
Simulation and High Level Synthesis of Gated 

Recurrent Unit for Field Programmable Gate 

Array 
 

Neil Derick 
PG Student,  

Electronics and Communication Engineering Dept. 

TKM Institute of Technology 

Kerala, India 

  

Lakshmy G B 
Head of the Dept., Electronics and Communication 

Engineering Dept. 

TKM Institute of Technology 

Kerala, India 

 

 

 
Abstract—Data like biometric signals, weather monitoring, 

stock prices etc. are sequential, patterned and based on time. 

Accurate predictions on time series data helps in understanding 

the future outcome of a given data. Gated Recurrent Unit 

(GRU) is a type of neural network that can be used to predict 

time series data. GRU is usually implemented in devices with 

higher computing resources like a CPU or GPU. Hence, GRU 

cannot be used with devices having low computing resources 

(like microcontrollers or embedded computers). Implementing 

GRU on Field Programmable Gate Array (FPGA) would allow 

devices having low computing resources to use GRU. However, 

FPGA implementation of any such network should meet with 

the requirement of optimum resource utilization, speed, and 

accuracy. GRU was designed in C++ with pre-trained weights 

obtained from PyTorch. High Level Synthesis for two different 

GRU architectures were done - one-to-one and many-to-one. 

This gave an insight on the trade-off between resource 

utilization, speed, and accuracy for both the architectures. One-

to-one architecture had lower resource utilization and provided 

outputs at faster rate than many-to-one architecture. However, 

many-to-one architecture was found to have better average 

accuracy than one-to-one architecture.  

 

Keywords— High Level Synthesis, Gated Recurrent Unit, 

Field Programmable Gate Array, One-To-One GRU Architecture, 

Many-To-One GRU Architecture 

I.  INTRODUCTION 

Data like biometric signals, weather monitoring, stock 

prices etc. are sequential, patterned and based on time. An 

accurate prediction on time series data helps in understanding 

the future outcome of a given data. For such kind of prediction 

Recurrent Neural Networks (RNN) are used. Recurrent neural 

networks recognize data’s sequential characteristics and use 

patterns to predict the next likely scenario. Vanishing gradient 

problem is a major drawback of RNN. So, Long Short-Term 

Memory (LSTM) is the most widely used recurrent neural 

network representation for modelling sequential data. LSTM 

has feedback connections, unlike conventional feed-forward 

neural networks, i.e., it can process the entire sequence of 

data, apart from single data points such as images [6]. This 

finds application in speech recognition, machine translation, 

etc. LSTM shows outstanding performance on a large variety 

of problems. However, it is assumed an expensive modelling 

architecture as it requires many hardware components to be 

implemented, which is inefficient in solving problems based 

on small datasets. GRU is like LSTM but uses a lesser number 

of parameters. So, it is faster. GRU is found to be best suitable 

for applications having fewer datasets. RNN and similar 

networks (LSTM and GRU) are usually implemented using 

software and used in personal or super computers. Thus, they 

are limited to devices with high performance specifications. 

Hence, it becomes difficult to use RNN or similar networks in 

applications that use devices having lower computing 

resources. Field Programmable Gate Arrays (FPGA) are 

semiconductor devices that can be used to implement digital 

circuit. They are faster than a CPU for executing programs 

specific to the desired application. Hence, implementing 

RNN, LSTM or GRU in an FPGA can allow these networks to 

be used with low end devices [3][4][9]. Optimum resource 

utilization and speed are one of the important factors to be 

considered while implementing such networks on FPGA. 

There is always a trade-off between resource utilization and 

speed. So, it is up to the designer on how the design can be 

optimized. 

II. BACKGROUND 

Devices used for embedded applications often have limited 

hardware resources. Using GRU along with such devices 

becomes difficult. This difficulty is due to the latency and 

memory utilization of the network. Hence, GRU is usually 

implemented in devices having higher computing capabilities 

like a high-end CPU or GPU. Evolution of FPGA has helped 

with implementing complex digital circuits in an easier 

manner. Furthermore, with the help of High Level Synthesis 

(HLS) one can easily implement algorithmic structures (like 

FFT or neural networks) into digital circuit by writing C or 

C++ code. Implementing GRU in an FPGA will allow GRU 

and similar networks to be used with devices with low 

computing resources. 

A. Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is a type of RNN. GRU 

like LSTM, aims to solve the vanishing gradient problem 

which comes with a standard RNN. GRU has lesser number of 

parameters than LSTM. A GRU cell has an update gate and a 

reset gate. Basically, these are two vectors which decide what 

information should be passed to the output. GRU is best 

suitable for application with fewer of dataset.  

𝑟𝑡 = 𝜎(𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑟 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑖𝑟)   (1)  

 rt is the reset gate.  

𝑧𝑡 = 𝜎(𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑖𝑧)   (2)  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040268
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

470

www.ijert.org
www.ijert.org
www.ijert.org


 zt is the update gate.  

𝑛𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝑟𝑡 ⊗ (𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑖𝑟))  (3)  

 nt is the memory content.  

ℎ𝑡 = (1 − 𝑧) ⊗ 𝑛𝑡 + 𝑧𝑡 ⊗ ℎ𝑡−1     (4) 

 ht is the output. Input to the GRU is denoted as xt. ht also 

serves as an input to the next layer if there exist multiple 

layers. 𝜎 is used to represent sigmoid activation function. 

Other activation function used is tanh. 

B. High Level Synthesis 

Algorithms are more difficult to be expressed by using 

Hardware Description Languages (HDL). High Level 

Syn thesis (HLS) enables algorithms to be expressed more 

easily, with faster development time. HLS allows the designer 

to use C or C++ to implement algorithms as a digital circuit. 

GRU is defined as an algorithm, so it can be implemented 

using C++. This effectively reduces the time to design the 

network using an HDL. HLS tool runs the RTL 

implementation along with code optimization. The designer 

has better control over how the design should be optimized. 

HLS would give an insight into the resource utilization and 

latency of the GRU network. HLS tool generates IP core for 

the synthesized code. This IP core can later be used for FPGA 

implementation. 

III. HIGH LEVEL SYNTHESIS OF GATED 

RECURRENT UNIT 

A feed-forward GRU network is used for synthesis and 

simulation. The weights should be obtained from a pretrained 

network. Pre-training can be done with PyTorch. PyTorch is 

an open-source machine learning framework. PyTorch comes 

with GRU model that can be used to create a two-layer 

network. After training, the trained weights can be obtained. 

These weights correspond to the equations 1, 2, 3 and 4. High 

Level Synthesis can be done for two different architectures - 

One-to-one and Many-to-one. A feed-forward GRU network 

is created using C++. Figure 1 shows the proposed GRU 

network. The pre-trained weights obtained from PyTorch 

GRU network is added to the feed-forward network in C++. 

Activation functions can be implemented in C++ by two 

methods. One is by using the functions available in the built-in 

math library. Second method is by directly framing each 

component that makes up the activation function into the C++ 

code. The two approaches have different results in terms of 

resource utilization and speed.  

Generalized equations are:  

𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥 / 𝑒𝑥 + 𝑒−𝑥)   (5)  

𝜎(𝑥) = 1 / (1 + 𝑒 −𝑥) (6)  

Equations 5 and 6, both utilize exponential function 𝑒𝑥 in 

generating the output. 𝑒 𝑥 can also be generalized.  

𝑒𝑥 = 1 + 𝑥 + 𝑥2/2 + 𝑥3/6 + ...    (7) 

A. One-to-One architecture 

One-to-one architecture has a single input and a single 

output. The layers are arranged in such a way that the output 

from one layer forms the input for the next layer. Here, as 

shown in figure 1(a) output of GRU layer 1 forms the input 

for GRU layer 2. Finally, the output is given by a linear layer. 

Since, there are two GRU layers, pipelining can be applied to 

optimize performance. 

 
Figure 1. Proposed GRU networks. (a) One to One Architecture with 2 GRU 

layer. (b) Many to One Architecture with a single GRU layer 
 

1) Pipelined GRU network 

A pipelined architecture always provides better 

performance that a non-pipelined architecture. HLS tool can 

be used to implement pipelined architecture of the designed 

GRU network. The synthesized network has clock intervals 

111 cycles for layer 1, 105 cycles for layer 2 and 5 cycles for 

the final linear layer. The total time interval would be 221 

clock cycles. Figure 2 shows non-pipelined GRU network. 

Once an input is given the output is obtained after a time 

interval of 221 clock cycles. In this type of architecture, there 

is a need to wait for an interval of 221 clock cycles to give 

the next input. Figure 3 shows a pipelined GRU network. 

