

Simulation and Synthesis Model for the Addition of Single Precision

Floating Point Numbers Using VERILOG

Ravi Payal

School of Electronics, CDAC,Noida

1. Abstract

Single Precision floating point adder designed to fully conform to the IEEE 754 standard. In

its fully-featured format, this adder supports all rounding modes: round to nearest even, round

to plus infinity, round to minus infinity, and round to zero; it supports de-normalized numbers

as both input and output; it supports all applicable exception flags: overflow, underflow,

inexact, and invalid; it supports trapped overflow and underflow, where the result is returned

with an additional bias applied to the exponent. The main objectives of the paper are the

following is to design an adder for two positive floating point binary numbers which support

all rounding modes.Therefore, Verilog programming for IEEE single precision floating point

multiplier module have been explored.

Keywords - Floating point, Verilog, Precesion Synthesis, Xilinx

2. INTRODUCTION

 Floating point describes a method of representing real numbers in a way that can support a

wide range of values. Numbers are, in general, represented approximately to a fixed number

of significant digits and scaled using an exponent. The base for the scaling is normally 2, 10

or 16. The typical number that can be represented exactly is of the form:

Significant digits × base
exponent

The student author designed the model for the Addition of two Positive Floating Numbers

using Verilog. Verilog is a hardware description language (HDL) used to model electronic

systems. This binary floating point adder designed to fully conform to the IEEE 754 standard.

In its fully-featured format, this adder supports all rounding modes: round to nearest even,

round to plus infinity, round to minus infinity, and round to zero; it supports denormalized

numbers as both input and output; it supports all applicable exception flags: overflow,

underflow, inexact, and invalid; it supports trapped overflow and underflow, where the result

is returned with an additional bias applied to the exponent.

2917

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

Due to performance constraints, only a subset of this standard is implemented in our paper.

This standard gives an overview of floating point and its representation, including: floating-

point numbers, special values such as zero, infinity, NaN, special operations

and rounding modes.

2.1 IEEE Standard 754 Floating Point Numbers

IEEE Standard 754 floating point is the most common representation today for real numbers

on computers, including Intel-based PC's, Macintosh, and most UNIX platforms. Fixed point

places a radix point somewhere in the middle of the digits, and is equivalent to using integers

that represent portions of some unit. Another approach is to use rationals, and represent every

number as the ratio of two integers.

Floating-point representation is the most common solution. It is basically represents real

numbers in scientific notation. Scientific notation represents numbers as a base number and

an exponent. Floating-point, on the other hand, employs a sort of "sliding window" of

precision appropriate to the scale of the number. This allows it to represent numbers from

1,000,000,000,000 to 0.0000000000000001 with ease.

2.2 Single precision floating-point format

In IEEE 754-2008 the 32-bit base 2 format is officially referred to as binary32. It was called

single precision in IEEE 754-1985. In older computers, some older floating point format of 4

bytes was used. This format is used due to its wider range over fixed point (of the same bit-

width), even if at the cost of precision. The IEEE 754 standard specifies a binary32 as having:

 Sign bit (1 bit): Sign bit determines the sign of the number.

 Exponent width (8 bits): Exponent is either an 8 bit signed integer from -128 to 127 or

an 8 bit unsigned integer from 0 to 255.

 Significance and precision: 23 bits

2918

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

3. Algorithm for Adder Unit

The adder provides a partial implementation of IEEE 754 addition. The algorithm for floating

point addition is actually particularly heinous to implement, involving several carefully-made

bit selects, several shifts, and in its full form normalization and rounding using guard digits to

determine how the final significance and must be rounded, if necessary. The full algorithm

for addition in its simplest form is as follows:

a) Exponent subtraction: Perform subtraction of the exponents to form the absolute

difference |E_a - E_b| = d.

b) Alignment: Right shift the significance and of the smaller operand by d bits. The

larger exponent is denoted E_f.

c) Significance and addition: Perform addition on the operands.

d) Normalization: Normalize the significance and update E_f appropriately.

e) Rounding: Round the final result by conditionally adding one. If rounding causes an

overflow, perform a 1-bit right shift and increment E_f.

The student author implemented required algorithm in Verilog HDL. First, the six sub blocks

in Verilog were designed and after that these sub blocks were instantiated in a single Verilog

Module. For the simulation result, the Test Bench was coded in Verilog HDL and the

different test cases were defined.

3.1 Design

3.3.1 Inputs and Outputs

The adder takes three inputs: the two floating point operands and a control field (Fig. 1).

The control field is 5 bits long. To enable the trap handlers, the appropriate bit is set high.

The two least significant bits (LSBs) define the rounding mode as shown in Table 1. Bit 4 is

used to select the operation, as shown in Table 2.

2919

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

The adder has two outputs: the floating point result, and a flag field (Fig. 2). Appropriate flag

bit will be set if respective condition is satisfied.

3.3.2 Sub Module Description

a) fpalign

The inputs are checked for zero which is determined by its exponent (if the exponent is all

zeros) then the input is called zero. This means that denormalized inputs will result in a high

zero input flag. So that denormalized numbers are handled correctly as its exponent part is

zero. The inputs are then separated into the larger and smaller through a comparison of all

their exponent and significand bits. The amount to shift the significand to align them properly

is determined by the difference between the two exponents. If this shift amount is more than

the number of bits in the significand plus three, the significand that is being shifted can be

just shifted by the number of bits in the significant plus three. This will result in correct

addition while still maintaining all sticky and guard bit information. The significant of the

smaller input is right shifted by the calculated amount.

