Single Phase Z Source Half Bridge Inverter

Reeto Jose K, Anisha Shivanandan, Vani Venugopal
PG Students(Power Electronics): EEE dept.
Vidya Academy Of Science\&Technology
Thrissur,India

Abstract

The novel Single phase \mathbf{Z} source half bridge inverter is presented as applying Z network in the half bridge inverter.The inverter can convert dc to ac.The proposed converter can solve limited voltage and shoot through problem. By using the Z network voltage source converter in the main circuit can be used as current source and vice versa.The proposed converter can solve the midpoint balance of the input capacitors.By using the Z source half bridge inverter it can improve the voltage as compared to the conventional half bridge inverter. The z network can overcome the disadvantage of voltage source inverter and the current source inverter. The Z network can be applied to dc-dc,dc-ac,ac-ac and ac-dc.The Z source half bridge inverter is working in the duty ratio of 1.2.It is a special case and it can act as buck boost converter by interchanging the duties of the switches. The proposed inverter is increases the efficiency. Total harmonics distortion in conventional half bridge inverter and the single phase z source half bridge inverter is 7.03% and 0.88% respectively.The proposed converter is simulated using MATLAB/Simulink.

Keywords-Half Bridge Inverter,MATLAB/Simulink,THD,Z network

I. INTRODUCTION

Inverter is used to convert dc to ac.In single phase halfbridge converters have their switches in series,[1] as shown in Fig. 1. Here shoot-through can occur which means that when a strong current flowing through the switches in the same leg makes them break down. Also, the ac output voltage is less than the dc voltage, which is called as the limited voltage problem, since, in practice, ac output voltage is sometimes required to be higher than the dc voltage. Still, an unbalanced midpoint ofinput capacitors in conventional half-bridge converters leads to large ripples.Thismaking the system unstable.

In order to overcome the disadvantages of voltage source inverter(VSI) and the current source inverter(CSI), Z network is proposed [2].It can act as buck boost converter, voltage source inverter in the main circuit can be interchanged to current source and vice versa.

The recently developed new inverter is Z-source inverter. It can produce any preferred output ac voltage, even better than the line voltage, irrespective of the input voltage, improves the reliability of the inverter greatly because the shoot-through states that might be caused by EMI noise can no longer destroy the inverter, and reduce the in-rush current and harmonics in the current owing to the Z-source network.

Furthermore it can solve the unbalanced midpoint voltage problem.

Fig. 1 Conventional Half Bridge Inverter

II. EQUIVALENT CIRCUIT

Fig.2. Consisting of single phase z source half bridge inverter [3]. The diode D is used to prevent the current from flowing backto the source. The inductors is used in the Z-networkis to eliminate strong current, when the switches are inthe shootthrough state.

Fig. 2 Proposed Inverter
The following conditions are assumed for simplicity

1) Entire components in the circuit are ideal
2) The dead time in the driving pulses is ignored
3) $C 1=C 2$ and $L 1=L 2$ in the Z-network
4) $C 1, C 2, C b 1$, and $C b 2$ has large value
5) The freewheeling diodes present in the switches are ignored.

III. Modes Of Operations

Duties of the switch S_{1} and S_{2} by d_{1} and d_{2}.

Case; $\mathrm{d}_{1}+\mathrm{d}_{2}>1$

There are three modes ofoperations.The switching period T.
T_{0} as the beginning of one period.
T_{1} as mode of transition instant from mode1 to mode2.

$$
\mathrm{T}_{1}=\mathrm{T}_{0}+\left\{\mathrm{d}_{2}+\mathrm{d}_{1}-1\right\} \mathrm{T}
$$

T_{2} as the mode of transition instant from mode2 to mode3

$$
\mathrm{T}_{2}=\mathrm{T}_{1}+\left\{1-\mathrm{d}_{2}\right\} \mathrm{T}
$$

T_{3} as the end of the period.

$$
\mathrm{T}_{3}=\mathrm{T}
$$

Mode $1 ; \mathrm{T} \in\left[\mathrm{T}_{0}, \mathrm{~T}_{1}\right]$

Fig. 3 Equivalent Circuit For $\mathrm{S}_{1} \mathrm{ON}$ And $\mathrm{S}_{2} \mathrm{ON}$
From Fig.3, In the loop1 C_{1} discharges the energy to the L_{1}, then $\mathrm{I}_{\mathrm{L} 1}$ increases $\mathrm{V}_{\mathrm{c} 1}=\mathrm{V}_{\mathrm{L} 1}(1)[3]$.
the loop2 C_{2} discharges the energy to the L_{2}, then $\mathrm{I}_{\mathrm{L} 2}$ increase, then $\mathrm{V}_{\mathrm{c} 2}=\mathrm{V}_{\mathrm{L} 2}$

The voltage across the diode V_{D} is negative because the anode voltage is less than the cathode voltage.

$$
V_{D}=-\left\{V_{c 1}+V_{c 2}-V_{i}\right\}
$$

The energy of C_{2} is delivered to R load and $\mathrm{C}_{\mathrm{b} 2}$ through theloop $\mathrm{C}_{2}-\mathrm{R}-\mathrm{C}_{\mathrm{m} 2}$. Therefore, $\mathrm{C}_{\mathrm{b} 2}$ charges and $\mathrm{C}_{\mathrm{b} 1}$ discharges.

