

Slightly m-Precontinuous Multifunctions

⁽¹⁾R.Chitra, ⁽³⁾J. Sophers

^(1&3) Assistant Professor,

Department of mathematics,

Kongunadu College of Engineering and Technology,
Trichy, Namakkal (D.t).

⁽²⁾O.Ravi,

⁽²⁾ Head & Professor,

Department of mathematics,

P. M Thevar College, Usilampatti, Madurai (D.t).

Abstract - In this paper, we introduce a new class of functions namely slightly m- precontinuous multifunction. Further we obtain characterizations and relationships between upper/lower slightly m- precontinuous multifunctions and other related multifunctions.

Keywords - *Upper slightly precontinuous, lower slightly precontinuous, upper slightly m-precontinuous, lower slightly m-precontinuous, upper m-precontinuous, lower m-precontinuous.*

AMS Subject classification : 54C10, 54C08

1. INTRODUCTION

The notion of slightly continuous functions was introduced by R.C. Jain [2]. Nour [12] defined slightly semi-continuous functions as a weak form of slight continuous functions and obtained their properties. Further this concept is extended to develop the class of slightly m-continuous functions. Popa [14] and Smithson [23] studied the concept of weakly continuous multifunctions. In this paper, we introduce the notion of slightly m-precontinuous multifunction and investigate the relationships among m-precontinuity, weak m-precontinuity and slight m-precontinuity for multifunctions.

2. PRELIMINARIES

Throughout this paper, all spaces (X, τ) and (Y, σ) are always topological spaces. A subset A of a space X is said to be regular open (resp. regular closed), if $A = \text{Int}(\text{Cl}(A))$ (resp. $A = \text{Cl}(\text{Int}(A))$), where $\text{Cl}(A)$ and $\text{Int}(A)$ denote the closure and interior of A. A subset A of a space X is called preopen if $A \subset \text{Int}(\text{Cl}(A))$. The complement of a preopen set is said to be preclosed. The family of all regular open (resp. regular closed, preopen, preclosed, clopen) sets of X is denoted by $\text{RO}(X)$ (resp. $\text{RC}(X)$, $\text{PO}(X)$, $\text{PC}(X)$, $\text{CO}(X)$). A subset A of a space X is said to be semi-open if $A \subset \text{Cl}(\text{Int}(A))$. The complement of a semi open set is called semi-closed. The union of all pre open sets of X contained in A is called the pre-interior of A and is denoted by $\text{pInt}(A)$. A subset A of a space X is said to be clopen if it is both open and closed.

Throughout this paper, the spaces (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces and $F: (X, \tau) \rightarrow (Y, \sigma)$ represents a multivalued function. For a multifunction $F: (X, \tau) \rightarrow (Y, \sigma)$, we shall denote the upper and lower inverse of a set B of a space Y by $F^+(B)$ and $F^-(B)$ respectively.

i.e. $F^+(B) = \{x \in X : F(x) \subset B\}$, $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$.

Definition: 2.1 [20]

A subfamily m_X of the power set $P(X)$ of a nonempty set X is called a minimal structure (briefly m-structure) on X, if $\emptyset \in m_X$ and $X \in m_X$.

Definition: 2.2 [20]

By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X and call it an m-space. Each member of m_X is said to be m_X -open (or briefly m-open). The complement of an m_X -open set is said to be m_X -closed (or briefly m-closed).

Remark: 2.3 [20]

Let (X, τ) be a topological space. Then the families τ , $\text{SO}(X)$, $\text{PO}(X)$, $\alpha(X)$, $\beta(X)$, are all m-structures on X.

Definition: 2.4 [20]

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be slightly continuous if for each point $x \in X$ and each clopen set V containing $f(x)$, there exists an open set U containing x such that $f(U) \subset V$.

Definition: 2.5 [20]

A topological space (X, τ) is said to be extremely disconnected (briefly E.D), if the closure of each open set of X is open in X.