2) Mantadd

The shifted mantissas are then sent to the adder. Only the top [bits in significant + 3] bits of

the mantissas are added, because this is the minimum number needed to get an accurate

result. This means many of the bits of the smaller mantissa are not involved in the addition

(since it was right shifted), and the most significant of these bits is stored as the guard bit, and

the OR of the rest is stored as the pre-sticky bit.

2920

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

3) Normalize

The result of the addition or subtraction is normalized. First, the number of leading zeros is

determined with logic similar to a priority encoder. It is the amount to shift the mantissa for

normalization. The exponent also has to be adjusted to make up for the shift, so the shift

amount is also subtracted from the larger exponent. For denormal results, instead of left

shifting by the amount of leading zeros, the sum is left shifted by the value of the bigger

exponent. After all the shifting, the final significand is determined by considering the pending

special cases. The rejected bits are ORed to get the sticky bit and the round bit is the XOR of

the guard and sticky bits. Some useful flags are also determined at this point. If all the bits of

the result of the effective operation on the mantissas are zero, the zero result flag is set. If

either the round or sticky bits are high, the inex flag is set. If after addition overflows exits

then when overflow trap handler is high then overflow flag is set.

4) Rounder

Now the final significand is rounded according to the respective rounding modes (whichever

is set in control field). If the final significand is incremented, it could overflow. The final

exponent has to be adjusted. MSB of the sum, actually the overflow bit. Since the final

exponent has to be adjusted by one anyway, the case of overflow on rounding is accounted

for by an incrementing of two rather than one. In binary, incrementing by 2 is almost the

same as incrementing by one, except the incrementing starts at the second-to-least significant

bit, rather than the LSB. At this point the final, correctly rounded, significand has been

determined, as well as the final exponent

5) Final

Finally, the exception flags are determined and the final result is pieced together and placed

into „result‟. Overflow is signalled when the exponent overflows or is all ones and overflow

is trapped. Underflow is signalled when the result is tiny and inexact or if underflow is

trapped, when the result is tiny. Invalid is signalled if an input was a NaN or infinity. Inexact

is signalled if the result was inexact or if an untrapped overflow/underflow occurred, and the

inputs weren‟t special cases.

6) Special

This is part of a floating point adder which sets special internal flags for floating point inputs

: infinity, NaN, signaling NaN.

2921

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

3. Result

The code for the Addition of two positive single precession floating point number was written

in Verilog HDL. The different Sub blocks were implemented in Verilog HDL mostly using

Data flow style of Modeling. After that all these blocks were instantiated in a single module.

Test cases for Different combination were coded. The code was simulated in Mentor

Graphics tool “ModelSim-6.5c”. The simulation results were obtained in its wave form

window. All the Required conditions are achieved. The output waveforms for different

conditions are shown below.

3.1 Output waveform of two normalize inputs

 Fig3.When both the inputs are normal, the output is also normal.

3.2 Output Waveform when both the input are zero

Fig4.When both the inputs are zero, the output is also zero.

2922

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

3.3 Output waveform when one input is zero and other input is infinity

Fig5.When one input is zero and another input is infinity, the output is infinite.

3.4 Output waveform when one input is zero and other is de-normalize input

Fig6.When one input is zero and another input is denorm, the output is normal.

3.5 Output waveform when one input is zero and other is NaN input

Fig7.When one input is zero and another input is NaN, the output is NaN.

2923

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

a) Synthesis Result

The code was successfully synthesized using EDA tool “Precision RTL Plus”. The target

device was Xilinx - VIRTEX-6: 6VLX75TFF484. The number of LUTs slices utilized was

519, the number of CLBs used was 65 and the number of bonded IOBs used was 104. The

Slack calculated was 1.033ns. The RTL schematic view, RTL hierarchy schematic and

critical path are shown below as Fig. 8, Fig. 9 and Fig. 10 respectively.

Fig 8: RTL Schematic View

Fig 9: RTL Hierarchy Schematic View

2924

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

Fig. 10: Critical Path

4. Conclusion

The results obtained are very encouraging. The student author has successfully added many

floating point numbers. As mentioned earlier, in this paper the student author has only taken

single precision positive binary floating point numbers which conform to the IEEE 754

standards. The functional units are flexible and also give output for various special inputs

like when zero, infinity value is given. It also supports demoralized numbers as both input

and output. It also supports all applicable exception flags: overflow, underflow, inexact, and

invalid; along with trapped overflow and underflow, where the result is returned with an

additional bias applied to the exponent.

5. References

[1] L. Eisen, J.W.Ward III, H.-W. Tast, N. Mading, J. Leenstra,S. M. Mueller, C. Jacobi,

J. Preiss, E. M. Schwarz, and S. R. Carlough. IBM POWER6 accelerators: VMX and

DFU. IBM Journal of Research and Development, 51(6):663.684, 2007.

[2] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J. Bohizic. Decimal

_oating-point in z9: An implementation and testing perspective. IBM Journal of Research

and Development, 51(1/2):217.228, 2007

[3] Irvin Ortiz Flores,” Optimizing the Implementation of Floating Point Units for FPGA

Synthesis” Electrical and Computer Engineering Department

[4] Sukhdep kaur Bhatia,Ravi Payal, Dinesh chandra “A Fully Synthesizable Single

Precision Floating Pony Multiplier”

[5] Verilog Hdl, Samir Palnitkar

[6] Wakerly, John F., “Digital Design – Principles and Practices”, Tata McGraw Hill

Series

2925

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90913