Considering an initiation interval (II) for pipelining, input can 

be given at every interval equal to II and can expect an output 

after an interval equal to II. Thus, the pipelined network 

provides output at a faster rate as compared to the non-

pipelined network. Figure 3 shows an II of 105 clock cycles. 

Thus, input can be given at every 105 clock cycles and 

expecting an output after every 105 clock cycles. 

 
Figure 2. Non-Pipelined Network 

 

 
Figure 3. Pipelined Network 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040268
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

471

www.ijert.org
www.ijert.org
www.ijert.org


B. Many-to-One architecture 

Many-to-One architecture can have multiple inputs (and also 

multiple GRU layers) and a single output. Here, as in figure 

1(b) two input GRU is used. The two outputs appearing are 

combined using a linear layer. For such architecture weights 

are no more 1 dimensional (as in section 3-A), but 2 

dimensional matrices. Hence, each weight corresponding to 

equations 1, 2, 3 and 4 are 2x2 matrices. Hence, for 

computation matrix multiplication must be done. This can use 

up more resources as compared to one-to-one architecture. 

Pipelining was not done as there is only a single layer. 

Although, a more optimized code can provide better results. 

IV. RESULTS 

The FPGA based GRU network (GRU-FPGA) should be 

able to predict output based on the given input (or inputs). A 

comparison between the output of GRU-FPGA and GRU-

PyTorch gave the accuracy of the proposed networks. For this 

a simulation testbench was created to simulate the GRU-

FPGA network against test inputs [1]. Simulation and 

synthesis of the two GRU networks as in figure 1 gave a 

detailed comparison of resource utilization and speed of 

computation as discussed in section 3. Simulation provided 

timing analysis and synthesis provided resource utilization of 

the proposed network. Simulation was done considering a 

system clock of 10ns. 

A. Resource utilization 

Resource utilization is different for both the proposed 

architectures (one-to-one and many-to-one). Many-to-one 

architecture consumed more resources than one-to-one 

architecture. Table I shows a comparison in resource 

utilization when one-to-one architecture is synthesized using 

built-in math library and general equation (Eq 5, 6 and 7). 

Table III also shows the resource utilization when using built-

in math library and general equation for many-to-one 

architecture. When using built-in math library, more resources 

were utilized than implementation using general equation. 

Comparing table 1 and table 2, resource utilization was 

significantly larger for many-to-one architecture. Realizing the 

activation functions using built-in math library utilized more 

resources, while implementation using general equations 5, 6 

and 7, the resource utilization got reduced. 

1) Resource utilization in pipelined network (One-to-One) 

 Pipelining was applied to the one-to-one GRU network 

with activation functions realized using general equation 

(because of lesser utilization). There is a further reduction in 

resource utilization when pipelining (as in section 3-A.1) the 

network. Table III shows the comparison in resource 

utilization for non-pipelined and different pipelined networks. 

Without pipeline, the utilization remains the same. However, 

with a pipeline interval of 111 clock cycles, resource 

utilization is less than non-pipelined network. With a pipeline 

interval of 105 clock cycles, resource utilization gets further 

reduced. 
TABLE I.   

RESOURCE UTILIZATION (ONE-TO-ONE) - MATH LIBRARY VS 

GENERAL EQUATION. 

 DSP Flip-Flops LUTs 

Built-in Math 27 2326 3322 

General Equation 15 2313 3215 

TABLE II.   

RESOURCE UTILIZATION (MANY-TO-ONE) - MATH LIBRARY 

VS GENERAL EQUATION. 

 DSP 
Flip-

Flops 
LUTs BRAM 

Built-in Math 104 12497 15907 7 

General Equation 20 8073 11196 1 

 

TABLE III. 

RESOURCE UTILIZATION (ONE-TO-ONE) - NON-PIPELINED VS 

PIPELINED 

 DSP Flip-Flops LUTs 

Non-pipelined 15 2313 3215 

Pipelined - II 105 5 1612 2491 

Pipelined - II 111 5 1650 2440 

 

B. Time Analysis 

Time analysis for the network was done same as in section 

4.1. One-to-one architecture with built-in math library yields 

faster result (1550ns) for a single computation as compared to 

generalized mathematical functions (2200ns). Similarly, 

many-to-one with built-in math library yields faster result 

(3310ns) for a single computation as compared to generalized 

mathematical functions (3450ns). This can be seen as a trade-

off between resource utilization and speed. Time analysis for 

one-to-one pipelined architecture was done using test bench 

containing test input dataset. The output of the simulation was 

used to calculate the accuracy of the network. 

