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Abstract - This project presents a Smart Community Health Monitoring and Early Warning System (SCHM-EWS) designed to detect, 

classify and provide early warnings for water-borne disease outbreaks at the community/district level. The system integrates 

crowdsourced symptom reports (public users), field data and sample uploads (ASHA workers), and environmental/wastewater signals 

with a modular AI pipeline that performs symptom classification, anomaly detection, and short-term outbreak forecasting. The AI layer 

combines natural language models (fine-tuned transformer-based models) for free-text symptom classification with gradient-boosted trees 

and LSTM/temporal models for tabular and time-series forecasting[1]. The platform supports role-based access (public / ASHA / 

government), privacy-preserving data handling, and an operator dashboard for rapid response. Expected outcomes include improved 

detection lead time, higher sensitivity for localized outbreaks, and actionable alerts for public health teams to prioritize sample collection 

and interventions. Practical deployment considerations (data quality, connectivity, and ethical safeguards) and evaluation metrics 

(precision, recall, F1, lead time improvement, and AUC for forecasts) are discussed. 
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1. INTRODUCTION 

The burden of water-borne diseases (diarrhoeal illnesses, cholera, typhoid, norovirus, etc.) remains significant in many low- and 

middle-income regions due to inadequate water, sanitation and hygiene (WASH) services [2]. Monitoring and rapid detection of 

community clusters of water-borne illness are essential to reduce morbidity and mortality. The COVID-era demonstrated the value 

of combining novel surveillance streams (wastewater, crowdsourced reports) with artificial intelligence (AI) to provide early signals 

before formal case counts rise[3]. The World Health Organization (WHO) WASH guidance emphasizes integrating environmental 

surveillance with clinical reporting to make surveillance actionable and effective at the community level. 

2. PROBLEM STATEMENT 

Traditional surveillance for water-borne diseases often suffers from delayed reporting, sparse sampling, and low geographic 

granularity[4]. Community members can report symptoms but the data is noisy and unstructured; field workers collect samples but 

face logistic constraints. There is a critical gap for a scalable, AI-enabled pipeline that (1) classifies symptom reports correctly, (2) 

integrates environmental (including wastewater) signals and field sample metadata, and (3) issues early warnings with quantified 

uncertainty so public health officials can prioritize responses efficiently. 
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Fig 2.1 & 2.2 India Water-Borne Disease Burden Map (2005-2022): 20.98 crore cases, 86% Acute Diarrheal Disease and 

Deaths 

3. LITERATURE SURVEY 

• Recent research demonstrates significant advances in AI-driven disease surveillance and water quality monitoring: 

• Machine learning approaches have been applied to classify and predict water-borne disease occurrences from clinical and 

environmental data; comparative studies show tree-based ensembles (Random Forest, XGBoost achieving 99.66% and 

99.52% accuracy respectively) and deep models perform well on tabular outbreak datasets[5]. 

• Wastewater and environmental surveillance (WES) can act as an early-warning signal for enteric pathogens; WHO 

recommends integrating WES with clinical surveillance to guide interventions. Studies show wastewater detection achieves 

positive predictive values of 50-71% for forecasting disease clusters[6]. 

• Transformer-based language models in healthcare have demonstrated exceptional performance in medical text 

classification tasks, with accuracy ranging from 86.7% to 97.1%, making them ideal candidates for symptom classification 

from unstructured patient reports[7]. 

• Time-series forecasting using LSTM networks has achieved Mean Squared Error (MSE) values as low as 0.1631 for 

environmental parameters, demonstrating their capability for predicting disease occurrence trends[5]. 

• IoT-based automated systems for water-related disease prediction and anomaly detection enable continuous monitoring 

that can identify faint patterns missed by traditional methods[5]. 

 

4. PROPOSED SYSTEM OVERVIEW 

4.1 System Goals 

The SCHM-EWS is designed to achieve the following objectives: 

• Classify incoming symptom reports (mobile/web free text + checkboxes) accurately into probable water-borne disease 

categories (e.g., cholera, acute gastroenteritis, norovirus, unspecified diarrhoeal disease). 

• Fuse environmental sensor data and wastewater surveillance to detect anomalies in real-time. 

• Forecast short-term outbreak risk (1–4 weeks horizon) at the ward/village level with quantified uncertainty. 

• Provide role-based dashboards and actionable alerts for ASHA workers and government officials enabling rapid response. 

4.2 High-Level Architecture 
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Figure 4.2.1: SCHM-EWS High-Level Architecture Diagram 

The system consists of the following core components: 

• Frontend: Role-based React interface supporting Public, ASHA Worker, and Administrator roles with appropriate data 

access and visualization capabilities. 

• Backend: REST API with authentication, authorization, and asynchronous task queueing for model inference. 

• Data ingestion: Multi-modal data intake including symptom reports, uploaded lab/test results (ASHA), environmental 

sensors/IoT streams, and wastewater aggregated metrics. 

• AI/ML pipeline: Preprocessing → Symptom classifier → Anomaly detector → Forecasting model → Alerting & 

explainability module for end-to-end analysis.   

