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Abstract - In this paper we establish a first result for a transcendental meromorphic function of finite order 

sharing two Borel exceptional values under two cases. In the first case 𝒇 and differential polynomial 𝝍(𝒇) 

share a non-zero complex number and ∞ as Borel exceptional values. In the second case they share 𝟎 and 

∞ as Borel exceptional values. We also prove a second result in which (𝑳(𝒇𝒏))(𝒌) and (𝑳(𝒈𝒏))(𝒌) share the 
value 1 counting multiplicities (CM), while 𝑳(𝒇(𝒏)) and 𝑳(𝒈(𝒏)) share ∞ ignoring multiplicities (IM).
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1 INTRODUCTION 

Definition 1. Let us define a differential polynomial involving shift function 

𝜓(𝑓) = ∑ 𝐴𝑖(𝑧)𝑓
(𝑘𝑖)(𝑧)𝑛

𝑖=1 + ∑ 𝐵𝑖(𝑧)𝑓
(𝑘𝑖)(𝑧 + 𝑏𝑖)

𝑛
𝑖=1 , (1.1) 

where 𝐴𝑖(𝑧), 𝐵𝑖(𝑧) are small functions of 𝑓(𝑧), 𝑘𝑖 > 0 ∈ ℤ
+, 𝑏𝑖 is a complex constant.

In 2013, Chen [3] proved the relationships between Picard values of entire functions 𝑓(𝑧) and 

their forward differences ∆𝑛𝑓(𝑧).

Theorem 1.1. [3] Let 𝑓 be a transcendental entire function of finite order, let 𝑐(≠ 0) be a 

constant, and let 𝑛 be a positive integer. If 𝑓 ≠ 0, ∆𝑐
𝑛𝑓 ≠ 0, then 𝑓(𝑧) = 𝑒𝑎𝑧+𝑏, where 𝑎(≠

0), 𝑏 are constants.  

In 2016, Chen et al., [2] proved difference analogue to theorem 1.1. 

Theorem 1.2. [2] Let 𝑎(≠ ∞), 𝑏 be two distinct complex numbers (𝑏 may be ∞), let 𝑓 be a 

transcendental meromorphic function of finite order with two Borel exceptional values 𝑎, 𝑏 

and 𝑐 be a non zero constant such that ∆𝑐𝑓 ≠ 0. If 𝑓 and ∆𝑐𝑓 share 𝑎, 𝑏 CM, then 𝑎 = 0, 𝑏 =

∞ and 𝑓(𝑧) = 𝑒𝐴𝑧+𝐵, where 𝐴(≠ 0), 𝐵 are constants.

In 2021, M. Fang and Y. Wang [7] worked for higher order difference operators. 

Theorem 1.3. [7] Let 𝑎(≠ ∞), 𝑏 be two distinct complex numbers and 𝑛 ∈ ℤ+, let 𝑓 be a

transcendental meromorphic function of finite order with two Borel exceptional values 𝑎, 𝑏 

and 𝑐 is a non-zero constant such that ∆𝑐
𝑛𝑓 ≠ 0. If 𝑓 and ∆𝑐

𝑛𝑓 share 𝑎, 𝑏 CM, then 𝑎 = 0,
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𝑏 = ∞ and 𝑓(𝑧) = 𝑒𝐴𝑧+𝐵, where 𝐴(≠ 0), 𝐵 are constants.  

 

In the year 1998, W. Yuefei and F. Mingliang[14] proved the criteria for normality of families 

of meromorphic functions.  

Theorem 1.4. [14] Let 𝑓(𝑧) be a transcendental entire function, 𝑛, 𝑘 ∈ ℕ with 𝑛 ≥ 𝑘 + 1. 

Then (𝑓𝑛)(𝑘) = 1 has infinitely many solutions. 

In 2002, M-L Fang [8] obtained the below result corresponding to unicity theorem.  

Theorem 1.5. [8] Let 𝑓 and 𝑔 be two nonconstant entire functions, and let 𝑛, 𝑘 be two 

positive integers with 𝑛 > 2𝑘 + 4. If (𝑓𝑛)(𝑘) and (𝑔𝑛)(𝑘) share 1 CM, then either 𝑓(𝑧) =

𝑐1𝑒
𝑐𝑧, 𝑔(𝑧) = 𝑐2𝑒

−𝑐𝑧 , where 𝑐1, 𝑐2 and 𝑐 are three constants satisfying 

(−1)𝑘 (𝑐1𝑐2)
𝑛 (𝑛𝑐)2𝑘 = 1, or 𝑓 = 𝑡𝑔 for a constant 𝑡 such that 𝑡𝑛 = 1.  

J. Fan et al., [6] extended theorem 1.5 to prove the following.  

Theorem 1.6. [6] Let 𝑓 and 𝑔 be two nonconstant meromorphic functions, and let 𝑛, 𝑘 be two 

positive integers with 𝑛 > 3𝑘 + 8 − Θ𝑚𝑖𝑛(𝑘 + 4), if Θ𝑚𝑖𝑛 ≥
2

𝑘+4
 , otherwise 𝑛 > 3𝑘 + 6. If 

(𝑓𝑛)(𝑘) and (𝑔𝑛)(𝑘) share 1 CM, 𝑓 and 𝑔 share ∞ IM, then either 𝑓(𝑧) = 𝑐1𝑒
𝑐𝑧, 𝑔(𝑧) =

𝑐2𝑒
−𝑐𝑧 , where 𝑐1, 𝑐2 and 𝑐 are three constants satisfying (−1)𝑘 (𝑐1𝑐2)

𝑛 (𝑛𝑐)2𝑘 = 1, or 𝑓 =

𝑡𝑔 for a constant 𝑡 such that 𝑡𝑛 = 1. 

2 LEMMAS 

Lemma 2.1. [9, 4] Let 𝑓 be a nonconstant meromorphic function of finite order, let 𝑐 be a 

nonzero finite complex number. Then  

𝑚(𝑟,
𝑓(𝑧 + 𝑐)

𝑓(𝑧)
 ) = 𝑆(𝑟, 𝑓)  

and for any 𝜖 > 0, we have  

                                                     𝑚(𝑟,
𝑓(𝑧+𝑐)

𝑓(𝑧)
 ) = 𝑂(𝑟𝜌(𝑓)+𝜖−1).  

Lemma 2.2. [12, 7] Suppose that 𝑓1(𝑧), 𝑓2(𝑧),· · · , 𝑓𝑛(𝑧) are meromorphic functions 

satisfying the following identity  

                                                             ∑ 𝑓𝑗(𝑧)
𝑛
𝑗=1 = 1.  

If 𝑓𝑛(𝑧) ≠ 0 and  

                         ∑ 𝑁 (𝑟,
1

𝑓𝑗
)𝑛

𝑗=1 + (𝑛 − 1)∑ 𝑁̅(𝑟, 𝑓𝑗)
𝑛
𝑗=1 < (𝜆 + 𝑂(1))𝑇(𝑟, 𝑓𝑘),                (2.1)  

where 𝐼 is a set of 𝑟 ∈ (0,∞) with infinite linear measure, 𝑟 ∈ 𝐼, 𝑘 = 1, 2,· · · , 𝑛 − 1, 𝜆 < 1, 

then 𝑓𝑛 ≡ 1. 