1) Non-Pipelined vs Pipelined Network (One-to-One) 

The output appeared at a faster rate than a non-pipelined 

network as in figure 3. For getting the total computation time, 

19 consecutive test inputs were given to the non-pipelined and 

pipelined network. It was observed that the non-pipelined 

network took 39.8𝜇s for providing all the inputs whereas, it 

took 21.2𝜇s for a pipelined network of II 111 and 20.2𝜇s for 

pipelined network of II 105. Hence, a pipelined network 

provided all the outputs in a faster rate for the corresponding 

inputs. Noting the time taken for many-to-one architecture 

with the same test inputs took 59.8𝜇s when using built-in math 

library and 62.3𝜇s when using general equation. 

C. Accuracy 

Resource budgeting and speed optimization of GRU-FPGA 

along with good prediction accuracy is need for a usable 

FPGA architecture. Hence, the output of GRU-FPGA was 

compared against GRU-PyTorch. Prediction for one-to-one 

architecture using GRU-PyTorch had an average accuracy of 

98% and GRU-FPGA had 97% accuracy. Prediction for 

many-to-one architecture using GRU-PyTorch and GRU-

FPGA had an average accuracy of 98%. 

 

V. CONCLUSION 

High Level Synthesis and simulation of one-to-one and many-

to-one GRU architecture was done to realize resource 

utilization, speed, and accuracy of prediction for FPGA 

implementation. Techniques for resource budgeting includes 

implementing activation functions using built-in math library 

and as a general equation. Implementation using general 

equation gave lesser resource utilization but more time for 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040268
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

472

www.ijert.org
www.ijert.org
www.ijert.org


prediction. For one-to-one architecture pipeline interval of 105 

clock cycles gave lesser resource utilization and with results 

appearing at faster rate. Many-to-one architecture had more 

resource utilization and lesser speed than one-to-one 

architecture. But, many-to-one architecture (98% average 

accuracy) was more accurate than one-to-one architecture 

(97% average accuracy). Therefore, from the results obtained 

it can be concluded that, there is always a trade-off between 

resource utilization, speed, and accuracy. If one is looking for 

accuracy, many-to-one architecture seems to be the choice. 

 

REFERENCES 
[1] Neil Derick, “Dataset and simulation results of hls,” 2023, mendeley 

Data, V1. [Online]. Available: https://dx.doi.org/10.17632/hv8b5yjtzb. 

[2] B. James Romaine and M. P. Mart ´ın, “High-throughput low power 

area efficient 17-bit 2’s complement multilayer perceptron components 
and architecture for on-chip machine learning in implantable devices,” 

IEEE Access, vol. 10, pp. 92 516–92 531, 2022.  

[3] Z. S. Zaghloul and N. Elsayed, “The fpga hardware implementation of 
the gated recurrent unit architecture,” in SoutheastCon 2021, 2021, pp. 

1–5.  

[4] U. Yoshimura, T. Inoue, A. Tsuchiya, and K. Kishine, “Implementation 
of low-energy lstm with parallel and pipelined algorithm in small-scale 

fpga,” in 2021 International Conference on Electronics, Information, 

and Communication (ICEIC), 2021, pp. 1–4. 
[5] S. Bouguezzi, H. Faiedh, and C. Souani, “Hardware implementation of 

tanh exponential activation function using fpga,” in 2021 18th 

International Multi-Conference on Systems, Signals & Devices (SSD), 
2021, pp. 1020–1025. 

[6] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-based ecg 

classification for continuous monitoring on personal wearable devices,” 
IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 

515– 523, 2020. 

[7] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-based ecg 
classifi cation for continuous monitoring on personal wearable 

devices,” IEEE Journal of Biomedical and Health Informatics, vol. 24, 

no. 2, pp. 515– 523, 2020.  
[8] A. E. Syahrulanuar Ngah, Rohani Abu Bakar and S. Razali, “Two-steps 

implementation of sigmoid function for artificial neural network in 

field programmable gate array,” April 2016. 
[9] A. X. M. C. et al., “Recurrent neural networks hardware 

implementation on fpga,” November 2015. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040268
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

473

www.ijert.org
www.ijert.org
www.ijert.org

