
Shuffle Performance in Apache Spark

Nirali Rana

Department of Computer Engineering

GTU PG School, Gujarat Technological University

Ahmedabad , India.

Shyam Deshmukh
Assistance Professor: dept. of IT

Pune Institute of Computer Technology,

Pune, India.

Abstract— Apache Spark is a cluster computing framework

that performs in memory computing and responsible for

Scheduling, Distributing and Monitoring Applications. Two

types of factors to improving Spark performance: Optimization

and Latency Hiding. In distributed data processing platforms is

common to collect data in many fashion, a stage traditionally

known as shuffle Phase. Using this two factors compare the

performance between Hadoop and Spark. In this paper, Apache

Spark Shuffle is faster than Hadoop Shuffle.

Keywords—Apache Sparkt; Shuffle;Hadoop

I. INTRODUCTION

Apache Spark is an open-source analytics cluster

computing framework developed in AMP Lab at UC

Berkeley [11]. Apache Spark is a general purpose cluster

computing system with the goal of outperforming disk-based

engine like Hadoop. Spark is an implementation of Resilient

Distributed Datasets[RDD]. It provides high level APIs in

Java, Scala and Python. Mostly Scala is use in Spark

programming. Spark enables applications in Hadoop clusters

to run up to 100x faster in memory and 10x faster running on

disk. It comes with a built-in set of over 80 high-level

operators. Apache Spark has been used by many companies

including Amazon, Facebook, Yahoo and GroupOn.

Spark Stack offers an integrated framework for advanced

analytics including machine learning library (MLLib), a

graph engine (GraphX), a streaming analytics engine (Spark

Streaming) and a fast interactive query tool (Shark). Apche

Spark is based on two key concepts: Resilient distributed

Datasets (RDD) and Directed Acyclic Graph (DAG). An

RDD is a read-only collection of objects partitioned across a

set of machines that can be built if a partition is lost. Spark

performance feature is low Latency computations by caching

the working dataset in memory and then performing

computations at memory speeds. Spark is capable of reading

from HBase, Hive, Cassandra and HDFS data source.

Spark Driver controls the workflow and Spark workers

launches executors responsible for executing part of the job

submitted to spark driver through cluster node. Spark driver

has few components: 1) RDD 2) Scheduler 3) Serializer 4)

Shuffle. Spark Worker has two components: 1) Task and 2)

Block Manager.

1) RDD: Resilient Distributed Datasets (RDD) is a basic

abstraction in Spark. RDD represents a partitioned collection

of elements that can be operated on in parallel [8].

2) Scheduler: Spark’s scheduler uses representation of

RDDs. Scheduler assigns task to machines based on data

locality using delay scheduling.

3) Serializer: Spark sterilizer that uses Java’s built-in

serializer. It is used for stream of reading serializer object.

4) Shuffle: In Spark, Shuffle creates a large number of

shuffles (M*R). Shuffle refers to maintaining a shuffle file

for each partition which is the same as the number of reduce

task R per core C rather than per Map task M. Every machine

needs to handle only C*R number of shuffle rather than

M*R.

Fig. 1. Spark Driver Execution flow

II. OPTIMIZATION AND LATENCY HIDING

A. Optimization in Spark

In Apache Spark, Optimization implements using

Shuffling techniques. In this paper we use shuffling technique

for optimization. The optimize shuffle performance two

possible approaches are 1) To emulate Spark behavior by

merging intermediate 2) To create large shuffle files 3) Use

columnar compression to shift bottleneck to CPU. For

shuffling shuffle data is required. Spark compressibility was

low and involves significant computation and metadata

maintenance for splitting data into columns on map side and

reconstructing them into rows on reduce side.

One of the key optimization factors was the Shuffle. With

other two factors was sorting algorithm and the external

sorting service. In this paper choose optimize shuffle file

performance in the Spark distributed computing platform.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020241

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

177

Optimization Limitation:

 Lack of iteration support

 High latency due to persisting intermediate data

onto diak

B. Latency Hididng in Spark

Apache Spark which has taken the strength of Hadoop

and made improvements in a Hadoop’s weakness and

provides more efficient batch processing framework with a

much lower latency. Prefetching is a latency hiding

technique. It has to increase parallelism of tasks so as to keep

the CPU busy by fetching the data before it is required.

