier

3. Logistic Regression – LoR ,

4. Support Vector Logistic Regression - SVLR

5. Neural Network for Discrete goal field - NND

6. I-Rule (IR)

7. Instance Based Learning for 10 nearest
neighbors (IBL)

MAE (Mean Absolute Error) was considered for
performance assessment. Based on analysis , NB , IBL and
NND performed better than other prediction models discussed
above. Moreover the paper conclude that the selection of best
learning technique depends on the data in sight at that point in
time.

F. How Many Software Metrics Should Be Selected For

Defect Prediction

Software metrics are collected during various stages of
development for various purposes. Performance of a Software
Defect Prediction Model can be improved significantly if we
choose the software metrics wisely. The proposed technique
centers on threshold based feature selection technique to
remove irrelevant and redundant features [7]. The process of
removing the redundant and irrelevant features and choosing
the highly informative features is called feature selection. A
feature selection technique can either be associated with a
learner or can be applied independently.

In this proposed feature selection technique, first of all
each attributes values are normalized between 0 and 1. And
these values are considered as posterior probabilities. Each
non-class attribute is then paired individually to the class
attribute. A Threshold Based Feature Selection technique
(TBFS) is conducted. Performance Metrics considered are
Mutual Information (MI), Kolomogorov-Smirnov (KS) ,
Deviance (DV) , Area Under ROC curve and Area Under
Precision Recall Curve(PRC). Mutual Information measures
the mutual dependence of two random variables.
Kolomogorov-Smirnov measure is used to measure maximum

difference between the curves generated by the true positive
and false positive rates as the threshold changes between 0
and 1. Deviance represents sum of squared errors from mean
class.

The three classifiers used in the proposed framework are
Multilayer Perceptron, k-Nearest Neighbors and Logistic
Regression. Data sets for experiment were taken from eclipse
project available in PROMISE data repository. All the
experiments were conducted in WEKA tool. Classification
models built with smaller feature subsets showed better
performance than models with complete feature set.

G. Data Mining Static Code Attributes To Learn Defect

Predictors

Defect predictors can be built with all available attributes
followed by sub setting to find the most appropriate particular
subset for a particular domain [6].

 8 Data sets from NASA MDP repository were chosen for
experiments in WEKA toolkit. The datasets consisted of entry
for each module which describe the attributes for that module
and number of defects in that module. During preprocessing,
depending on the number of defects, that column was
converted to Boolean attribute which describe whether its
defective or not. Also all the data was passed through one of
two filters: None (no change) or logarithmic filtering (Log of
the number were taken). No other preprocessing is performed.

Three learning algorithms OneR, J48 and Naïve Bayes
were applied on the preprocessed dataset. OneR stands for
One Rule and it builds prediction rule based on simple
threshold values of a single attribute, any one of software
metrics in this case. In simple words OneR would build a
defect predictor in the form of a decision tree of maximum
length 1. J48 learner is JAVA implementation of decision tree
algorithm. The algorithm recursively splits a data set
according to tests on attribute values in order to separate the
possible predictions and builds predictor in the form of a
decision tree of any depth. The third classifier, Naïve Bayes is
based on Bayes’ Theorem. For building the defect predictor
the posterior probability of the class attribute will be
calculated and each module would be assigned to the class
with highest probability.

The posterior probability is calculated using the formula:

 ------> (1)

Where Ei refers to fragments of evidence and P(H) refer to
prior probability for a class.

The performance of the learners was assessed using ROC
(Receiver Operator) curves, Probability of Detection (Pd) and
Probability of False alarm (Pf) and Balance. Probability of
Detection (Pd) and Probability of False alarm (Pf) are
respectively the Y–axis and X- axis of ROC curve. A good
predictor should have Pd very high and Pf very low. Two
performance factors were considered for final performance
assessment of learners and are : Balance(bal) and Pd. Balance
or bal is calculate using the formula :

2297

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031988

Balance = 2)1()0(1 22 pdpf

 ------> (2)

The table given below gives a performance comparison of
all the three learning algorithms.

