
Shuffle Performance in Apache Spark 

 
Nirali Rana 

Department of Computer Engineering  

GTU PG School, Gujarat Technological University  

Ahmedabad , India. 

Shyam Deshmukh 
Assistance Professor: dept. of IT 

Pune Institute of Computer Technology, 

Pune, India. 

 

 

Abstract— Apache Spark is a cluster computing framework 

that performs in memory computing and responsible for 

Scheduling, Distributing and Monitoring Applications. Two 

types of factors to improving Spark performance: Optimization 

and Latency Hiding. In distributed data processing platforms is 

common to collect data in many fashion, a stage traditionally 

known as shuffle Phase. Using this two factors compare the 

performance between Hadoop and Spark. In this paper, Apache 

Spark Shuffle is faster than Hadoop Shuffle. 
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I.  INTRODUCTION  

Apache Spark is an open-source analytics cluster 

computing framework developed in AMP Lab at UC 

Berkeley [11]. Apache Spark is a general purpose cluster 

computing system with the goal of outperforming disk-based 

engine like Hadoop. Spark is an implementation of Resilient 

Distributed Datasets[RDD]. It provides high level APIs in 

Java, Scala and Python. Mostly Scala is use in Spark 

programming. Spark enables applications in Hadoop clusters 

to run up to 100x faster in memory and 10x faster running on 

disk. It comes with a built-in set of over 80 high-level 

operators. Apache Spark has been used by many companies 

including Amazon, Facebook, Yahoo and GroupOn. 

Spark Stack offers an integrated framework for advanced 

analytics including machine learning library (MLLib), a 

graph engine (GraphX), a streaming analytics engine (Spark 

Streaming) and a fast interactive query tool (Shark). Apche 

Spark is based on two key concepts: Resilient distributed 

Datasets (RDD) and Directed Acyclic Graph (DAG). An 

RDD is a read-only collection of objects partitioned across a 

set of machines that can be built if a partition is lost. Spark 

performance feature is low Latency computations by caching 

the working dataset in memory and then performing 

computations at memory speeds. Spark is capable of reading 

from HBase, Hive, Cassandra and HDFS data source. 

Spark Driver controls the workflow and Spark workers 

launches executors responsible for executing part of the job 

submitted to spark driver through cluster node. Spark driver 

has few components: 1) RDD 2) Scheduler 3) Serializer 4) 

Shuffle. Spark Worker has two components: 1) Task and 2) 

Block Manager.  

1) RDD: Resilient Distributed Datasets (RDD) is a basic 

abstraction in Spark. RDD represents a partitioned collection 

of elements that can be operated on in parallel [8]. 

2) Scheduler: Spark’s scheduler uses representation of 

RDDs. Scheduler assigns task to machines based on data 

locality using delay scheduling. 

3) Serializer: Spark sterilizer that uses Java’s built-in 

serializer. It is used for stream of reading serializer object. 

4) Shuffle: In Spark, Shuffle creates a large number of 

shuffles (M*R). Shuffle refers to maintaining a shuffle file 

for each partition which is the same as the number of reduce 

task R per core C rather than per Map task M. Every machine 

needs to handle only C*R number of shuffle rather than 

M*R. 

 

Fig. 1. Spark Driver Execution flow 

II. OPTIMIZATION AND LATENCY HIDING 

A. Optimization in Spark 

In Apache Spark, Optimization implements using 

Shuffling techniques. In this paper we use shuffling technique 

for optimization. The optimize shuffle performance two 

possible approaches are 1) To emulate Spark behavior by 

merging intermediate 2) To create large shuffle files 3) Use 

columnar compression to shift bottleneck to CPU. For 

shuffling shuffle data is required. Spark compressibility was 

low and involves significant computation and metadata 

maintenance for splitting data into columns on map side and 

reconstructing them into rows on reduce side. 

One of the key optimization factors was the Shuffle. With 

other two factors was sorting algorithm and the external 

sorting service. In this paper choose optimize shuffle file 

performance in the Spark distributed computing platform. 
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Optimization Limitation: 

 Lack of iteration support 

 High latency due to persisting intermediate data 

onto diak 

B. Latency Hididng in Spark  

Apache Spark which has taken the strength of Hadoop 

and made improvements in a Hadoop’s weakness and 

provides more efficient batch processing framework with a 

much lower latency. Prefetching is a latency hiding 

technique. It has to increase parallelism of tasks so as to keep 

the CPU busy by fetching the data before it is required. 

Prefetching has several factors. Emerging trends such as 

putting data and services into the cloud and services will 

suffer from latency. A real-time data prefetching algorithm 

based on when pushing shuffle files prior to the completion 

of the map phase. 

III. SHUFFLE OVERVIEW 

Shuffle Phase is a component of Spark Driver. A shuffle 

is a communication between one input RDD and an Output 

RDD. Each shuffle has a fixed number of mappers and a 

fixed number of reduce partitions. Shuffle writer and Shuffle 

reader handle the I/O for a particular task, operating on 

iteration of RDD elements. When a shuffle has an 

Aggtrgator, the Shuffle Manager and its readers and writers 

are responsible for external spilling. 

