

Sockets and Socket Address Structure

Mohit Mittal
1

1
Assistant Professor,

Anand College of Engineering & Management, Kapurthala.

Tarun Bhalla
2

2
Assistant Professor,

Anand

College of Engineering & Management, Kapurthala.

Abstract:-In this paper specifies the concept of

socket and socket address structures. In this, we have

discussed how communication has been performed

between two hosts and discussed the role of the sockets.

Sockets address of IPv4 and IPv6 is defined. The socket

function call is also included which consists of various

main functions like socket, connect, listen, bind, accept

and close. It consists of two types of servers which uses

socket function.

Keywords:Introduction, socket and its address,

socket function calls, TCP socket call, and servers.

I. Introduction: Java's socket model is derived from

BSD (UNIX) sockets, introduced in the early 1980s for

inter-process communication using IP, the Internet

Protocol. The Internet Protocol breaks all

communications into packets, finite-sized chunks of

data which are separately and individually routed from

source to destination. IP allows routers, bridges, etc. to

drop packets--there is no delivery guarantee. Packet size

is limited by the IP protocol to 65535 bytes. Of this, a

minimum of 20 bytes is needed for the IP packet

header, so there is a maximum of 65515 bytes available
for user data in each packet.

 Sockets are a means of using IP to communicate

between machines, so sockets are one major feature that

allows Java to interoperate with legacy systems by

simply talking to existing servers using their pre-

defined protocol. [1]

2. API: The application interface is the interface

available to the programmer for using the

communication protocols. The API is depends to the OS

the programming language.

We discuss the socket API. With sockets, the network

connection can be used as a file. Network I/O is,

however, more complicated than file I/O because:

 Asymmetric. The connection requires the

program to know which process it is, the client
or the server.

 A network connection that is connection-

oriented is somewhat like opening a file. A

connectionless protocol doesn’t have anything

like an open.

 A network application needs additional

information to maintain protections, for

example, of the other process.

 There are more parameters required to specify

network connection than the file Input/Output.

The parameters have different formats for

different protocols.

 The network interface must support different

protocols. These protocols may use different-
size variable for addresses and other fields. [3]

 “Figure 1: Socket Interface.” [2]

3. Socket Address Structure:A Character

Recognition deal with the problem of reading offline

handwritten character i.e. at some point in time (in

mins, sec, hrs.) after it has been written. However

recognition of unconstrained handwritten text can be

very difficult because characters cannot be reliably

isolated especially when the text is cursive handwriting.

[2]

/* Generic Socket Address Structure, length=16*/

<sys/socket.h>

Structsocketaddr
 {

unit8_t sa_len;

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

sa_family_tsa_family; /* address family:
AF_XXX value */

char sa_data[14] /*up to 14 types of protocol-

specific address */
}; [3]

/* Ipv4 Socket Address Structure, length=16*/
<netinet/in.h>

structin_addr

{
in_addr_ts_addr; /* 32-bit IPv4 address,

network byte ordered */

};

structsockaddr_in

{

unit8_t sin_len; /* length of structure
(16 byte) */

sa_family_tsin_family; /*AF_INET*/

in_port_tsin_port; /* 16-bit TCP or UDP

port number, network byte ordered */

structin_addrsin_addr; /*32-bit Ipv4 address,

network byte ordered */
charsin_zero[8]; /* unused – initialize to all

zeroes */

};

/* Ipv6 Socket Address Structure, length=24*/

<netinet/in.h>

struct in6_addr {
unit8_t s6_addr[16]; /* 128-bit Ipv6

address, network byte ordered */

};

#define SIN6_LEN /* required for compile-

time tests */

struct sockaddr_in6

{

unit8_t sin6_len; /* length of this structure
(24byte) */

sa_family_t sin6_family; /*AF_INET6*/

in_port_t sin6_port; /* 16-bit TCP or
UDP port number, network byte ordered */

}; [3]

4. Procedure of Socket Programming
In order to communicate between two processes, the

two processes must provide the formation used by

ICP/IP (or UDP/IP) to exchange data. This information

is the 5-tupe: {protocol, local-addr, local-process,
foreign-addr and foreign-process}.

Several network systems calls are used to specify this

information and use the socket. [3]

“Figure 2: Difference Between TCP and UDP” [3]

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

5. SOCKET FUNCTION CALLING

#include <sys/types.h>

#include <sys/socket.h>

Socket Function

int socket (int family, int type, int protocol);

Family: specifies the protocol family {AF_INET for

TCP/IP}

Type: indicates communications semantics

SOCK_STREAM stream socket TCP

SOCK_DGRAM datagram socket UDP

SOCK_RAW raw socket

Protocol: set to 0 except for raw sockets

Returns on success: socket descriptor {a small

nonnegative integer}

 On error: -1

if ((sd= socket (AF_INET, SOCK_STREAM, 0)) < 0)

err_sys(“socket call error”);

Connect Function

intconnect(intsockfd,conststructsockaddr*servaddr,

socklen_taddrlen);

sockfd: a socket descriptor returned by the socket

function.

*servaddr: a pointer to a socket address structure

addrlen: the size of the socket address structure

The socket address structure must contain the IP

address and the port number for the connection wanted.

In TCP connect initiates a three-way handshake.
Connect returns only when the connection is

established or when an error occurs.