Lemma 2.3. [5] Let 𝑓 be a meromorphic function of order 𝜌(𝑓)  =  𝜌 < 1. Then for each 

given 𝜖 > 0, and a positive integer 𝑛, there exists a set 𝐸 ⊂ (1,∞) that depends on 𝑓, and it 

has finite logarithmic measure, such that for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸 ∪ [0, 1], we have      
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                                                        |
𝑓′(𝑧)

𝑓(𝑧)
| ≤ |𝑧|𝜌−1+𝜖 .  

Lemma 2.4. [7] Let 𝛼 be a meromorphic function, let 𝑘 be a positive integer, and let 𝑐 be a 

nonzero finite complex number. If ∆𝑐
𝑘𝛼 ≡ 0, then either 𝜌(𝛼) ≥ 1 or 𝛼 is a polynomial with 

𝑑𝑒𝑔(𝛼) ≤ 𝑘 − 1.  

Lemma 2.5. [12, 6] Let 𝑓 be a meromorphic function such that 𝑓(𝑘) ≢ 0, and let 𝑘 be a 

positive integer. Then  

                                      𝑇(𝑟, 𝑓(𝑘)) ≤ 𝑇(𝑟, 𝑓) + 𝑘𝑁̅(𝑟, 𝑓) + 𝑆(𝑟, 𝑓)  

                                    𝑁 (𝑟,
1

𝑓(𝑘)
) ≤ 𝑁 ( 𝑟,

1

𝑓
) + 𝑘𝑁̅(𝑟, 𝑓) + 𝑆(𝑟, 𝑓). 

Lemma 2.6. [12, 11, 6] Let 𝑓 be a nonconstant meromorphic function, let 𝑘 be a positive 

integer, and let 𝑐 be a nonzero finite complex number. Then  

           𝑇(𝑟, 𝑓) ≤ 𝑁̅(𝑟, 𝑓) + 𝑁 ( 𝑟,
1

𝑓
) + 𝑁 (𝑟,

1

𝑓(𝑘)−𝑐
) − 𝑁 (𝑟,

1

𝑓(𝑘+1)
) + 𝑆(𝑟, 𝑓)  

                       ≤ 𝑁̅(𝑟, 𝑓) + 𝑁𝑘+1 ( 𝑟,
1

𝑓
) + 𝑁̅ (𝑟,

1

𝑓(𝑘)−𝑐
) − 𝑁0 (𝑟,

1

𝑓(𝑘+1)
) + 𝑆(𝑟, 𝑓) 

where 𝑁0 (𝑟,
1

𝑓(𝑘+1)
) is the counting function which only counts those points such that 

𝑓(𝑘+1)(𝑧) = 0, but 𝑓(𝑧)(𝑓(𝑘)(𝑧) − 𝑐) ≠ 0.  

Lemma 2.7. [10, 12, 11, 6] If 𝑓 is a meromorphic function, 𝑘 ∈ 𝑁. And then  

                                              𝑚(𝑟,
𝑓(𝑘)

𝑓
) = 𝑆(𝑟, 𝑓). 

Lemma 2.8. [10, 1] Let f(z) be a meromorphic function and a be a finite complex number. 

Then  

(𝑖) 𝑇 (𝑟,
1

𝑓−𝑎
) = 𝑇(𝑟, 𝑓) + 𝑂(1)  

(𝑖𝑖) 𝑚 (𝑟,
𝑓(𝑘)

𝑓(𝑙)
) = 𝑆(𝑟, 𝑓),   for  𝑘 > 𝑙 ≥ 0  

(𝑖𝑖𝑖) 𝑇(𝑟, 𝑓) ≤ 𝑁(𝑟, 𝑓) + 𝑁 (𝑟,
1

𝑓−𝑎1(𝑧)
) + 𝑁̅ (𝑟,

1

𝑓−𝑎2(𝑧)
) + 𝑆(𝑟, 𝑓)  

where 𝑎1(𝑧), 𝑎2(𝑧) are two meromorphic functions such that 𝑇(𝑟𝑎𝑖) = 𝑆(𝑟, 𝑓), (𝑖 = 1, 2).  

Lemma 2.9. [6] Let 𝑓 be a nonconstant entire function, and let 𝑘(≥ 2) be a positive integer. 

If 𝑓(𝑧)𝑓(𝑘)(𝑧) ≠ 0, then 𝑓(𝑧) = 𝑒𝑎𝑧+𝑏 , where 𝑎(≠ 0), 𝑏 are two constants.  

Lemma 2.10. [13, 6] Let 𝑓 and 𝑔 be two nonconstant entire functions, and let 𝑛(≥ 1) be a 

positive integer. If 𝑓𝑛𝑓′𝑔𝑛𝑔′ ≡ 1, then 𝑓(𝑧) = 𝑐1𝑒
𝑐𝑧, 𝑔(𝑧) = 𝑐2𝑒

−𝑐𝑧, where 𝑐1, 𝑐2 and 𝑐 are 

three constants satisfying (𝑐1𝑐2)
𝑛+1𝑐2 = −1. 

3 MAIN RESULTS 

Theorem 3.1. Let 𝑎1(≠ ∞), 𝑎2 be two distinct complex numbers and 𝑛 ∈ ℤ+, let 𝑓 be a 

transcendental meromorphic function of finite order with two Borel exceptional values 𝑎1,
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𝑎2 and 𝑐 is a non-zero constant such that 𝜓(𝑓) ≢ 0. If 𝑓 and 𝜓(𝑓) share 𝑎1, 𝑎2 CM, then 

𝑎1 = 0, 𝑎2 = ∞. 

Proof. Case 1. 𝑎1 is a nonzero finite complex number, 𝑎2 = ∞. Since 𝑎1, ∞ are two distinct 

Borel exceptional values of 𝑓 and 𝑓 is of finite order, by Hadamard’s factorization theorem, 

we have  

                                           𝑓(𝑧) = 𝑎1 + 𝛼(𝑧)𝑒
𝑝(𝑧),                                                            (3.1)  

where 𝛼(≠ 0,∞) is a meromorphic function such that 𝜌(𝛼) < 𝜌(𝑓) and 𝑝 is a non constant 

polynomial with 𝑑𝑒𝑔(𝑝) = 𝜌(𝑓). Hence we have 

                     𝑇(𝑟, 𝛼) = 𝑆(𝑟, 𝑒𝑝),                  𝑇(𝑟, 𝑓) = 𝑇(𝑟, 𝑒𝑝) + 𝑆(𝑟, 𝑓).                          (3.2)  

Thus, we have  

                                 𝑓′(𝑧) = 𝛼𝑒𝑝(𝑧)𝑝′(𝑧) + 𝛼′(𝑧)𝑒𝑝(𝑧)  

                                           = 𝑒𝑝(𝑧)[𝛼(𝑧)𝑝′(𝑧) + 𝛼′(𝑧)]  

                                           = 𝑒𝑝(𝑧)𝑇1(𝑧),  

where 𝑇1(𝑧) = 𝛼(𝑧)𝑝′(𝑧) + 𝛼′(𝑧).  