Shuffle works in two stages: 1) Shuffle writes 

intermediate files to disk and 2) fetch by the next stage of 

tasks. 

Shuffle operation is implemented differently in Spark 

compared to Hadoop. The values of M and R in Hadoop are 

much lesser. The number of shuffle files in Spark scales with 

M*R , a smaller number of map task and reduce task may 

provide more justification for the way Spark handles Shuffle 

files on the map side [11]. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Shuffle Work 

A. Map Side Shuffle 

Each map task in Spark writes outs a shuffle file for every 

reducer. These files are not intermediately in the sense that 

Spark does not merge them into large partition. Since 

scheduling overhead in Spark is much lesser the no. of 

mappers (M) and reducers ® is higher than in Hadoop. Thus, 

shipping M*R files to the respective reduces could result in 

significant overheads. 

Spark also provides a parameter to specify compression 

libraries to compress map outputs. It could be default. Default 

uses 33KB of buffer for each open file and significantly 

reduces risk of encountering out-of-memory error.  

B. Reduce side Shuffle 

A major difference between Hadoop and Spark is on the 

reduce side. Spark requires to all shuffle data to fit in memory 

of the corresponding reduce task. Where the reducer task 

demands all shuffle data for a GroupByKey or a 

ReduceByKey operation. Spark throws an out-of-memory 

exception. The Shuffle is a pull operation in spark compared 

to push operation in Hadoop. 

Each Reducer should also maintain a network buffer to 

map outputs. Size of the buffer is Specified through the 

parameter.  

IV. SHUFFLE TECHNIQUES 

Spark Shuffling uses two techniques: 1) Sort-based 

Shuffle 2) Hash-based Shuffle. 

A. Sort-based Shuffle 

A sort-based Shuffle can be more scalable than Spark’s 

current hash-based one because it doesn’t require writing a 

separate file for each reduce task from each mapper. 

Each map task will produce one or more output files 

sorted by a key’s partition ID, then merge-sort them to a 

single output file. Once the map tasks produce files, reduces 

will be able to request ranges of files to get their particular 

data. An index file for each output file saying where each 

partition is located and update the Block Manager to support 

using this index. 

Map tasks will write data through a SortedFileWriter that 

creates one or more sorted files merge them and then creates 

an index file for the merged file. The SortedFileWriter must 

reset compression and serialization streams when writing 

each range. 

SortedFileWriter will works as follows: 

     1) Given a stream of incoming key-value pairs, first write 

them into buckets in memory based on their partition ID. This 

bucket can be ArrayBuffers for each partition ID.  

     2) When the total size of the buckets gets too large, write 

the current in-memory output to a new file. This intermediate 

file will contain a header saying at which position each 

partition ID. 

 

Stage 1 

Stage 2 
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Fig. 2.Sort-Based Shuffle   

3) After all intermediate files are written, merge-sort them 

into a final file. 

 4) When writing the final file reset the serialization and 

compression streams after writing each partition and track the 

byte position of each partition to create an index file.  

     Reduce Tasks will fetch and hash together data the same 

way use ExternalAppendOnlyMap. They merge all spilled 

files at once if there are a huge amount of files. 

B. Hash-based Shuffle 

A hash-based shuffle is default in shuffling data but 

starting in spark 1.1. There is an experimental sort-based 

shuffle that is more memory-efficient in environments with 

small executors. The mapper reduce the amount of the 

increase based on the performance of hash-based realization 

of shuffle sort of performance.  

Hash shuffle into a set of 64 subdirectories created on 

each disk. Hash shuffle large number of random writes when 

each shuffle is relatively small. A hash-based shuffle required 

a hash shuffle reader to read the intermediate file from 

mapper side. Hash-based shuffle are use to BlockStoreShuffle 

to store the shuffle file and resize into the shuffle. 

 

                      Fig. 3.Hash-Based Shuffle 

 

V. RELATED WORK 

Spark Shuffle actually outperformed Hadoop. Hadoop’s 

performance is more expensive shuffle operation compared to 

Spark. Hadoop’s Map phase being significantly slower than 

Spark’s with Shuffle. Shuffle data is prefeched by reduces 

while the Map phase is running. Each map task in Spark 

writes outs a shuffle file for every reducer. In Hadoop Pull-

based, Push-based and Hybrid shuffle technologies used for 

Shuffle Performance [7]. Spark uses these two techniques to 

improve Shuffle performance. That why Spark is increase 

performance rather than Hadoop shuffle. 
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Fig. 4.Compare Shuffle Perfromance between Hadoop and Spark   

VI. CONCLUSION 

      Spark Shuffle performance is increase using large number 

of shuffle file. Also learning shuffle works in Spark and 

Techniques. In this paper also understand Spark execution 

model. Spark Driver is the most important concept in Spark 

and also learning Spark driver works. Mostly in shuffling in 

Spark Sort-based is used. Using Shuffle Techniques compare 

the Spark Shuffle performance with Hadoop.   

     In future, Distributed Hash Shuffle Algorithm and Shuffle 

is used to improve better performance in Apache Spark.  
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