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Abstract - Automated detection of poultry leg and eye abnormalities is essential for efficient farm management and animal welfare. This
paper presents a deep learning framework that integrates Residual Multi-Scale Feature Enhancement Decoder (RMSFED) with Atrous
Spatial Pyramid Pooling (ASPP) and YOLOVS. The proposed architecture preserves fine-grained features, enhances multi-scale contextual
understanding, and accurately identifies small lesions under challenging farm conditions such as varying illumination, occlusions, and
cluttered backgrounds. YOLOVS efficiently extracts Regions of Interest (ROI) for downstream analysis. Experiments on real poultry
datasets demonstrate that the RMSFED+ASPP integrated model outperforms baseline YOLOvV8 and YOLOvV8+ASPP variants in Dice
Coefficient, Sensitivity, Specificity, IoU, and F1-Score. Visual assessments confirm improved boundary localization and reduced false
detections. The framework supports real-time inference, offering a robust and reliable tool for automated poultry health monitoring.
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I. INTRODUCTION

Automated poultry abnormality detection plays a critical role in livestock health monitoring, welfare assessment, and
optimized farm management, especially as modern poultry production systems scale rapidly. Traditional manual inspection practices
are highly labor-intensive and rely heavily on the subjective judgment of farm workers, leading to inconsistent assessments across
different lighting conditions, flock densities, and observer experience levels. Moreover, subtle abnormalities—such as early-stage leg
deformities, joint swelling, corneal opacity, or minor ocular infections—often remain undetected during routine visual checks due to
their fine-scale nature and the high speed at which farm inspections are conducted. Deep learning-based computer vision systems have
emerged as powerful tools capable of offering objective, high-precision identification of such abnormalities, yet significant challenges
persist in accurately capturing very small lesions or features embedded within visually complex farm environments. These challenges
primarily stem from scale variation, background clutter, feather occlusions, and the loss of high-resolution feature details during
network down-sampling. To overcome these limitations, this paper proposes an enhanced, biologically aware detection framework
that integrates the Residual Multi-Scale Feature Enhancement Decoder (RMSFED) and Atrous Spatial Pyramid Pooling (ASPP) into
the YOLOVS architecture. RMSFED facilitates improved retention of fine-grained spatial information, while ASPP enriches multi-
dilated contextual understanding, allowing the model to effectively differentiate minute abnormalities from surrounding noise. When
combined with YOLOv8’s strong object-level detection capabilities, the resulting system demonstrates significantly improved
robustness, precision, and generalization under real-world farm conditions. This integrated approach ultimately advances the
reliability of automated poultry abnormality detection and supports scalable precision livestock farming.

II. RELATED WORK

Existing approaches for poultry abnormality detection rely heavily on convolutional neural networks (CNNs) and traditional
morphological segmentation methods, which have been widely applied to animal health monitoring tasks [4]. Early systems focused
on handcrafted features such as texture patterns, color descriptors, and geometric measurements, but these methods lacked robustness
under natural farm variations [5]. With the rise of deep learning, CNN-based classifiers and region-based detectors significantly
improved recognition accuracy; however, they still struggled with small lesion identification due to limited receptive field adaptation
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[6]. Modern one-stage detectors such as YOLOv8 provide fast and accurate localization, making them suitable for real-time poultry
surveillance, yet the architecture’s inherent down-sampling often results in the loss of fine-scale features essential for identifying early
leg deformities and minor ocular abnormalities [7]. To enhance contextual modeling, Atrous Spatial Pyramid Pooling (ASPP) has
been utilized in various segmentation networks, enabling multi-dilated feature extraction that strengthens global context interpretation
[8]. Similarly, the Residual Multi-Scale Feature Enhancement Decoder (RMSFED) has shown promise in preserving multi-scale
spatial information through residual refinement and enhanced skip-connections [9]. Despite the strong theoretical benefits of both
ASPP and RMSFED, their combined integration has not been extensively explored for poultry-specific abnormality detection tasks,
where biological variations and subtle anatomical cues demand highly specialized feature representation [10]. Existing literature
primarily addresses general object detection or medical segmentation, leaving a gap in domain-adapted multi-scale frameworks
tailored to the complexities of farm environments [11]. Therefore, fusing YOLOv8 with RMSFED and ASPP offers a unique
opportunity to address these limitations by unifying context, detail preservation, and efficient detection within a single architecture
[12].
III. PROPOSED METHODOLOGY