𝑓′′(𝑧) = 𝑒𝑝(𝑧)𝑇′1(𝑧) + 𝑇1(𝑧)𝑒
𝑝(𝑧)𝑝′(𝑧)  

                                                      = 𝑒𝑝(𝑧)[𝑇1(𝑧)𝑝′(𝑧) + 𝑇′1(𝑧)]  

                                                      = 𝑒𝑝(𝑧)𝑇2(𝑧), 

where 𝑇2(𝑧) = 𝑇1(𝑧)𝑝′(𝑧) + 𝑇′1(𝑧).  

· · · · · · · · · · · · · · · · · · · · ·  

· · · · · · · · · · · · · · · · · · · · ·  

                                                      𝑓(𝑘)(𝑧) = 𝑒𝑝(𝑧)𝑇𝑘(𝑧),  

where 𝑇𝑘(𝑧) = 𝑇𝑘−1(𝑧)𝑝′(𝑧) + 𝑇′𝑘−1(𝑧).  

And  

𝑓(𝑘)(𝑧 + 𝑏𝑖) = 𝑒
𝑝(𝑧+𝑏𝑖)𝑇𝑘(𝑧 + 𝑏𝑖),  

where 𝑇𝑘(𝑧 + 𝑏𝑖) = 𝑇𝑘−1(𝑧 + 𝑏𝑖)𝑝′(𝑧 + 𝑏𝑖) + 𝑇′𝑘−1(𝑧 + 𝑏𝑖).  

Hence (3.1) becomes 

 

 

     

           𝜓(𝑓) = ∑ 𝐴𝑖(𝑧)𝑇𝑘𝑖(𝑧)𝑒
𝑝(𝑧)𝑛

𝑖=1 + ∑ 𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧 + 𝑏𝑖)𝑒
𝑝(𝑧+𝑏𝑖)𝑛

𝑖=1 ,  

                    = [∑ 𝐴𝑖(𝑧)𝑇𝑘𝑖(𝑧)
𝑛
𝑖=1 + ∑ 𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧 + 𝑏𝑖)𝑒

𝑝(𝑧+𝑏𝑖)−𝑝(𝑧)𝑛
𝑖=1 ]𝑒𝑝(𝑧)  
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                    =  𝐻(𝑧)𝑒𝑝(𝑧),                                                                                                   (3.3)  

where 𝐻(𝑧) = ∑ 𝐴𝑖(𝑧)𝑇𝑘𝑖(𝑧)
𝑛
𝑖=1 + ∑ 𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧 + 𝑏𝑖)𝑒

𝑝(𝑧+𝑏𝑖)−𝑝(𝑧)𝑛
𝑖=1 . Since 𝜓(𝑧) ≢ 0, it 

follows that 𝐻(𝑧) ≢ 0. Thus 𝐻(≢ 0) is a meromorphic function with 𝜌(𝐻) < 𝜌(𝑒𝑝). 

Hence 𝐻 is a small function of 𝑒𝑝. By second fundamental theorem and (3.3) we have 

                                 𝑇(𝑟, 𝑒𝑝) ≤ 𝑇(𝑟, 𝐻𝑒𝑝) + 𝑇 (𝑟,
1

𝐻
) + 𝑂(1)  

                                               ≤  𝑇(𝑟, 𝐻𝑒𝑝) + 𝑆(𝑟, 𝑒𝑝)  

                                               ≤ 𝑁(𝑟, 𝐻𝑒𝑝) + 𝑁 (𝑟,
1

𝐻𝑒𝑝
) + 𝑁 (𝑟,

1

𝐻𝑒𝑝−𝑎1
) +  𝑆(𝑟, 𝑒𝑝)  

                                               ≤  𝑁 (𝑟,
1

𝐻𝑒𝑝−𝑎1
) + 𝑆(𝑟, 𝑒𝑝)  

                                               = 𝑁 (𝑟,
1

𝜓(𝑓)−𝑎1
) + 𝑆(𝑟, 𝑒𝑝).                                                (3.4) 

Since 𝑓 and 𝜓(𝑓) share 𝑎1CM, it follows that  

                                 𝑁 (𝑟,
1

𝑓−𝑎1
) ≥ 𝑇(𝑟, 𝑒𝑝) + 𝑆(𝑟, 𝑒𝑝).                                                    (3.5)  

Thus, we deduce from (3.2) and (3.5) that 𝜆(𝑓 − 𝑎1) = 𝜌(𝑓), this contradicts that 𝑎1 is a 

Borel exceptional value of 𝑓. Hence this is absurd. 

Case 2. 𝑎1 = 0, 𝑎2 = ∞. Since 0,∞ are two distinct Borel exceptional values of 𝑓 and 𝑓 is 

of finite order, by Hadamard’s factorization theorem we have  

                                     𝑓(𝑧) = 𝛼(𝑧)𝑒𝑝(𝑧),                                                                          (3.6)  

where 𝛼(≢ 0,∞) is a meromorphic function such that 𝜌(𝛼) < 𝜌(𝑓) and 𝑝 is a non constant 

polynomial with 𝑑𝑒𝑔(𝑝) = 𝜌(𝑓) ≥ 1. Hence we have  

           𝑇(𝑟, 𝛼) = 𝑆(𝑟, 𝑒𝑝),                   𝑇(𝑟, 𝑓) = 𝑇(𝑟, 𝑒𝑝) + 𝑆(𝑟, 𝑓).                                   (3.7)  

Thus, we have  

                                     𝜓(𝑓) = 𝐻(𝑧)𝑒𝑝(𝑧),  

where 𝐻(𝑧) = ∑ 𝐴𝑖(𝑧)𝑇𝑘𝑖(𝑧)
𝑛
𝑖=1 + ∑ 𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧 + 𝑏𝑖)𝑒

𝑝(𝑧+𝑏𝑖)−𝑝(𝑧)𝑛
𝑖=1 .                           (3.8)  

Since 𝑓 and 𝜓(𝑓) share 0,∞ CM, there exists a polynomial 𝑞 satisfying  

               ∑
𝐴𝑖(𝑧)𝑇𝑘𝑖(𝑧)

𝛼(𝑧)

𝑛
𝑖=1 + ∑

𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧+𝑏𝑖)

𝛼(𝑧)

𝑛
𝑖=1 𝑒𝑝(𝑧+𝑏𝑖)−𝑝(𝑧) = 𝑒𝑞(𝑧).                                  (3.9) 

It follows from (3.9) and Lemma (2.1) that  

                   𝜌 (
𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧+𝑏𝑖)

𝛼(𝑧)
) < 𝑑𝑒𝑔(𝑝) − 1,     𝑑𝑒𝑔(𝑞) ≤ 𝑑𝑒𝑔(𝑝) − 1.                           (3.10)  

We consider two subcases.  

Case 2.1. 𝑑𝑒𝑔(𝑝) ≥ 2. Here again we have two subcases.  

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 02 , February - 2026

IJERTV15IS020037 Page 5

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



Case 2.1.1 1 ≤ 𝑑𝑒𝑔(𝑞) ≤ 𝑑𝑒𝑔(𝑝) − 1.  