TABLE IV.PERFORMANCE OF DIFFERENT ALGORITHMS [6]

Preprocessing Method Median

Pd

LogNums Naïve Bayes 52.4

None Naïve Bayes 0.0

None J48 0.0

LogNums J48 0.0

None OneR -16.7

LogNums OneR -16.7

NotPf=100 –Pf

LogNums J48 0.0

None J48 0.0

LogNums OneR .3

None OneR .3

None Naïve Bayes -2.3

LogNums Naïve Bayes -26.0

Balance

LogNums Naïve Bayes 22.1

None Naïve Bayes 3.7

None J48 0.0

LogNums J48 0.0

LogNums OneR -11.8

None OneR -11.8

All the 38 attributes were used in the initial stage to build
the defect predictor using three learning algorithms. After that
subsetting was done in order to find out the most suitable
particular subset for a particular domain. Naïve Bayes with
log-transform performed best when all the 38 attributes in the
dataset were considered. J48 Decision Tree algorithm
performed better than OneR learner. Out of the six methods
described above only Naïve Bayes with LogNums had a
median performance both large and positive. Finally MGF
concludes that a defect predictor cannot be assessed using a
single data set and only one learner.

III. CONCLUSION AND FUTURE WORK

Defect Prediction is a two class classification problem
which would classify a software module as Defective (If error
count > 0) and Non-Defective (If error count = 0). The two pre
requisites are source code and software metrics (Static code
Attributes) for the module.

 A defect prediction system based on decision tree
algorithm can be implemented as a future work which is
expected to perform better than all the techniques described
above. The system will consists of two components: A
preprocessor and a Classifier.

Four data sets from NASA MDP repository are to be
collected for the experiment and they are CM1, PC1, JM1 and
KC1. The data set contain continuous valued attributes. The
preprocessor is responsible for preprocessing of data before
loading them into the classifier. The redundant and missing
data are already preprocessed in the MDP repository. The
preprocessor in the proposed system consist of two steps :
Attribute Selection and Re-Sampling. Attribute selection is
carried out in order to reduce the size of attribute space by
removing irrelevant and less informative attributes. The
attribute selection in the proposed system is done based on
correlation among attributes. Pearson’s correlation coefficient
is chosen for the same as it works well on continuous valued
attribute values. Pearson’s coefficient can be calculated using
the formula:

 ------> (3)

Re-Sampling is done in order to reduce the class
imbalance problem. Out of two approaches oversampling and
under sampling, under sampling the minority data has been
chosen for Re-sampling in the proposed framework.

Once the data is preprocessed, it is to be fed into the
decision tree learner. Here 70% of the historical data used for
training and the rest 30% for testing or feeding into the
classifier. For building the decision tree, first step is to rank
the attributes based on their priority or frequency of their
values. The rank of attributes can be calculated using their
entropy InfoGain (Information Gain) values. Information Gain
of an attribute can be calculated using the equation:

)(
||

||
)(),(

)(

SvEntropy
S

Sv
SEntropyASGain

Avaluev

 ------>(4)

Decision tree is a classifier in the form of a tree structure.
Decision tree classify instances by starting at the root of the
tree and moving through it until a leaf node. The attribute
having the highest information gain would be placed at the
root of the decision tree. The construction of tree can be
stopped when all the selected attributes has already been
included along the path.

The performance measures to be considered are Accuracy,
Pd (Hit Rate), Pf (False Alarm rate) and RMSE (Root Mean
Square Error). For an ideal case Pd should be high and Pf
should be low. These measurements are given by:

 ------> (5)

2298

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031988

 ------> (6)

Where TP refers to True Positive and

TN refers to True Negative.

 Once the proposed system is built on standard data
sets, its performance can be compared with already
established techniques for defect prediction.

REFERENCES

[1] Rashmi Verma, Anil Gupta, “Software defect prediction using two
level data pre-processing”

[2] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu “A
General Software Defect-Proneness Prediction Framework” , IEEE
Transactions On Software Engineering, Vol. 37, No. 3, May/June 2011.

[3] Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang and Naeem
Seliya “Choosing software metrics for defect prediction: an
investigation on feature selection techniques”

[4] Venkata U.B. Challagulla, Farokh B. Bastani, I-Ling Yen “Empirical
Assessment of Machine Learning based Software Defect Prediction
Techniques” , 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, 2005

[5] S.M. Fakhrahmad, A.Sami , “Effective Estimation of Modules’
Metrics in Software Defect Prediction“ , WCE 2009, July 1 - 3, 2009

[6] Tim Menzies, Jeremy Greenwald, and Art Frank “Data Mining Static
Code Attributes to Learn Defect Predictors” , IEEE Transactions On
Software Engineering, Vol. 33, No. 1, January 2007.

[7] How many software metrics should be selected for defect prediction -
huanjing wang ,taghi m. khoshgoftaar and naeem seliya. Proceedings
Of The Twenty Fourth International Florida Artificial Intelligence
Research Society Conference.

[8] Software Defect Prediction: Heuristics for weighted Naïve Bayes –
burak turhan , ayse bener. PROCEEDINGS OF WORLD CONGRESS
ON ENGINEERING 2009 VOL 1

2299

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031988