SLIGHTLY m-PRECONTINUOUS MULTIFUNCTIONS

Definition: 3.1

A multifunction $F: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(a) Upper slightly precontinuous (resp. upper slightly continuous, upper slightly semi-continuous or upper faintly precontinuous, upper slightly β -continuous), if for each point $x \in X$ and each clopen set V of Y containing $F(x)$, there exists an preopen (resp. open, semi-open, β -open) set U of X containing x such that $F(U) \subset V$.

(b) Lower slightly precontinuous (resp. lower slightly continuous, lower slightly semi-continuous or lower faintly precontinuous, lower slightly β -continuous), if for each point $x \in X$ and each clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an preopen (resp. open, semi-open, β -open) set U of X containing x such that $F(U) \cap V \neq \emptyset$, for each $u \in U$.

Definition: 3.2

A function $f: (X, m_X) \rightarrow (Y, \sigma)$, where (X, m_X) is a nonempty X with an minimal structure m_X and (Y, σ) is a topological space, is said to be slightly m-pre continuous, if for each $x \in X$ and each clopen set V of Y containing $f(x)$, there exist a preopen set $U \in m_X$ containing x such that $f(U) \subset V$.

Definition: 3.3

A multifunction $F:(X,m_X) \rightarrow (Y,\sigma)$ is said to be

- Upper m-precontinuous (resp. upper almost m-precontinuous, upper weakly m-precontinuous), if for each point $x \in X$ and each open set V of Y containing $F(x)$, there exists a preopen set $U \in m_X$ containing x such that $F(U) \subset V$ (resp. $F(U) \subset \text{Int}(\text{Cl}(V))$, $F(U) \subset \text{Cl}(V)$).
- Lower m-precontinuous (lower almost m-precontinuous, lower weakly m-precontinuous), if for each point $x \in X$ and each open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a preopen set $U \in m_X$ containing x such that $F(U) \cap V \neq \emptyset$ (resp. $F(U) \cap \text{Int}(\text{Cl}(V)) \neq \emptyset$, $F(U) \cap \text{Cl}(V) \neq \emptyset$) for each $u \in U$.

Definition: 3.4

Let X be a nonempty set and m_X an m-structure on X . For a subset A of X , the m_X -preclosure of A and the m_X -preinterior of A are defined as follows.

- $m_X\text{-pCl}(A) = \bigcap \{F: A \subset F, X - F \in m_X\}$.
- $m_X\text{-pInt}(A) = \bigcup \{U: U \subset A, U \in m_X\}$.

Remark: 3.5

Let (X, τ) be a topological space and A be a subset of X . If $m_X = \tau$ (resp. $\text{SO}(X)$, $\text{PO}(X)$, $\alpha(X)$), then we have

- $m_X\text{-Cl}(A) = \text{Cl}(A)$ (resp. $s\text{Cl}(A)$, $p\text{Cl}(A)$, $\alpha\text{Cl}(A)$).
- $m_X\text{-Int}(A) = \text{Int}(A)$ (resp. $s\text{Int}(A)$, $p\text{Int}(A)$, $\alpha\text{Int}(A)$).

Definition: 3.6

A multifunction $F:(X,m_X) \rightarrow (Y,\sigma)$, is said to be

- Upper slightly m-precontinuous, if for each point $x \in X$ and each colpen set V of Y containing $F(x)$, there exist preopen set $U \in m_X$ containing x such that $F(U) \subset V$.
- Lower slightly m-precontinuous, if for each point $x \in X$ and each colpen set V of Y such that $F(x) \cap V \neq \emptyset$ there exists a preopen set $U \in m_X$ containing x such that $F(U) \cap V \neq \emptyset$ for each $u \in U$

Theorem: 3.7

For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$ the following are equivalent.