Thus by (3.9) we obtain 

𝐴1(𝑧)𝑇𝑘1(𝑧)

𝛼(𝑧)
  +

𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧) + 

𝐴2(𝑧)𝑇𝑘2(𝑧)

𝛼(𝑧)
 

+
𝐵2(𝑧)𝑇𝑘𝑖(𝑧 + 𝑏2)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏2)−𝑝(𝑧) +· · · + 

𝐴𝑛(𝑧)𝑇𝑘𝑛(𝑧)

𝛼(𝑧)
 

 +
𝐵𝑛(𝑧)𝑇𝑘𝑛(𝑧 + 𝑏𝑛)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏𝑛)−𝑝(𝑧) = 𝑒𝑞(𝑧). 

1

𝛼(𝑧)
[𝐴1(𝑧)𝑇𝑘1(𝑧) + 𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)𝑒

𝑝(𝑧+𝑏1)−𝑝(𝑧) + 𝐴2(𝑧)𝑇𝑘2(𝑧) 

+ 𝐵2(𝑧)𝑇𝑘2(𝑧 + 𝑏2)𝑒
𝑝(𝑧+𝑏2)−𝑝(𝑧) + · · ·  + 𝐴1(𝑧)𝑇𝑘1(𝑧) 

+ 𝐵𝑛(𝑧)𝑇𝑘𝑛(𝑧 + 𝑏𝑛)𝑒
𝑝(𝑧+𝑏𝑛)−𝑝(𝑧)] − 𝑒𝑞(𝑧) =  1.                                                              (3.11)  

Set 

                     𝑓𝑖(𝑧) =
𝐴𝑖(𝑧)𝑇𝑘𝑖(𝑧)

𝛼(𝑧)
+
𝐵𝑖(𝑧)𝑇𝑘𝑖(𝑧+𝑏𝑖)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏𝑖)−𝑝(𝑧) = 𝑒𝑞(𝑧),                               (3.12)  

𝑖 =  1, 2, . . . , 𝑛.                                   𝑓𝑛+1 = 1 − 𝑒
𝑞(𝑧).                                                    (3.13)  

Then by (3.11) we have  

                             𝑓1(𝑧) + 𝑓2(𝑧) + · · ·  + 𝑓𝑛(𝑧) + 𝑓𝑛+1(𝑧) ≡ 1.                                      (3.14)  

If n = 1, then by (3.12) - (3.14) we obtain 

𝑇(𝑟, 𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧)) ≤ 𝑇 (𝑟,
𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧) ) + 𝑇 (𝑟,

𝛼(𝑧)

𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)
))  

≤ 𝑁 (𝑟,
𝐵1(𝑧)𝑇𝑘1(𝑧+𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧) ) + 𝑁 (𝑟,

1
𝐵1(𝑧)𝑇𝑘1

(𝑧+𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧)

 )   

+ 𝑁

(

 𝑟,
1

𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧) − 1

 

)

 + 𝑆(𝑟, 𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧))  

≤ 𝑁

(

 𝑟,
1

𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧) − 1

 

)

 + 𝑆(𝑟, 𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧)) 

≤ 𝑁 (𝑟,
1

𝑒𝑞(𝑧)
) + 𝑆(𝑟, 𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧)) 

≤ 𝑆(𝑟, 𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧)), 
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a contradiction.  

If 𝑛 ≥ 2 then by (3.12) - (3.14) we know that 𝑓1, 𝑓2,· · · , 𝑓𝑛 are nonconstant. 𝑓𝑛+1 ≢ 0 and 

(2.1) is valid, thus by Lemma (2.2) we obtain that 𝑓𝑛+1 ≡ 1 a contradiction.  

Case 2.1.2. 𝑑𝑒𝑔(𝑞) = 0. If 1 − 𝑒𝑞(𝑧) ≠ 0, then by using the same argument as used in case 

2.1.1 we obtain a contradiction.  

If 1 − 𝑒𝑞(𝑧) = 0, then by (3.11) we have  

𝐴1(𝑧)𝑇𝑘1(𝑧)

𝛼(𝑧)
  +

𝐵1(𝑧)𝑇𝑘1(𝑧 + 𝑏1)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏1)−𝑝(𝑧) + 

𝐴2(𝑧)𝑇𝑘2(𝑧)

𝛼(𝑧)
 

+
𝐵2(𝑧)𝑇𝑘𝑖(𝑧 + 𝑏2)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏2)−𝑝(𝑧) +· · · + 

𝐴𝑛(𝑧)𝑇𝑘𝑛(𝑧)

𝛼(𝑧)
 

 +
𝐵𝑛(𝑧)𝑇𝑘𝑛(𝑧+𝑏𝑛)

𝛼(𝑧)
𝑒𝑝(𝑧+𝑏𝑛)−𝑝(𝑧) ≡  1.  

By second fundamental theorem and Lemma (2.2) and using the same argument as used in 

case 2.1.1 we obtain a contradiction.  

Case 2.2. 𝑑𝑒𝑔(𝑝) = 1. Thus by (3.6) we have  

                               𝑓(𝑧) = 𝛼(𝑧)𝑒𝐴(𝑧),                                                                               (3.15) 

where 𝛼(≢ 0,∞) is a meromorphic function such that 𝜌(𝛼) < 1 and 𝐴 is a nonzero constant. 

By (3.9) and (3.15) we obtain  

                                   ∑
𝐴𝑖(𝑧)𝛼𝑘𝑖(𝑧)

𝛼(𝑧)

𝑛
𝑖=1 + ∑

𝐵𝑖(𝑧)𝛼𝑘𝑖(𝑧+𝑏𝑖)

𝛼(𝑧)

𝑛
𝑖=1 𝑒𝐴𝑏𝑖 = 𝐵                                (3.16)  

where 𝐴, 𝐵 are two nonzero constants. We now write equation (3.16) in the form  

            (𝑒𝐴𝑏𝑖)𝑛
𝜓(𝛼𝑘𝑛(𝑧))

𝛼(𝑧)
+ 𝐵𝑛−1

𝜓(𝛼𝑘𝑛−1(𝑧))

𝛼(𝑧)
+ · · ·  +𝐵1

𝜓(𝛼𝑘1(𝑧))

𝛼(𝑧)
= 𝐵                           (3.17) 

where 𝐵𝑛 = (𝑒
𝐴𝑏𝑖)𝑛, 𝐵𝑛−1,· · · , 𝐵1 are constants.  

We choose 𝜖 such that 0 < 𝜖 < 1 − 𝜌(𝛼). Lemma (2.3) asserts that there exists a set 𝐸 ⊂

 (1, +∞) of finite logarithmic measure, such that for all |𝑧| = 𝑟 ∉ 𝐸 ∪ [0, 1]  

                                  
𝜓(𝛼𝑘𝑛(𝑧))

𝛼(𝑧)
=  𝑜(1),    for 1 ≤ 𝑗 ≤ 𝑛.                                                 (3.18)  

Let |𝑧| = 𝑟 ∉ 𝐸 ∪ [0, 1] and |𝑧| → ∞, then it follows from (3.17) and (3.18) that 𝐵 = 0.  