Returns on success: 0

on error: -1

Example:

if (connect (sd, (structsockaddr*) &servaddr,
sizeof(servaddr)) != 0)

err_sys(“connectcall error”);

6. TCP SOCKET CALLS:

Bind Function

intbind (intsockfd, conststructsockaddr* myaddr,

socklen_taddrlen);

Bind assigns a local protocol address to a socket.

Protocol address: a 32 bit IPv4 address and a 16 bit
TCP or UDP port number.

sockfd: a socket descriptor returned by the socket
function.

*myaddr: a pointer to a protocol-specific address.[2]

addrlen: the size of the socket address structure.

Servers bind their “well-known port” when they start.

Returns on success: 0

 On error : -1

Example:

If (bind (sd, (structsockaddr *) &servaddr ,sizeof

(servaddr)) != 0)
errsys(“bind call error”);

 “Figure 3: TCP socket calls” [2]

Listen Function

intlisten (intsockfd, intbacklog);[2]

Listen is called only by a TCP server and performs two

actions:

1. Converts an unconnected socket (sockfd) into

a passive socket.

2. Specifies the maximum number of

connections (backlog) that the kernel should
queue for this socket.

Listen is normally called before the accept function.

Returns on success: 0

on error: -1

Example:

if (listen (sd, 2) != 0)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

errsys(“listen call error”);

Accept Function

intaccept (intsockfd , structsockaddr*cliaddr,

socklen_t*addrlen);

Accept is called by the TCP server to return the next

completed connection from the front of the completed

connection queue.

sockfd: This is the same socket descriptor as in

listencall.

*cliaddr: used to return the protocol address of the

connected peer process (i.e., the client process).[2]

*addrlen: {this is a value-result argument}

Before the accept call:We set the integer value pointed

to by *addrlento the size of the socket address structure

pointed to by *cliaddr;

on return from the accept call: This integer value

contains the actual number of bytes stored in the socket

address structure.

Returns on success: a new socket descriptor

on error : -1

For accept the first argument sockfdis the listening

socketand the returned value is the connected socket.

The server will have one connected socket for each
client connection accepted.

When the server is finished with a client, the connected

socket must be closed.

Example:

sfd= accept (sd, NULL, NULL);

if (sfd== -1) err_sys (“accept error”);[2]

Close Function

intclose (intsockfd);

Close marks the socket as closed and returns to the
process immediately.

sockfd: This socket descriptor is no longer useable.

Note – TCP will try to send any data already queued to

the other end before the normal connection termination
sequence.

Returns on success: 0

on error : -1

Example:
close (sd); [2]

7. TWO TYPES OF SERVER

Concurrent server – forks a new process, so multiple

clients can be handled at the same time.

Iterative server – the server processes one request
before accepting the next.

Concurrent Server

listenfd = socket(…);

bind(listenfd,…);

listen(listenfd,…)

for (; ;) {

connfd = accept(listenfd, …);

If ((pid = fork()) == 0) { /* child*/

close(listenfd);

/* process the request */

close(connfd);
exit(0);

}

close(connfd); /* parent*/

}[3]

Iterative Server

listenfd = socket(…);

bind(listenfd,…);

listen(listenfd,…)

for (; ;) {

connfd = accept(listenfd, …);
/* process the request */

close(connfd);

}[3]

Client

sockfd = socket(…);

connect(sockfd, …)

/* process the request */

close(sockfd);[3]

CONCLUSION

In this paper ,we have concluded that the socket

interface generally holds the communication between

the user and the kernel. Also the two different

applications can be interfaced through the

communication network. In TCP socket calls, the client

sends the request to the server and the server performs
all the functions i.e. socket(), bind(), listen() and

accept(). In concurrent servers, multiple clients can be

handledat the same time, whereas in iterative server, the

server processes only one request before accepting the

next one. The Internet Protocol breaks all

communications into packets, finite-sized chunks of

data which are separately and individually routed from

source to destination.

REFERENCES

 [1] Elementary TCP Sockets UNIX Network
Programming Vol. 1, Second Ed.

Stevens Chapter 4

http://www.cs.usfca.edu/~parrt/doc/java/Sockets-

notes.pdf

[2] UNIX Network Programming by W. Richard

Stevens, Prentice Hall,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

Englewood Cliffs, NJ, 1997.

http://web.cs.wpi.edu/~rek/Undergrad_Nets/B

06/TCP_Sockets.pdf

[3] Unix Network Programming, W.R. Stevens,

1990,Prentice-Hall, Chapter 6.

[4] Unix Network Programming, W.R. Stevens,

1998,Prentice-Hall, Volume 1,

Chapter 3-

4.http://www.ece.eng.wayne.edu/~gchen/ece56

50/lecture7.pdf

Mohit Mittal received his B.Tech

and M.Tech degree in Computer

Science from Guru Nanak Dev

University, in 2011. He is

working as Assistant Professor in Anand

college of Engineering and Management,

Kapurthala. His research areas include image

processing, computer networks and Network

Security.

Tarun Bhalla received his B.Tech

degree in Computer Science from

Punjab Technical University. He is

currently working as a Assistant

Professor in Anand College of

Engineering and Management, Kapurthala.

His research interest area includes Database,

Network Security, Mobile Computing and

adhoc network .

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