Prefetching has several factors. Emerging trends such as

putting data and services into the cloud and services will

suffer from latency. A real-time data prefetching algorithm

based on when pushing shuffle files prior to the completion

of the map phase.

III. SHUFFLE OVERVIEW

Shuffle Phase is a component of Spark Driver. A shuffle

is a communication between one input RDD and an Output

RDD. Each shuffle has a fixed number of mappers and a

fixed number of reduce partitions. Shuffle writer and Shuffle

reader handle the I/O for a particular task, operating on

iteration of RDD elements. When a shuffle has an

Aggtrgator, the Shuffle Manager and its readers and writers

are responsible for external spilling.

Shuffle works in two stages: 1) Shuffle writes

intermediate files to disk and 2) fetch by the next stage of

tasks.

Shuffle operation is implemented differently in Spark

compared to Hadoop. The values of M and R in Hadoop are

much lesser. The number of shuffle files in Spark scales with

M*R , a smaller number of map task and reduce task may

provide more justification for the way Spark handles Shuffle

files on the map side [11].

Fig.2. Shuffle Work

A. Map Side Shuffle

Each map task in Spark writes outs a shuffle file for every

reducer. These files are not intermediately in the sense that

Spark does not merge them into large partition. Since

scheduling overhead in Spark is much lesser the no. of

mappers (M) and reducers ® is higher than in Hadoop. Thus,

shipping M*R files to the respective reduces could result in

significant overheads.

Spark also provides a parameter to specify compression

libraries to compress map outputs. It could be default. Default

uses 33KB of buffer for each open file and significantly

reduces risk of encountering out-of-memory error.

B. Reduce side Shuffle

A major difference between Hadoop and Spark is on the

reduce side. Spark requires to all shuffle data to fit in memory

of the corresponding reduce task. Where the reducer task

demands all shuffle data for a GroupByKey or a

ReduceByKey operation. Spark throws an out-of-memory

exception. The Shuffle is a pull operation in spark compared

to push operation in Hadoop.

Each Reducer should also maintain a network buffer to

map outputs. Size of the buffer is Specified through the

parameter.

IV. SHUFFLE TECHNIQUES

Spark Shuffling uses two techniques: 1) Sort-based

Shuffle 2) Hash-based Shuffle.

A. Sort-based Shuffle

A sort-based Shuffle can be more scalable than Spark’s

current hash-based one because it doesn’t require writing a

separate file for each reduce task from each mapper.

Each map task will produce one or more output files

sorted by a key’s partition ID, then merge-sort them to a

single output file. Once the map tasks produce files, reduces

will be able to request ranges of files to get their particular

data. An index file for each output file saying where each

partition is located and update the Block Manager to support

using this index.

Map tasks will write data through a SortedFileWriter that

creates one or more sorted files merge them and then creates

an index file for the merged file. The SortedFileWriter must

reset compression and serialization streams when writing

each range.

SortedFileWriter will works as follows:

 1) Given a stream of incoming key-value pairs, first write

them into buckets in memory based on their partition ID. This

bucket can be ArrayBuffers for each partition ID.

 2) When the total size of the buckets gets too large, write

the current in-memory output to a new file. This intermediate

file will contain a header saying at which position each

partition ID.

Stage 1

Stage 2

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020241

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

178

Fig. 2.Sort-Based Shuffle

3) After all intermediate files are written, merge-sort them

into a final file.

 4) When writing the final file reset the serialization and

compression streams after writing each partition and track the

byte position of each partition to create an index file.

 Reduce Tasks will fetch and hash together data the same

way use ExternalAppendOnlyMap. They merge all spilled

files at once if there are a huge amount of files.