Output voltage, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{c} 2}-\mathrm{V}_{\mathrm{cb} 2}(3)$
Mode2; $\mathrm{T} \in\left[\mathrm{T}_{1}, \mathrm{~T}_{2}\right]$
As shown in Fig. $4 \mathrm{~S}_{1}$ is $\mathrm{ON}, \mathrm{S}_{2}$ is OFF. In the loop1
$\mathrm{V}_{\text {in }}$ and L_{1} discharges the energy to the C_{2}.
$\mathrm{V}_{\mathrm{c} 2}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{L} 1}(4)$
The energy of C_{2} is delivered to the load R and $\mathrm{C}_{\mathrm{b} 2}$ through the loopC $\mathrm{C}_{2}-\mathrm{R}-\mathrm{C}_{\mathrm{b} 2}$. Therefore, $\mathrm{C}_{\mathrm{b} 2}$ charges and $\mathrm{C}_{\mathrm{b} 1}$ discharges. Output voltage,

$$
\mathrm{V}_{0}=\mathrm{V}_{\mathrm{c} 2}-\mathrm{V}_{\mathrm{cb} 2}
$$

Fig.4Equivalent Circuit for $\mathrm{S}_{1} \mathrm{ON}$ And $\mathrm{S}_{2} \mathrm{OFF}$
Mode3; $\mathrm{T} \in\left[\mathrm{T}_{2}, \mathrm{~T}_{3}\right]$

Fig. 5 Equivalent Circuit For S_{1} OFF And $\mathrm{S}_{2} \mathrm{ON}$
Fig. 5 consist of S_{1} is OFF, S_{2} is ON. In the loop1 V_{i} and L_{1} discharges the energy to $\mathrm{C}_{2} \cdot \mathrm{~V}_{\mathrm{c} 2}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{L} 1}$

In loop2 V_{i} and L_{2} discharges the energy to the C_{1}.The energy of L_{2} and $C_{b 2}$ delivered to load R.So $C_{b 1}$ charges and $C_{b 2}$ is discharges.

From the loop $\mathrm{V}_{\text {in }}-\mathrm{D}_{1}-\mathrm{C}_{1}-\mathrm{R}-\mathrm{C}_{\mathrm{m} 2}$, the output voltage is

$$
\begin{equation*}
\mathrm{V}_{0}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{cl} 1}-\mathrm{V}_{\mathrm{cb} 2} \tag{7}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{cl} 1}=\mathrm{V}_{\mathrm{c} 2}=\left\{2-\mathrm{d}_{1}-\mathrm{d}_{2}\right\} \mathrm{V}_{\mathrm{i}} /\left\{3-2\left\{\mathrm{~d}_{1}+\mathrm{d}_{2}\right\}\right\}$
$\mathrm{V}_{\mathrm{cb} 2}=\left\{2 \mathrm{~V}_{\mathrm{c} 2}-\mathrm{V}_{\mathrm{i}}\right\} \mathrm{d}_{1}-\mathrm{V}_{\mathrm{c} 2}+\mathrm{V}_{\mathrm{i}}$
When $\mathrm{d}_{1}=0.5$ the proposed converter act as the single phase inverter but it exceed the output voltage ($\mathrm{V}_{\text {in }} / 2$ and $\mathrm{V}_{\text {in }} / 2$)than the conventional one[3].
IV. Simulation Result

TABLE1.Simulation parameters and values

Parameters	Values
V_{i}	40 V
$\mathrm{X}_{\mathrm{c}} \%$	0.00048
$\mathrm{X}_{\mathrm{L}} \%$	0.699
R	10Ω
$\mathrm{~L}_{1}, \mathrm{~L}_{2}$	$100 \mu \mathrm{H}$
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{\mathrm{b} 1}, \mathrm{C}_{\mathrm{b} 2}$	$470 \mu \mathrm{~F}$

Fig. 6 SimulationFor $S_{1}=0.5$ and $S_{2}=0.7$

Fig. 7 Simulation Results

Fig. 8 Simulated Output Voltage Waveform

Fig. 9 Frequency Domain Response Of Inverter

Fig. 10 Harmonics Order Analysis Of Inverter

CONCLUSION

The proposed single phase Z source half bridge inverter is improved the output voltage than the conventional one.The voltage across $\mathrm{C}_{\mathrm{b} 1}$ and $\mathrm{C}_{\mathrm{b} 2}$ are $\mathrm{V}_{\mathrm{cb} 1}=\mathrm{V}_{\mathrm{cb} 2}=20 \mathrm{~V}$. So midpoint voltages are balanced. The proposed converter is simulated using MATLAB/Simulink.Total harmonics distortion in conventional half bridge inverter and the single phase z source half bridge inverter inverter is 7.03% and 0.88% respectively.

References

1. Muhammad H.Rashid, Power Electronics Circuits, Devices and Applications, Third Edition, Pearson Education 2004.
2. F. Z Peng, "Z-Source Inverter" IEEE Trans. Ind. Appl., vol. 39, no. 2, Mar./Apr. 2003
3. Guidong Zhang, ZhongLi, Bo Zhang,DongyuanQiu, Wenxun Xiao, and Wolfgang A. Halang "A Z-Source Half-Bridge Converter" IEEE Trans on industrial electronics,Vol. 61, no.3,March 2014