• Storage: Encrypted user database, time-series database for environmental signals, and object storage for uploaded 

documents with privacy-preserving access controls. 

 

 

Figure 4.2.2: Frontend dashboard for public user 
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Figure 4.2.3: Frontend dashboard for Staff/ASHA workers 

5. AI MODEL DESIGN 

5.1 Symptom Classification (Text + Structured Fields) 

Model Family: Transformer-based language models (fine-tuned BERT / ClinicalBERT / DistilBERT) for classifying short 

symptom texts into disease categories. Transformer models handle medical jargon and contextual nuance better than traditional bag-

of-words methods [7]. Fine-tuning on labeled symptom datasets and augmenting with domain lexicons improves accuracy. 

Implementation Strategy: Use a lightweight DistilBERT for on-device inference on the public mobile app (for low-connectivity 

scenarios), and deploy larger ClinicalBERT at the server backend for high-accuracy classification. 

 

       Figure 5.1.1: DistilBERT Transformer Pipeline for Symptom Classification 
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Features: 

• Free-text symptom description 

• Checkbox-selected symptoms 

• Geographic location 

• Age group / demographic 

• Symptom onset date 

Output: Probabilities across disease classes + confidence score + top contributing tokens for explainability and clinical 

validation. 

5.2 Tabular & Environmental Models 

Model Family: Gradient Boosted Trees (XGBoost / LightGBM) for tabular predictors including sample positivity rates, turbidity, 

pH, recent rainfall, temperature, and sanitation indicators. These models are robust with mixed numeric/categorical features, fast to 

train and serve, and provide feature importance analysis through SHAP values[5]. 

Environmental Features: 

• Water quality metrics (turbidity, pH, chlorine residual) 

• Weather data (rainfall, temperature, humidity) 

• Wastewater pathogen concentration indices 

• Sanitation infrastructure indicators 

5.3 Time-Series Forecasting and Anomaly Detection 

Model Family: LSTM/GRU or Temporal Convolution Networks (TCN) for short-term forecasts combined with statistical models 

(Facebook Prophet) for seasonality and trend decomposition [5]. Models output predicted case counts with forecast uncertainty 

intervals. 

Anomaly Detection: Autoencoders or z-score based control charts on wastewater signal residuals to flag unusual epidemiological 

patterns. 

Temporal Window: 1–4 week forecast horizon for actionable lead time improvement. 

5.4 Ensemble & Alert Logic 

Combine signals through weighted ensemble of: 

• Symptom classifier probability mass 

• Tabular risk score (environmental/wastewater) 

• Wastewater anomaly score 

• Environmental risk indices 

If ensemble risk exceeds threshold (tuned for desired sensitivity), create an alert (info/urgent) and route to ASHA teams. The 

ensemble approach reduces false positives while maintaining high sensitivity for localized outbreaks. 
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6. DATA SOURCES & DATASET REQUIREMENTS 

The system leverages multiple heterogeneous data sources: 

Data Source Description Privacy Level 

Crowdsourced symptom 

reports 

Mobile/web forms with structured checkboxes, 

free text, photo uploads 

Anonymized 

ASHA worker sample  

metadata 

Sample type, GPS location, timestamp, lab results Encrypted 

Wastewater surveillance Aggregate pathogen concentration indices per site Aggregated 

Environmental sensors/IoT Turbidity, pH, temperature, rainfall, water flow Real-time 

Historical case counts Lab-confirmed cases for training and validation De-identified 

 

               Table 1: Primary Data Sources and Privacy Considerations for SCHM-EWS 

Data Quality Requirements: 

• Location validation and GPS accuracy checks 

• Timestamp synchronization across sources 

• De-duplication of symptom reports 

• Handling missing values and data imputation 

7. METHODOLOGY & IMPLEMENTATION PLAN 

7.1 Data Pipeline & Preprocessing 

The system follows a structured 5-stage data processing pipeline: 

1. Ingest symptom submissions and ASHA field uploads in real-time 

2. Normalize text (Unicode handling, PII removal, tokenization) 

3. Extract structured symptom features and encode geographic location 

4. Merge environmental & wastewater time series into aligned daily/hourly windows 

5. Label historical symptomatic clusters using confirmed lab results for supervised learning 

7.2 Model Training & Validation 

Symptom Classifier: 

• Fine-tune pre-trained transformer on labeled symptom dataset 

• Use stratified k-fold cross validation (k=5) 

• Evaluate Precision, Recall, F1 per disease class 

• Generate confusion matrix and SHAP explainability values 

Tabular Risk Model: 

• Train XGBoost with grid search hyperparameter optimization 

• Cross validation with stratified 5-fold strategy 

• Use SHAP values for feature importance ranking 

Forecasting Model: 

• Train LSTM with sliding windows (window size: 14-28 days) 
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• Evaluate with RMSE, MAE, and probabilistic metrics (CRPS) 

• Back-test on previous outbreak events (e.g., cholera/dengue water-linked) to measure lead time improvements 