B. Hash-based Shuffle

A hash-based shuffle is default in shuffling data but

starting in spark 1.1. There is an experimental sort-based

shuffle that is more memory-efficient in environments with

small executors. The mapper reduce the amount of the

increase based on the performance of hash-based realization

of shuffle sort of performance.

Hash shuffle into a set of 64 subdirectories created on

each disk. Hash shuffle large number of random writes when

each shuffle is relatively small. A hash-based shuffle required

a hash shuffle reader to read the intermediate file from

mapper side. Hash-based shuffle are use to BlockStoreShuffle

to store the shuffle file and resize into the shuffle.

 Fig. 3.Hash-Based Shuffle

V. RELATED WORK

Spark Shuffle actually outperformed Hadoop. Hadoop’s

performance is more expensive shuffle operation compared to

Spark. Hadoop’s Map phase being significantly slower than

Spark’s with Shuffle. Shuffle data is prefeched by reduces

while the Map phase is running. Each map task in Spark

writes outs a shuffle file for every reducer. In Hadoop Pull-

based, Push-based and Hybrid shuffle technologies used for

Shuffle Performance [7]. Spark uses these two techniques to

improve Shuffle performance. That why Spark is increase

performance rather than Hadoop shuffle.

0

5

10

15

20

0 30 60 90 120

Spark Shuffle

Hadoop
Shuffle

Fig. 4.Compare Shuffle Perfromance between Hadoop and Spark

VI. CONCLUSION

 Spark Shuffle performance is increase using large number

of shuffle file. Also learning shuffle works in Spark and

Techniques. In this paper also understand Spark execution

model. Spark Driver is the most important concept in Spark

and also learning Spark driver works. Mostly in shuffling in

Spark Sort-based is used. Using Shuffle Techniques compare

the Spark Shuffle performance with Hadoop.

 In future, Distributed Hash Shuffle Algorithm and Shuffle

is used to improve better performance in Apache Spark.

REFERENCES

[1] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, Geoffrey
C.Fox. A Tale of Two Data-Intensive Paradigms: Applications,

Abstractions, and Architectures.Indiana University, USA, International

Congress on Big Data 2014 IEEE.

[2] Xiaoyi Lu, Md. Wasi-ur-Rahman, Nusrat Islam, Dipti Shankar and

Dhabaleswar K. (DK) Panda, “Accelerating Spark with RDMA for Big
Data Processing: Early Experiences” The Ohio State University, 2014

IEEE.

[3] Aaron Davidson, Andrew Or “Optimizing Shuffle Performance in

Spark” UC Berkeley 2013.

[4] Jingui Li, Xuelian Lin , Xiaolong Cui , Yue Ye. Improving the Shuffle
of Hadoop Map Reduce. IEEE 5th International Conference on Cloud

Computing Technology and Science.

[5] Matei Zaharia, Tathagata Das, Haoyuan Li Discretized Streams: Fault-

Tolerant Streaming Computation at Scale University of California,

Berkeley 2013.

[6] Lei Gu, Huan Li , “Memory or Time: Performance Evaluation for

Iterative Operation on Hadoop and Spark”, Beihang University,

Beijing, China 2013 IEEE.

M

e

m
o

r

y
(

G

B

)

Progression of time (Sec)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020241

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

179

[7] Yanfei Guo, Jia Rao, and Xiaobo Zhou. iShuffle: Improving Hadoop

Performance with Shuffle-on-Write.Department of Computer
ScienceUniversity of Colorado, USA 2012.

[8] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,Ankur Dave,
Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, and

Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing.In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages

2{2}. USENIXAssociation, 2012.

[9] Kichul Kim. Shuffle Memory System. School of Electrical

Engineering,University of Seoul, Korea1992.

[10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, Ion Stoica “Spark: Cluster Computing with Working Sets”,
University of California, Berkeley 2010.

[11] Apache Spark. http://spark.apache.org/

[12] Apache hadoop. http://apache.hadoop.org/

[13] A Deeper Understanding of Spark Internals. http://spark-

summit.org/2014/talk/a-deeper-understanding-of-spark-internals/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020241

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

180