Thus, we have 

           (𝑒𝐴𝑏𝑖)𝑛𝜓(𝛼𝑘𝑛(𝑧)) + 𝐵𝑛−1𝜓(𝛼𝑘𝑛−1(𝑧)) + · · ·  + 𝐵1𝜓(𝛼𝑘1(𝑧)) = 0.                  (3.19)  

If 𝜓(𝛼𝑘1(𝑧)) = 0 then by Lemma (2.4) we know that 𝛼 is a nonzero constant and 𝑓(𝑧) =

 𝑒𝐴𝑧+𝐵. If 𝜓(𝛼𝑘1(𝑧)) ≠  0 then it follows from 𝜌(𝜓(𝛼𝑘1(𝑧))) ≤ 𝜌(𝛼) < 1, (3.19) and 

Lemma (2.3) that 𝐵1 = 0. Now suppose that 𝐵𝑙 ≠ 0, 𝐵𝑙−1 = 0,· · · , 𝐵1 = 0, 2 ≤  𝑙 ≤  𝑛. 
Thus, we have  
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(𝑒𝐴𝑏𝑖)𝑛𝜓(𝛼𝑘𝑛(𝑧)) + 𝐵𝑛−1𝜓(𝛼𝑘𝑛−1(𝑧)) + · · ·  + 𝐵𝑙𝜓(𝛼𝑘𝑙(𝑧)) =  0, 𝐵𝑙 ≠ 0.                (3.20)  

We claim that 𝜓(𝛼𝑘1(𝑧)) = 0. Otherwise, we have  

      (𝑒𝐴𝑏𝑖)𝑛
𝜓(𝛼𝑘𝑛(𝑧))

𝜓(𝛼𝑘𝑙(𝑧))
+ 𝐵𝑛−1

𝜓(𝛼𝑘𝑛−1(𝑧))

𝜓(𝛼𝑘𝑙(𝑧))
+ · · ·  +𝐵1

𝜓(𝛼𝑘𝑙+1(𝑧))

𝜓(𝛼𝑘𝑙(𝑧))
= −𝐵𝑙  .                           (3.21)  

By Lemma (2.3) and (3.21) we deduce that 𝐵𝑙 = 0 a contradiction. Thus, we prove that  

𝜓(𝛼𝑘1(𝑧)) = 0. Hence, we have from (3.17) that  

                                   ∑ 𝐵1,𝑙−𝑖
𝜓(𝛼𝑘𝑙−𝑖)

(𝑧)

𝛼(𝑧)

𝑙
𝑖=1 = 𝐵,                                                             (3.22)  

where 𝐵1,𝑙−1,· · · , 𝐵1,1, 𝐵1,0, 𝐵 are constants and 𝐵 ≠ 0, 𝜓(𝛼𝑘0(𝑧)) = 𝛼.  

Now using the same argument as for proving 𝜓(𝛼𝑘𝑙(𝑧)) = 0 we obtain that 𝜓(𝛼𝑘𝑙1(𝑧)) = 0, 

1 ≤ 𝑙1 ≤ 𝑙 − 1.  

By taking 𝑙1 = 1 we have 𝜓(𝛼𝑘1(𝑧)) = 0 and by Lemma (2.4) we deduce that 𝛼𝑘(𝑧) is a 

nonzero constant. Hence the theorem is proved.                                                               ∎ 

 

Theorem 3.2. Let 𝑓 and 𝑔 be two meromorphic functions and 𝑛, 𝑘 be two positive integers 

with 𝑛 > 3𝑘 + 8 − 𝛩𝑚𝑖𝑛(𝑘 + 4), if 𝛩𝑚𝑖𝑛 ≥
2

𝑘+4
, otherwise 𝑛 > 3𝑘 + 6. If (𝐿(𝑓𝑛))(𝑘) and 

(𝐿(𝑔𝑛))(𝑘) share 1 CM; 𝐿(𝑓𝑛) and 𝐿(𝑔𝑛) share ∞ IM and  

𝐻 = [(𝑘 + 2)𝜃(∞, 𝑓) + 2𝜃(∞, 𝑔) + 𝜃(0, 𝑓) + 𝜃(0, 𝑔) + 𝑛𝛿𝑘+1(0, 𝑓) + 𝑛𝛿𝑘+1(0, 𝑔)] 

         > 𝑛 + 𝑘 + 6                                                                                                           (3.23)  

then either 𝐿(𝑓𝑛) = 𝑐1𝑒
𝑐𝑧, 𝐿(𝑔𝑛) = 𝑐2𝑒

−𝑐𝑧 , where 𝑐1, 𝑐2 and 𝑐 are constants satisfying 

(−1)𝑘 (𝑐1𝑐2)
𝑛 (𝑛𝑐)2𝑘 = 1, or 𝑓 = 𝑡𝑔 for a constant 𝑡 such that 𝑡𝑛 = 1. 

Proof. Set 𝐹 = [𝐿(𝑓𝑛)](𝑘),   𝐺 = [𝐿(𝑔𝑛)](𝑘).  

Since [𝐿(𝑓𝑛)](𝑘) and [𝐿(𝑔𝑛)](𝑘) share 1 C M then 𝐹 and 𝐺 share 1 C M. By Lemma (2.5) we 

obtain  

                    𝑇(𝑟, 𝐹) = 𝑇( 𝑟, [𝐿(𝑓𝑛)](𝑘))   

                                 ≤ 𝑇(𝑟, 𝐿(𝑓𝑛)) + 𝑘𝑁̅(𝑟, 𝑓) + 𝑆(𝑟, 𝑓)  

                                 ≤ (𝑛 + 𝑘)𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓).  

It follows 𝑆(𝑟, 𝐹) = 𝑆(𝑟, 𝑓). Similarly, we get 𝑆(𝑟, 𝐺) = 𝑆(𝑟, 𝑔).  

Set                                𝜁 =
 𝐹′

𝐹(𝐹−1)
 −

 𝐺′

𝐺(𝐺−1)
.                                                                     (3.24)  

Next we consider two cases. 

Case 1. 𝜁 = 0 then by (3.24)  

                                                  
𝐹−1

𝐹
= 𝑐 

𝐺−1

𝐺
                                                                      (3.25)  
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where 𝑐 is a finite complex constant.  

In the following we consider two subcases.  

Case 1.1 𝑐 = 1. It follows from (3.25) that 𝐹 = 𝐺, that is [𝐿(𝑓𝑛)](𝑘) = [𝐿(𝑔𝑛)](𝑘). Which 

implies 𝐿(𝑓𝑛) = 𝐿(𝑔𝑛) + 𝑃, where 𝑃 is a polynomial with 𝑑𝑒𝑔𝑟𝑒𝑒(𝑃) ≤ 𝑘 − 1.  