- F is upper slightly m-precontinuous
- $F^+(V) = m_X\text{-pInt}(F^+(V))$ for each $V \in \text{CO}(Y)$
- $F^+(V) = m_X\text{-pCl}(F^+(V))$ for each $V \in \text{CO}(Y)$

Proof:

(1) \Rightarrow (2): Let V be any clopen set of Y and $x \in F^+(V)$ then $F(x) \in V \rightarrow$ (1). By (1), there exists a preopen set $U \in m_X$ containing x such that $F(U) \subset V$. Thus $x \in U \subset F^+(V) \Rightarrow x \in m_X\text{-pInt}(F^+(V)) \rightarrow$ (2). From eqn (1) & (2) we get, $F^+(V) \subset m_X\text{-pInt}(F^+(V))$. i.e. $m_X\text{-pInt}(F^+(V)) \subset F^+(V)$, by lemma (3.1) of [20] $F^+(V) = m_X\text{-pInt}(F^+(V))$ for each $V \in \text{CO}(Y)$.

(2) \Rightarrow (3): Let K be any clopen set of Y . Then $Y - K$ is clopen in Y . By (2), $F^+(V) = m_X\text{-pInt}(F^+(V))$. By lemma (3.1) of [20] we have, $X - F^+(Y - K) = F^+(Y - K) = m_X\text{-pInt}(F^+(Y - K)) = X - [m_X\text{-pCl}(F^+(Y - K))]$. Therefore $F^+(Y - K) = m_X\text{-pCl}(F^+(Y - K))$.

(3) \Rightarrow (2): Let B be any clopen set of Y . Then $Y - B$ is clopen in Y . By (3) & lemma (3.1) of [20] we have, $X - F^+(Y - B) = F^+(Y - B) = m_X\text{-pCl}(F^+(Y - B)) = m_X\text{-pInt}(F^+(Y - B))$. Therefore $F^+(Y - B) = m_X\text{-pInt}(F^+(Y - B))$.

(2) \Rightarrow (1): Let $x \in X$ and V be any clopen set of Y containing $F(x)$. Then $x \in F^+(V) = m_X\text{-pInt}(F^+(V))$, there exists a preopen set $U \in m_X$ containing x such that $x \in U \subset F^+(V)$. Therefore we have, $x \in U$ and $U \in m_X$ and $F(U) \subset V$. Hence F is upper slightly m-precontinuous.

Theorem: 3.8

For a multi function $F:(X, m_X) \rightarrow (Y, \sigma)$ the following are equivalent.

- F is lower slightly m-precontinuous.
- $F^+(V) = m_X\text{-pInt}(F^+(V))$ for each $V \in \text{CO}(Y)$.
- $F^+(V) = m_X\text{-pCl}(F^+(V))$ for each $V \in \text{CO}(Y)$

Proof:

(1) \Rightarrow (2): Let $V \in \text{CO}(Y)$ and $x \in F^+(V)$. Then $F(x) \cap V \neq \emptyset$. By (1), there exists a preopen set $U \in m_X$ containing x such that $F(u) \cap V \neq \emptyset$ for each $u \in U$. Therefore we have, $U \subset F^+(V) \Rightarrow x \in U \subset m_X\text{-pInt}(F^+(V)) \Rightarrow x \in m_X\text{-pInt}(F^+(V)) \Rightarrow F^+(V) \subset m_X\text{-pInt}(F^+(V))$ and by lemma (3.1) of [20] we have $F^+(V) = m_X\text{-pInt}(F^+(V))$.

(2) \Rightarrow (3): Let $V \in \text{CO}(Y)$. Then $Y - V \in \text{CO}(Y)$, by (2), we have, $X - F^+(Y - V) = F^+(Y - V) = m_X\text{-pInt}(F^+(Y - V)) = X - [m_X\text{-pCl}(F^+(Y - V))]$. Hence $F^+(V) = m_X\text{-pCl}(F^+(V))$

(3) \Rightarrow (1): Let $x \in X$ and $V \in \text{CO}(Y)$ such that $F(x) \cap V \neq \emptyset$, then $x \in F^+(V)$ and $x \notin X - F^+(V) = F^+(Y - V)$. By (3) we have, $x \notin m_X\text{-pCl}(F^+(V))$. By lemma (3.2) of [20], there exists preopen set $U \in m_X$ containing x such that $U \cap F^+(Y - V) = \emptyset$. Thus $U \subset F^+(V)$. Therefore $F(u) \cap V \neq \emptyset$ for each $u \in U$. Hence F is lower slightly m-precontinuous.