The proposed framework operates through two sequential phases, each designed to progressively refine the detection and
analysis of poultry leg and eye abnormalities. In the first phase, YOLOVS is employed to locate the anatomical regions of interest,
ensuring that only the relevant leg and eye areas are extracted from complex farm images. This targeted ROI extraction minimizes the
influence of background elements such as litter texture, overlapping birds, and variable lighting. Once the ROI is obtained, Phase 11
performs a more detailed examination using an enhanced segmentation pipeline. At this stage, the Residual Multi-Scale Feature
Enhancement Decoder (RMSFED) is applied to preserve and strengthen fine spatial details that are essential for identifying early-
stage abnormalities. RMSFED accomplishes this by maintaining high-resolution feature pathways and enabling effective cross-scale
information flow. In parallel, the Atrous Spatial Pyramid Pooling (ASPP) module broadens the network’s contextual understanding
through multiple dilation rates, allowing it to capture both local irregularities and larger structural cues. When combined, RMSFED
and ASPP create a complementary feature representation that excels at differentiating subtle defects from normal tissue patterns. This
two-phase architecture provides improved lesion localization, better boundary precision, and heightened sensitivity to small
deformities. As a result, the system offers a more reliable and biologically meaningful assessment of poultry abnormalities under real
farm conditions.
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IV. EXPERIMENTAL SETUP

The dataset employed in this study is composed of poultry farm images captured under real production conditions, where
several challenging visual factors naturally occur. These include

e Significant variations in illumination due to both natural sunlight and artificial

lighting systems.
e Frequent occlusions caused by overlapping birds, feeders, drinkers, and farm Infrastructure.
e  Substantial background clutter arising from litter textures, shadows, and irregular

floor patterns.

Input:

Image dataset I = {I1, 12, ..., IN}

Optional annotations A = {(Bij, yij)}
Multi-resolution scale set S = {rl, 12, ..., M}
Fusion coefficients or

Attention mechanism (SE or ECA)

Context module (ASPP or PPM)

YOLOVS configuration and training parameters

Stage 1: Image Conditioning

For each image Ii in I:

1. Remove noise using spatial filtering

2. Normalize color and illumination

3. Enhance structural details

4. Generate multi-resolution representations

5. Apply data augmentation

Output: Conditioned image i

Stage 2: Multi-Resolution Feature Encoding

For each resolution r in S:

Fr = Encoder_r(li)

Stage 3: Feature Alignment

For each Fr:

1. Project features to a common embedding space

2. Resize and align spatial dimensions

Output: Aligned feature map Fr

Stage 4: Feature Aggregation

1. Concatenate all aligned features:
Fagg = Concat(l:“l, F2, .., FM)

2. Reduce channels using 1x1 convolution:
Fred = Convlx1(Fagg)

3. Apply channel attention:
Fatt = Attention(Fred)

4. Apply contextual feature enhancement:
Fetx = ContextBlock(Fatt)

Stage 5: Feature Fusion

Option 1: Weighted fusion

Ffinal = Sum(cr * Transform(Fr)) +y * Fctx

Option 2: Residual fusion
Ffinal = Conv3x3(Fatt + Fctx)

IJERTV 14l S120547 Page 3
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by : International Journal of Engineering Research & Technology (I1JERT)
https://lwww.ijert.org/ I SSN: 2278-0181
An International Peer-Reviewed Journal Vol. 14 Issue 12 , December - 2025

Stage 6: Feature Pyramid Construction
For level k=1 to K:

Pk = Downsample(k-1)(Conv3x3(Ffinal))
Stage 7: YOLOVS Detection

Predictions = YOLOVS(P1, P2, ..., PK)
Stage 8: Training Loss

Total Loss L =

Moc * Localization Loss +

Acls * Classification Loss +

Aconf * Confidence Loss +

Areg * Regularization Loss

Stage 9: Inference Post-processing

1. Filter predictions using confidence threshold 6
2. Apply Non-Maximum Suppression (NMS)
Final detections Dfinal

Stage 10: ROI Extraction

For each detected bounding box bi in Dfinal:
ROIi = Crop(li, bi)

Output:
Final detections Dfinal = {(bi, yi, pi)}
Extracted ROI set R = {ROIi}

YOLOVS is utilized in the first stage to perform object-level detection, ensuring that the leg and eye regions are accurately
extracted before deeper analysis. Following this, RMSFED and ASPP modules are applied in combination for segmentation and
classification; RMSFED focuses on strengthening fine-resolution feature propagation across multiple scales, whereas ASPP enhances
contextual interpretation by incorporating multi-dilated filtering. The performance of the proposed architecture is assessed using
several key evaluation metrics: Dice Coefficient for overlap accuracy, Sensitivity for detecting true abnormal cases, Specificity for
minimizing false positives, Jaccard Coefficient (IoU) for region-based similarity, and F1-Score for balanced precision—recall
measurement. These combined elements ensure that the system is thoroughly evaluated and capable of operating reliably in complex,
visually diverse farm environments.

V. EXPERIMENTAL RESULTS

The RMSFED + ASPP integrated YOLOvVS model demonstrated notable and consistent improvements across all evaluated
performance metrics, confirming the effectiveness of the proposed architecture. Fine-scale abnormalities, including tibial curvature,
early swelling around joints, minor corneal opacity, and subtle eye discharge, were accurately identified even when these features
appeared faint or partially occluded. The enhanced decoder structure within RMSFED significantly improved the model’s sensitivity
to very small and low-contrast lesions that are commonly missed by standard YOLOvVS8 configurations. In addition, the ASPP module
strengthened contextual reasoning, enabling the network to differentiate true abnormalities from background artifacts or farm-induced
noise. The model maintained high reliability under diverse environmental conditions, such as uneven lighting, litter variations, and
dense flock arrangements. Overall, this integrated approach delivered superior abnormality localization, improved boundary precision,
and robust performance in visually complex farm scenarios.

Disease Technique DC (%) Sensitivity (%) | Specificity (%) JC (%) F-Score (%)
ASPP 98.73 97.88 99.34 97.92 98.26
BCO
RMSFED + ASPP 99.21 98.64 99.78 99.03 98.87
ASPP 97.95 96.72 98.89 96.51 97.14
VVD
RMSFED + ASPP 98.84 97.91 99.54 98.12 98.23

Table 1: Validation Metrics for RMSFED + ASPP and ASPP (Dice, Sensitivity, Specificity, Jaccard, F-Score)
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The enhanced YOLOVS model equipped with RMSFED and ASPP shows clear performance gains, capturing subtle leg and
eye abnormalities with greater reliability. Its higher metric values reflect improved precision, stronger feature recognition, and more
stable results across challenging farm images.

Performance Metrics
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VI. CONCLUSION

This work presents an advanced deep learning framework that incorporates biological relevance, multi-scale feature learning,
and contextual enhancement to detect abnormalities in poultry legs and eyes. The combined use of RMSFED, ASPP, and YOLOvV8
enables the system to capture subtle deformities with greater precision than conventional models. Enhanced boundary detailing and
refined feature extraction contribute to its strong segmentation and classification performance. The architecture also demonstrates
dependable behavior across diverse and challenging farm environments. These results highlight the system’s potential for practical use
in precision livestock health assessment. Future developments may explore additional poultry disorders and broaden the model’s
diagnostic scope. The framework also holds promise for integration into automated on-farm monitoring platforms. Continued
refinement could further enhance real-time decision support for poultry management.
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