7.3 Deployment & Edge Considerations 

• Use lightweight DistilBERT or quantized transformer model for on-device inference in low-connectivity areas 

• Host heavier models in cloud infrastructure with asynchronous sync from field devices 

• Implement continuous model monitoring and periodic retraining pipelines (quarterly) 

• Deploy containerized microservices (Docker/Kubernetes) for scalability 

8. EVALUATION METRICS 

The system success is measured across multiple dimensions: 

Classification Metrics 

• Per-disease F1 Score: Precision × Recall / (Precision + Recall) for each disease category 

• Macro-averaged F1: Mean F1 across all disease classes 

• Confusion Matrix: Class-wise true positive, false positive, false negative rates 

• Area Under Curve (AUC-ROC): Multi-class ROC analysis per disease 

Forecasting Metrics 

• RMSE (Root Mean Squared Error): √
1

𝑛
∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)

2 

• MAE (Mean Absolute Error): Resilience to outliers 

• AUC: Binary classification performance (outbreak vs. no outbreak) 

• Lead Time Improvement: Days earlier than official case reporting (primary metric for public health value) 

Operational Metrics 

• False alert rate (% of alerts not validated by lab confirmation) 

• Time-to-action (hours from alert to ASHA notification) 

• Positive predictive value (% of validated samples after alert) 

9. PRIVACY, ETHICS & GOVERNANCE 

Data Protection Strategy 

Data Minimization: Collect only essential PII; store encrypted using AES-256; apply role-based access control (RBAC) with 

audit logging. 

Consent & Transparency: Public users must provide explicit informed consent; display clear privacy notices in regional 

languages (Tamil, Telugu, English). 

De-identification: Remove direct identifiers (name, phone) while retaining geographic granularity (village/ward level); 

implement differential privacy for aggregate statistics. 

Bias & Fairness 

Monitor model performance across demographic subgroups (age, gender, socioeconomic status) and geographic regions to ensure 

equitable detection performance. Conduct quarterly fairness audits and adjust model weights if disparities emerge. 

Governance Framework 

• Tie all alerts to established public health authority workflows 

• Implement human-in-the-loop validation before major interventions 
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• Establish clear escalation protocols for high-confidence alerts 

• Regular stakeholder consultation (ASHA workers, health officials, community representatives) 

10. EXPECTED RESULTS & DISCUSSION 

Integrating AI with wastewater and crowdsourced symptom reports should significantly increase detection sensitivity and reduce 

detection lag compared to passive surveillance. Published ML studies in water-borne disease contexts demonstrate promising 

classification and forecasting performance [5][6][7]. WHO increasingly supports integrating WES into surveillance strategies for 

infectious disease management. 

Realistic Expectations 

• Initial Performance: Modest false positive rate (10-15%) that can be reduced through operational tuning and human 

verification 

• Lead Time: 3-7 day advancement in outbreak detection compared to official reporting 

• Sensitivity: 80-90% detection of localized clusters (ward level) 

• Operational Adoption: 6-12 month ramp-up for ASHA worker training and system integration 

• Cost-Benefit: Reduced disease burden offsetting operational costs within 18 months 

11. LIMITATIONS 

• Data Sparsity: Low connectivity regions may have delayed or missing symptom reports 

• Wastewater Resolution: Signal aggregation may reduce spatial resolution and localization accuracy 

• Training Data: Availability of labelled training data specific to local disease patterns remains challenging 

• Operational Constraints: Logistics for sample collection and follow-up investigations 

• Model Drift: Performance degradation over time due to seasonal patterns and disease evolution 

• Resource Requirements: Initial capital investment in IoT sensors and computing infrastructure 

12. FUTURE SCOPE 

• Mobility Data Integration: Incorporate fine-grained mobility patterns (with privacy safeguards) to model disease spread 

dynamics 

• Multimodal Inputs: Add image recognition (stool test photos, lab reports), IoT rapid water analyzers for point-of-care 

testing 

• Multi-disease Fusion: Expand model to detect other environmental diseases (vector-borne, foodborne) and cross-disease 

early-warning signals 

• WASH Integration: Collaborate with water and sanitation programs to trigger automated interventions (chlorination 

increases, water source switching) 

• Cross-border Surveillance: Extend system to regional and national surveillance networks for coordinated response 

• Real-time Dashboard Enhancements: Advanced visualization (heat maps, time-series plots, predictive scenarios) for 

decision-makers 

13. CONCLUSION 

This document outlines a practical design for a Smart Community Health Monitoring and Early Warning System (SCHM-EWS) for 

water-borne diseases that integrates AI-based symptom classification, environmental/wastewater surveillance, and role-based 

operational dashboards. The modular architecture supports deployment in resource-constrained settings while maintaining scientific 

rigor through cross-validation and explainability. With careful implementation, comprehensive data governance, ethical safeguards, 

and iterative validation in partnership with public health authorities, such a system can materially improve the timeliness and 

targeting of community-level public health responses to water-borne disease outbreaks. 
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