Theorem: 3.9

Let (Y, σ) be E.D. For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent.

- F is upper slightly m-precontinuous.
- $m_X\text{-pCl}(F(V)) \subset F(\text{Cl}(V))$ for every open set V of (Y, σ)
- $F^+(\text{Int}(C)) \subset m_X\text{-pInt}(F^+(C))$ for every closed set C of (Y, σ)

Proof:

(1) \Rightarrow (2): Let V be any open set of Y . Then $\text{Cl}(V) \in \text{CO}(Y)$, by theorem (3.7), we have, $F(\text{Cl}(V)) = m_X\text{-pCl}(F(\text{Cl}(V)))$ and $F^+(V) \subset F(\text{Cl}(V))$, by lemma (3.1) of [20], we have, $m_X\text{-pCl}(F^+(V)) \subset m_X\text{-pCl}(F(\text{Cl}(V))) = F(\text{Cl}(V)) \Rightarrow m_X\text{-pCl}(F^+(V)) \subset F^+(\text{Cl}(V))$

(2) \Rightarrow (3): Let C be any closed set of (Y, σ) and $V = Y - C$. Then V is open in (Y, σ) . By lemma (3.1) of [20], we have, $X - [m_X\text{-pInt}(F^+(C))] = m_X\text{-pCl}(x - F^+(C)) = m_X\text{-pCl}(F(Y - C))$

$C) \subset F(Y \text{-Int}(C))$. Therefore $X - [m_X \text{-pInt}(F^+(C))] = X - F^+(\text{Int}(C)) \Rightarrow F^+(\text{Int}(C)) \subset m_X \text{-pInt}(F^+(C))$

(3) \Rightarrow (1): Let $x \in X$ and let $V \in CO(Y)$ containing $F(x)$. Then By (3) we have, $x \in F^+(V) = F^+(\text{Int}(V)) \subset m_X \text{-pInt}(F^+(V))$. There exists a preopen set $U \in m_X$ such that $x \in U \subset F^+(V)$. Thus $x \in U$, $U \in m_X$ and $F(U) \subset V$. Hence F is upper slightly m-precontinuous.

Theorem: 3.10

Let (Y, σ) be E.D. For a multifunction $F: (X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent.

- 1) F is lower slightly m-precontinuous.
- 2) $m_X \text{-pCl}(F^+(V)) \subset F^+(\text{Cl}(V))$ for every open set V of (Y, σ)
- 3) $F^-(\text{Int}(C)) \subset m_X \text{-pInt}(F^-(C))$ for every closed set C of (Y, σ)

Proof:

(1) \Rightarrow (2): Let V be any open set of Y . Then $\text{Cl}(V) \in CO(Y)$. By theorem (3.8), $F^+(\text{Cl}(V)) = m_X \text{-pCl}(F^+(\text{Cl}(V)))$ and $F^+(V) \subset (F^+(\text{Cl}(V)))$. By lemma (3.1) of [20], we have $m_X \text{-pCl}(F^+(V)) \subset m_X \text{-pCl}(F^+(\text{Cl}(V))) = F^+(\text{Cl}(V)) \Rightarrow m_X \text{-pCl}(F^+(V)) \subset F^+(\text{Cl}(V))$

(2) \Rightarrow (3): Let C be any closed set of (Y, σ) and $V = Y - C$, then V is open in (Y, σ)