If 𝑃 ≢ 0, then we have  

                                      
𝐿(𝑓𝑛)

𝑃
−
𝐿(𝑔𝑛)

𝑃
= 1.                                                                        (3.26)  

Since 𝑓 and 𝑔 are two nonconstant meromorphic functions, then  

                   𝑇(𝑟, 𝑓) ≥ 𝑙𝑜𝑔𝑟 + 𝑂(1),    𝑇(𝑟, 𝑔) ≥ 𝑙𝑜𝑔𝑟 + 𝑂(1).                                      (3.27)  

By second fundamental theorem and (3.27) we obtain  

                           𝑇 ( 𝑟,
𝐿(𝑓𝑛)

𝑃
  ) ≤  𝑇(𝑟, 𝐿(𝑓𝑛)) + 𝑇(𝑟, 𝑃) + 𝑂(1)  

                                                   ≤ 𝑛𝑇(𝑟, 𝐿(𝑓)) + (𝑘 − 1)𝑙𝑜𝑔𝑟 + 𝑂(1)  

                                                   ≤ (𝑛 + 𝑘 − 1)𝑇(𝑟, 𝐿(𝑓)) + 𝑂(1). 

Hence, we get  

                                    𝑆 (𝑟,
𝐿(𝑓𝑛)

𝑃
) = 𝑆(𝑟, 𝑓).                                                                 (3.28)  

By 𝑛 > 2𝑘 + 4, Nevanlinna second fundamental theorem and (3.26) - (3.28) we have  

𝑛𝑇(𝑟, 𝐿(𝑓)) = 𝑇(𝑟, 𝐿(𝑓𝑛)) ≤ 𝑇 (𝑟,
𝐿(𝑓𝑛)

𝑃
) + 𝑇(𝑟, 𝑃)  

                    ≤ 𝑁̅  (𝑟,
𝐿(𝑓𝑛)

𝑃
) + 𝑁̅  (𝑟,

𝑃

𝐿(𝑓𝑛)
) + 𝑁̅  (𝑟,

1
𝐿(𝑓𝑛)

𝑃
−1
) + (𝑘 − 1)𝑙𝑜𝑔𝑟 + 𝑂(1)  

                    ≤ 𝑁̅(𝑟, 𝐿(𝑓)) + 𝑁 (𝑟,
1

𝐿(𝑓)
 ) + 𝑁̅ (𝑟,

1

𝐿(𝑔)
 ) + 2(𝑘 − 1)𝑙𝑜𝑔𝑟 + 𝑆(𝑟, 𝑓)  

                    ≤ 2𝑘𝑇(𝑟, 𝐿(𝑓)) + 𝑁̅ (𝑟,
1

𝐿(𝑔)
 ) + 𝑆(𝑟, 𝑓).                                                  (3.29) 

Which implies  

                 (𝑛 − 2𝑘)𝑇(𝑟, 𝐿(𝑓)) ≤ 𝑁 (𝑟,
1

𝐿(𝑔)
 ) + 𝑆(𝑟, 𝑓).                                              (3.30)  

Similarly  

                     (𝑛 − 2𝑘)𝑇(𝑟, 𝐿(𝑔)) ≤ 𝑁̅ (𝑟,
1

𝐿(𝑓)
 ) + 𝑆(𝑟, 𝑔).                                           (3.31)  

By either 𝑛 > 3𝑘 + 6 or 𝑛 > 3𝑘 + 8 − 𝛩𝑚𝑖𝑛(𝑘 + 4) ≥ 2𝑘 + 4 we get  

                            𝑇(𝑟, 𝐿(𝑓)) + 𝑇(𝑟, 𝐿(𝑔)) ≤ 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)  

a contradiction.  

Hence 𝑃 ≡ 0. It follows 𝑓 = 𝑡𝑔 where 𝑡 is a constant such that 𝑡𝑛 = 1.  
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Case 1.2 𝑐 ≠ 1. Then by (3.25) we obtain  

                            
1

𝐹
− 

𝑐

𝐺
= 1 − 𝑐.                                                                                  (3.32) 

Since 𝑓 and 𝑔 share ∞ IM, it follows from (3.32) that 𝐹 ≠ ∞ and 𝐺 ≠ ∞. Hence 
1

𝐹
≠ 0 and 

then by (3.32) we deduce that 𝐺 ≠
𝑐

𝑐−1
. By Lemma (2.6) we obtain  

𝑛𝑇(𝑟, 𝐿(𝑔)) = 𝑇(𝑟, 𝐿(𝑔𝑛))  

                     ≤ 𝑁̅(𝑟, 𝐿(𝑔𝑛)) + 𝑁 (𝑟,
1

𝐿(𝑔𝑛)
) + 𝑁 (𝑟,

1

(𝐿(𝑔𝑛))
(𝑘)
−

𝑐

𝑐−1

) 

                     −𝑁 (𝑟,
1

(𝐿(𝑔𝑛))(𝑘+1)
) + 𝑆(𝑟, 𝑔)  

                       ≤ (𝑘 + 1)𝑁̅ (𝑟,
1

𝐿(𝑔)
) +  𝑆(𝑟, 𝑔).  

It follows from either 𝑛 > 3𝑘 + 6 or 𝑛 > 3𝑘 + 8 − 𝛩𝑚𝑖𝑛(𝑘 + 4) ≥ 2𝑘 + 4 that  

𝑇(𝑟, 𝑔)  ≤  𝑆(𝑟, 𝑔) a contradiction. 

Case 2. 𝜁 ≢ 0. Let 𝑧0 be a pole of [𝐿(𝑓𝑛)] with multiplicity 𝑙1. Then by [𝐿(𝑓𝑛)]and 

[𝐿(𝑔𝑛)]share ∞ IM we know that 𝑧0 is a pole of [𝐿(𝑔𝑛)] with multiplicity 𝑙2.  

Set 𝑙 = 𝑚𝑖𝑛{𝑙1, 𝑙2} by (3.24) we deduce that 𝑧0 is a zero of 𝜁 with multiplicity ≥ 𝑛𝑙 + 𝑘 − 1. 

Hence by Lemma (2.7) we have  

𝑁(𝑟, 𝐿(𝑓𝑛)) = 𝑁(𝑟, 𝐿(𝑔𝑛)) ≤
1

𝑛+𝑘−1
𝑁 (𝑟,

1

𝜁
)   

                      ≤
1

𝑛+𝑘−1
𝑇(𝑟, 𝜁) + 𝑂(1)  

                      ≤
1

𝑛+𝑘−1
𝑚(𝑟, 𝜁) +

1

𝑛+𝑘−1
𝑁(𝑟, 𝜁) + 𝑂(1)  

                      ≤
1

𝑛+𝑘−1
[𝑁̅ (𝑟,

1

𝐹
) + 𝑁 (𝑟,

1

𝐺
)] + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔).                                   (3.33) 

It follows from Lemma (2.5) that  

𝑁 (𝑟,
1

𝐹
) = 𝑁̅ (𝑟,

1

(𝐿(𝑓𝑛))(𝑘)
)  

              = 𝑁 (𝑟,
1

(𝐿(𝑓𝑛))(𝑘)
) − [𝑁 (𝑟,

1

(𝐿(𝑓𝑛))(𝑘)
) − 𝑁̅ (𝑟,

1

(𝐿(𝑓𝑛))(𝑘)
)] 

             ≤ 𝑁 (𝑟,
1

𝐿(𝑓𝑛)
) + 𝑘𝑁(𝑟, 𝐿(𝑓)) − [𝑁 (𝑟,

1

(𝐿(𝑓𝑛))(𝑘)
) − 𝑁̅ (𝑟,

1

(𝐿(𝑓𝑛))(𝑘)
)] +  S(r, f) 

             ≤ (𝑘 + 1)𝑁̅ (𝑟,
1

𝐿(𝑓𝑛)
) + 𝑘𝑁(𝑟, 𝐿(𝑓𝑛)) + 𝑆(𝑟, 𝑓)  

             ≤ (2𝑘 + 1)𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓).                                                                            (3.34)  

Similarly,  

                      𝑁̅ (𝑟,
1

𝐺
) ≤ (2𝑘 + 1)𝑇(𝑟, 𝑔) + 𝑆(𝑟, 𝑓).                                                     (3.35)  
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By (3.33) - (3.35) we get 

𝑁(𝑟, 𝐿(𝑓𝑛)) = 𝑁̅(𝑟, 𝐿(𝑔𝑛)) ≤
2𝑘+1

𝑛+𝑘−1
[𝑇(𝑟, 𝑓) + 𝑇(𝑟, 𝑔)] + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔).             (3.36)  

Set                             𝜁1 =
𝐹′′

𝐹′
− 2

𝐹′

𝐹−1
−
𝐺′′

𝐺′
+ 2

𝐺′

𝐺−1
.                                                      (3.37)  

Suppose 𝜁1 ≢ 0. Let 𝑧0 be a common simple zero of 𝐹(𝑧) − 1 and 𝐺(𝑧) − 1, by a simple 

computation we see that 𝜁1(𝑧0) = 0. Thus by first fundamental theorem and Lemma (2.7) we 

have  

               𝑁1) (𝑟,
1

𝐹−1
) = 𝑁1) (𝑟,

1

𝐺−1
) 

                                   ≤ 𝑁 (𝑟,
1

𝜁1
) ≤  𝑇(𝑟, 𝜁1) + 𝑂(1)  

                                   ≤ 𝑁(𝑟, 𝜁1) + 𝑆(𝑟, 𝐹) + 𝑆(𝑟, 𝐺),                                                   (3.38)  

where 𝑁1) (𝑟,
1

𝐹−1
) is the counting function of simple zeros of 𝐹(𝑧) − 1. It follows from 𝐹 

and 𝐺 share 1 CM and (3.37) that 

               𝑁(𝑟, 𝜁1) ≤ 𝑁(𝑟, 𝐿(𝑓
𝑛)) + 𝑁̅(𝑟, 𝐿(𝑔𝑛)) + 𝑁̅ (𝑟,

1

𝐿(𝑓𝑛)
)  

                             +𝑁̅ (𝑟,
1

𝐿(𝑔𝑛)
) + 𝑁0 (𝑟,

1

(𝐿(𝑓𝑛))(𝑘+1)
) + 𝑁0 (𝑟,

1

(𝐿(𝑔𝑛))(𝑘+1)
),                 (3.39) 

where 𝑁0 (𝑟,
1

(𝐿(𝑓𝑛))(𝑘+1)
) is the counting function for which (𝐿(𝑓𝑛))(𝑘+1) = 0 and 

 𝐿(𝑓𝑛)[𝐹(𝑧) − 1] ≠ 0. Since 𝐹 and 𝐺 share 1 CM, then we get  

   𝑁̅ (𝑟,
1

𝐹−1
) + 𝑁 (𝑟,

1

𝐺−1
) = 2𝑁̅ (𝑟,

1

𝐹−1
) ≤ 𝑁1) (𝑟,

1

𝐹−1
) + 𝑁 (𝑟,

1

𝐹−1
).                         (3.40)  

By Lemma (2.6) we have  

𝑇(𝑟, 𝐿(𝑓𝑛)) ≤ 𝑁̅(𝑟, 𝐿(𝑓)) + 𝑁𝑘+1 (𝑟,
1

𝐿(𝑓𝑛)
) + 𝑁̅ (𝑟,

1

𝐹−1
) − 𝑁̅0 (𝑟,

1

𝐹′
) +  𝑆(𝑟, 𝑓).       (3.41)        

                                                                                                                                           

𝑇(𝑟, 𝐿(𝑔𝑛)) ≤ 𝑁(𝑟, 𝐿(𝑔)) + 𝑁𝑘+1 (𝑟,
1

𝐿(𝑔𝑛)
) + 𝑁̅ (𝑟,

1

𝐺−1
) − 𝑁̅0 (𝑟,

1

𝐺′
) +  𝑆(𝑟, 𝑔).      (3.42)  

 

It follows from (3.38) - (3.42) that  

 

𝑇(𝑟, 𝐿(𝑓𝑛)) + 𝑇(𝑟, 𝐿(𝑔𝑛)) ≤ 2𝑁̅(𝑟, 𝐿(𝑓)) + 2𝑁̅(𝑟, 𝐿(𝑔)) + 𝑁𝑘+1 (𝑟,
1

𝐿(𝑓𝑛)
)  

                                             +𝑁𝑘+1 (𝑟,
1

𝐿(𝑔𝑛)
) + 𝑁̅ (𝑟,

1

𝐿(𝑓)
) + 𝑁̅ (𝑟,

1

𝐿(𝑔)
)  

                                             +𝑁 (𝑟,
1

(𝐿(𝑓𝑛))(𝑘)−1
) + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔).                            (3.43)  

Since, 𝑁 (𝑟,
1

(𝐿(𝑓𝑛))(𝑘)−1
) ≤ 𝑇(𝑟, 𝐿(𝑓𝑛)) + 𝑘𝑁̅(𝑟, 𝐿(𝑓)) + 𝑆(𝑟, 𝑓).  

 

We obtain from (3.43) that  

 

𝑇(𝑟, 𝐿(𝑔𝑛)) ≤ (2 + 𝑘)𝑁(𝑟, 𝐿(𝑓)) + 2𝑁̅(𝑟, 𝐿(𝑔)) + 𝑛𝑁𝑘+1 (𝑟,
1

𝐿(𝑓)
)  
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                     + 𝑛𝑁𝑘+1 (𝑟,
1

𝐿(𝑔)
) + 𝑁 (𝑟,

1

𝐿(𝑓)
) + 𝑁̅ (𝑟,

1

𝐿(𝑔)
) + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔).  