By lemma (3.1) of [20], we have, $X - [m_X \text{-pInt}(F^-(C))] = m_X \text{-pCl}(X - (F^-(C))) = m_X \text{-pCl}(F^+(Y - C)) \subset F^+(\text{Cl}(Y - C))$ (by given (2)) $= F^+(Y \text{-Int}(C))$. Therefore $X - [m_X \text{-pInt}(F^-(C))] = X - F^-(\text{Int}(C)) \Rightarrow F^-(\text{Int}(C)) \subset m_X \text{-pInt}(F^-(C))$

(3) \Rightarrow (1): Let $x \in X$ and $V \in CO(Y)$ containing $F(x) \cap V \neq \emptyset$. Let $V = Y - C$ is open in Y . Let $x \in F^+(C)$ and $x \notin X - F^+(C) \subset F^-(Y - C)$. By (3) we have, $x \notin m_X \text{-pInt}(F^-(Y - C))$, by theorem (3.8) we have, $x \notin m_X \text{-pCl}(F^-(Y - C))$. By lemma (3.2) of [20], there exists a preopen set $U \in m_X$ containing x such that $U \cap (F^-(Y - C)) = \emptyset$. Hence $U \subset F^-(V)$ and $F(x) \cap V \neq \emptyset$ for each $u \in U$. Hence F is lower slightly m-precontinuous.

Slight m-precontinuity and other forms m-precontinuity.

Theorem: 4.1

If multifunction $F: (X, m_X) \rightarrow (Y, \sigma)$ is upper weakly m-precontinuous, then it is upper slightly m-precontinuous.

Proof:

Let $x \in X$ and $V \in CO(Y)$ containing $F(x)$. Since F is upper weakly m-precontinuous. There exists a preopen set $U \in m_X$ containing x such that $F(U) \subset \text{Cl}(V) = V$. Hence F is upper slightly m-precontinuous.

Theorem: 4.2

If a multi function $F: (X, m_X) \rightarrow (Y, \sigma)$ is lower weakly m-precontinuous then it is lower slightly m-precontinuous.

Proof:

Let $x \in X$ and $V \in CO(Y)$ such that $F(x) \cap V \neq \emptyset$. Since F is lower weakly m-precontinuous there exist a preopen set $U \in m_X$ containing x such that $F(U) \cap \text{Cl}(V) \neq \emptyset$, for each

$u \in U \Rightarrow F(U) \cap (V) \neq \emptyset$, for each $u \in U$. Hence F is lower slightly m-precontinuous.

Lemma: 4.3

A multifunction $F: (X, m_X) \rightarrow (Y, \sigma)$ is upper almost m-precontinuous (resp. lower almost m-precontinuous) iff for each regular open set V containing $F(x)$ (resp. meeting $F(x)$), there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset V$ (resp. $F(U) \cap (V) \neq \emptyset$, for every $u \in U$)

Proof:

Let $x \in X$ and V be regular open set of Y containing $F(x)$. Since F is upper almost m-precontinuous there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset \text{Int}(\text{Cl}(V)) = V$. Hence for each regular open set V containing $F(x)$, there exist a preopen set $U \in m_X$ containing x such that $U \subset F(U) \subset V$. Conversely, there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset V \subset \text{Cl}(V) \Rightarrow \text{Int}F(U) \subset \text{Int}(\text{Cl}(V)) \Rightarrow F(U) \subset \text{Int}(\text{Cl}(V))$. Hence F is upper almost m-precontinuous.

Theorem: 4.4

If a multi function $F: (X, m_X) \rightarrow (Y, \sigma)$ is upper slightly m-precontinuous and (Y, σ) is E.D, then F is upper almost m-precontinuous.

Proof:

Let $x \in X$ and V be any regular open set of (Y, σ) containing $F(x)$. Then By lemma 5.6 of [13] we have,

$V \in CO(X)$. Since (Y, σ) is E.D and F is upper almost m-precontinuous, there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset V$. By lemma (4.3), F is upper almost m-precontinuous.

Theorem: 4.5

If a multi function $F: (X, m_X) \rightarrow (Y, \sigma)$ is lower slightly m-precontinuous and (Y, σ) is E.D, then F is lower almost m-precontinuous.

Proof:

Let $x \in X$ and V be any regular open set of (Y, σ) containing $F(x)$. Then By lemma 5.6 of [13] we have, $V \in CO(X)$. Since (Y, σ) is E.D. Since F is lower slightly m-precontinuous, there exist a preopen set $U \in m_X$ containing x such that $F(U) \cap V \neq \emptyset$ for each $u \in U$. By lemma (4.4), F is lower almost m-precontinuous.

REFERENCES

- [1] T.Banaru, More remarks on some forms of continuity for multifunctions, *Bul.Stiint.Univ.Politeh.Timis. Mat.Fiz.*, 44(58) (1999), 34-39.
- [2] R.C.Jain, The role of regularly open sets in general topology Ph.D. Thesis. Meerut Univ., 1980.
- [3] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, a note on semi-continuity and precontinuity, *Indian J.Pure Appl.Math.* 13 (1982), 1119-1123.
- [4] A.S.Mashhour, M.E.Abd El-monsef and S.N.El-Deeb, on precontinuous and weak precontinuous mappings, *Proc.Math.Phys.Soc.Egypt* 53(1982), 47-53.
- [5] A.S.Mashhour, M.E.Abd El-monsef, I.A.Hasanein, on pretopological spaces, *Bull. Math. Soc.Sci. RSR*.28 (1984), 39-45.
- [6] H.Maki, K.C.Rao and A.Nagoor Gani, On generalizing Semi-open sets and preopen sets. *Pure Appl.Math. Sci.* 49(1999), 17-29.

- [7] T.Noiri, Characterizations of extremally disconnected spaces, Indian J.Pure Appl.Math., 19 (1988), 325-329.
- [8] T.Noiri and V.Pop, On upper and lower weakly quasi continuous multifunctions, Rev.Roumaine Math.Pures Appl., 37(1992), 499-508.
- [9] T.Noiri and V.Pop, almost weakly continuous multifunctions, Demonstratio Math, 26(1993), 363-368.
- [10] A.A.Nasef and T.Noini, some weak forms of almost continuity, Acta. Math. Hungar, 74(1997), 211-219.
- [11] T.Noiri, On slightly β -continuous functions, internet, J.Math. Math. Sci., 28(2001), 469- 478.
- [12] T.M.Nour, slightly semi-continuous function, Bull.Calcutta Math.Soc., 87 (1995), 187-190.
- [13] M.C.Pal and P.Bhattacharyya, Faint precontinuous functions, Soochow J.Math., 21(1995), 273-289.
- [14] V.Pop, weakly continuous Multifunctions, Boll.Un.Math.Ital. (5), 15 (1978), 379-388.
- [15] V.Pop, On some properties of weakly continuous multifunctions, Univ.Bacau, Stud.Cerc.Math., 1980, 121-127.
- [16] V.Pop and T.Noiri, Properties of upper and lower weakly quasi continuous Multifunctions, univ.Bacau,Stud.Cerc.St.Ser.Mat.Inform, 25 (1998), 24-30.
- [17] V.Pop and T.Noiri, Almost m-continuous functions, Math.Notal 40 (1999/ 2002), 75-94.
- [18] V.Pop and T.Noiri, On M-continuous functions, Anal.Univ."Dunarea de Jos" Galati, Ser.Math.Fiz.Mec.Teor.18 (23) (2000), 31-41.
- [19] V.Pop and T.Noiri, Slightly m-continuous functions, Radovi Math, 10 (2001), 1-14.
- [20] V.Pop and T.Noiri, Slightly m-continuous multifunctions, Bull Math, 1(2006).
- [21] V.Pop and J.Noiri On upper and lower weakly α -continuous Multifunctions, Novi sad J.Math., 32 (2002), 7-24.
- [22] V.Pop and T.Noiri, A unified theory of weak continuity for multifunctions, (submitted)