Without loss of generality, we suppose that there exist a set I with infinite measure such that 

𝑇(𝑟, 𝑓) ≤ 𝑇(𝑟, 𝑔) for 𝑟 ∈ 𝐼.  
Hence                                  

        𝑛𝑇(𝑟, 𝐿(𝑔)) ≤ {6 + 2𝑛 + 𝑘 − [(𝑘 + 2)𝛩(∞, 𝑓) + 2𝛩(∞, 𝑔) + 𝛩(0, 𝑓) +  𝛩(0, 𝑔)  
                             + 𝑛𝛿𝑘+1(0, 𝑓) + 𝑛𝛿𝑘+1(0, 𝑔)] + 𝜖}𝑇(𝑟, 𝑔) + 𝑆(𝑟, 𝑔)                  (3.44)  

for 𝑟 ∈ 𝐼 and 0 < 𝜖 < 𝐻 − (6 + 𝑛 + 𝑘) that is  

                                

                                  [𝐻 − (6 + 𝑛 + 𝑘) − 𝜖]𝑇(𝑟, 𝑔) ≤ 𝑆(𝑟, 𝑔).  
That is  

                                          𝐻 − (6 + 𝑛 + 𝑘) ≤ 0.  
Which implies  

                                              𝐻 ≤ 6 + 𝑛 + 𝑘  

which is a contradiction to our hypothesis 𝐻 > 6 + 𝑛 + 𝑘. Hence we get 𝜁1 ≡ 0.  
That is  

                                          
𝐹′′

𝐹′
− 2

𝐹′

𝐹−1
−
𝐺′′

𝐺′
+ 2

𝐺′

𝐺−1
.                                                      (3.45) 

Integrating this equation  

                                             
1

𝐹−1
= 

𝑎

𝐺−1
+ 𝑏                                                                   (3.46)  

where 𝑎(≠ 0), 𝑏 are two finite complex numbers.  

Next, we consider two subcases.  

Case 2.1 𝑏 ≠ 0. Since 𝐿(𝑓𝑛) and 𝐿(𝑔𝑛) share ∞ IM. We know that 𝐹 and 𝐺 share ∞ IM. It 

follows from (3.46) that 𝐹 ≠ ∞, 𝐺 ≠ ∞. Hence 
1

𝐹−1
≠ 0 thus by (3.46) we deduce 𝐺 ≠

𝑏−𝑎

𝑎
 

Now we consider two subcases.  

Case 2.1.1 𝑏 = 𝑎. It follows from 
𝑎

𝐺−1
≠ 0 and (3.46) that 𝐹 ≠ 1 +

1

𝑏
 .  

In the following, we consider two subcases.  

Case 2.1.1.1 𝑏 ≠ −1. Then we have 1 +
1

𝑏
≠ 0. By Lemma (2.6) we obtain  

𝑛𝑇(𝑟, 𝐿(𝑔)) ≤ 𝑁(𝑟, 𝐿(𝑔)) + 𝑛𝑁𝑘+1 (𝑟,
1

𝐿(𝑔)
) + 𝑁̅ (𝑟,

1

𝐺−(1+
1

𝑏
)
) + 𝑆(𝑟, 𝑔).                  (3.47) 

From (3.46) we can write  

                             𝑁̅ (𝑟,
1

𝐺−(1+
1

𝑏
)
) ≤ 𝑁 (𝑟,

𝐺

𝐺−(1+
1

𝑏
)
) = 𝑁̅ (𝑟,

1

𝐹
)  

By Lemma (2.8) we obtain the following inequality  

                            𝑁̅ (𝑟,
1

𝐹
) ≤ (𝑘 + 1)𝑁̅(𝑟, 𝐿(𝑓)) + 𝑁̅ (𝑟,

1

𝐹
) + 𝑆(𝑟, 𝑓).  

Hence  

𝑁̅ (𝑟,
1

𝐺 − (1 +
1
𝑏
)
) ≤ 𝑁 (𝑟,

1

𝐹
) ≤ (𝑘 + 1)𝑁̅(𝑟, 𝐿(𝑓)) + 𝑁̅ (𝑟,

1

𝑓
) + 𝑆(𝑟, 𝑓).  

Therefore (3.47) becomes  

 

𝑛𝑇(𝑟, 𝐿(𝑔)) ≤ [3 + 𝑘 + 𝑛 − 𝛩(∞, 𝑔) − 𝛩(0, 𝑓) − 𝑛𝛿𝑘+1(0, 𝑔) − (𝑘+)𝛩(∞, 𝑓)]𝑇(𝑟, 𝐿(𝑔))               
                     + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔).                                                                                     (3.48)  

 

Hence by (3.23) and (3.48) we deduce that  

 

𝑇(𝑟, 𝐿(𝑔)) ≤ 𝑆(𝑟, 𝑔) a contradiction.    
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Case 2.1.1.2 𝑏 = −1. Thus 𝑎 = −1 by (3.46) we deduce that 𝐹𝐺 ≡ 1. That is  

 

                                      (𝐿(𝑓𝑛))(𝑘)(𝐿(𝑔𝑛))(𝑘) ≡  1.                                                       (3.49)  

 

Since 𝐿(𝑓𝑛) and 𝐿(𝑔𝑛) share ∞ IM then by (3.49) we deduce that 𝐿(𝑓𝑛) ≠ ∞, 𝐿(𝑔𝑛) ≠ ∞. 
It follows from (3.49) that (𝐿(𝑓𝑛))(𝑘) ≠ 0, (𝐿(𝑔𝑛))(𝑘) ≠ 0, 𝐿(𝑓𝑛) ≠ 0, 𝐿(𝑓𝑛) ≠ 0. If 𝑘 ≥
 2, then by Lemma (2.9) we get 𝐿(𝑓𝑛) = 𝑐1𝑒

𝑐𝑧, 𝐿(𝑔𝑛) = 𝑐2𝑒
−𝑐𝑧 , where 𝑐1, 𝑐2 and 𝑐 are 

constants satisfying (−1)𝑘 (𝑐1𝑐2)
𝑛 (𝑛𝑐)2𝑘 = 1. If 𝑘 = 1 then by Lemma (2.10) we get 

𝐿(𝑓𝑛) = 𝑐1𝑒
𝑐𝑧, 𝐿(𝑔𝑛) = 𝑐2𝑒

−𝑐𝑧 , where 𝑐1, 𝑐2 and 𝑐 are constants satisfying  

(𝑐1𝑐2)
𝑛+1 = −1.  

 

Case 2.1.2 𝑏 ≠ 𝑎. Hence we have 
𝑏−𝑎

𝑏
≠ 0, 𝐺 −

𝑏−𝑎

𝑏
≠ 0. In this case by using the same 

argument as in 2.1.1.1 we get a contradiction.  

 

Case 2.2 𝑏 = 0 then by (3.46)  

                                     

                                         𝐹 =
1

𝑎
𝐺 +

𝑎−1

𝑎
.                                                                      (3.50)  

 

If 𝑎 = 1 then by (3.50) we have 𝐹 ≡ 𝐺. That is (𝐿(𝑓𝑛))(𝑘) = (𝐿(𝑔𝑛))(𝑘), by using the same 

argument as in case 1.1, we get 𝑓 ≡ 𝑡𝑔, where 𝑡 is a constant such that 𝑡𝑛 = 1. If 𝑎 ≠ 1 then 

by (3.50) we get 𝑎(𝐿(𝑓𝑛))(𝑘) ≡ (𝐿(𝑔𝑛))(𝑘) + 𝑎 − 1. That is 𝑎(𝐿(𝑓𝑛))(𝑘) − (𝐿(𝑔𝑛))
(𝑘)
=

𝑎 − 1. Thus, we obtain 𝐿(𝑓𝑛) =
1

𝑎
𝐿(𝑔𝑛) + 𝑃 where 𝑃 is a polynomial of degree 𝑘. Then by 

using the same argument as in case 1.1 we get a contradiction. Hence the proof.             ∎    
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