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Abstract - In this paper we establish a first result for a transcendental meromorphic function of finite order
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1 INTRODUCTION

Definition 1. Let us define a differential polynomial involving shift function

Y(f) = T Ai@f 0 (2) + T Bi(2) %0 (2 + by), (1.1)
where A;(z), B;(z) are small functions of f(z), k; > 0 € Z*, b; is a complex constant.

In 2013, Chen [3] proved the relationships between Picard values of entire functions f(z) and
their forward differences A" f (2).

Theorem 1.1. [3] Let f be a transcendental entire function of finite order, let c(# 0) be a
constant, and let n be a positive integer. If f # 0, A*f # 0, then f(z) = e***?, where a(#
0), b are constants.

In 2016, Chen et al., [2] proved difference analogue to theorem 1.1.

Theorem 1.2. [2] Let a(# o), b be two distinct complex numbers (b may be ), let f be a
transcendental meromorphic function of finite order with two Borel exceptional values a, b
and ¢ be a non zero constant such that A.f # 0. If f and A.f share a,b CM, thena = 0,b =
o and f(z) = e4?*B, where A(+# 0), B are constants.

In 2021, M. Fang and Y. Wang [7] worked for higher order difference operators.

Theorem 1.3. [7] Let a(# o), b be two distinct complex numbers and n € Z*, let f be a
transcendental meromorphic function of finite order with two Borel exceptional values a, b
and c is a non-zero constant such that A} f # 0. If f and A% f share a,b CM, then a = 0,
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b = o and f(z) = e4?*B where A(# 0), B are constants.

In the year 1998, W. Yuefei and F. Mingliang[14] proved the criteria for normality of families
of meromorphic functions.

Theorem 1.4. [14] Let f(z) be a transcendental entire function, n,k € N withn > k + 1.
Then (f™)®) = 1 has infinitely many solutions.

In 2002, M-L Fang [8] obtained the below result corresponding to unicity theorem.

Theorem 1.5. [8] Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n > 2k + 4. If (f™)® and (g™)® share 1 CM, then either f(z) =
cie, g(z) = c,e™“* , where ¢y, ¢, and c are three constants satisfying

(=¥ (cic)™ (nc)?* =1, or f = tg for a constant t such that t™ = 1.

J. Fan et al., [6] extended theorem 1.5 to prove the following.

Theorem 1.6. [6] Let f and g be two nonconstant meromorphic functions, and let n, k be two

positive integers withn > 3k + 8 — 0,,;,(k + 4),1f 0,,,;,, = ﬁ, otherwise n > 3k + 6. If

(f™® and (g™)® share 1 CM, f and g share oo IM, then either f(z) = c,e?, g(z) =
c,e~“?  where ¢y, ¢, and c are three constants satisfying (—1)* (¢;c,)™ (nc)?* =1, or f =
tg for a constant t such that t" = 1.

2 LEMMAS

Lemma 2.1. [9, 4] Let f be a nonconstant meromorphic function of finite order, let ¢ be a
nonzero finite complex number. Then
( f(z+c¢)
m

" )= SeD

and for any € > 0, we have

fzto) ) _ p(f)+e—1
m(r,—f(z)) O(r )-

Lemma 2.2. [12, 7] Suppose that f;(2), f(2)," - -, f,(2) are meromorphic functions
satisfying the following identity

;-l=1fj(z) =1.
If f,(z) # 0 and
1 J—
nN (r, f_,-) + (=D N(f) < A+ 0QA)NTE fo), Q.1
where [ is a set of r € (0, ) with infinite linear measure,r € [,k =1,2,---,n—1, 1 <1,

then f,, = 1.

Lemma 2.3. [5] Let f be a meromorphic function of order p(f) = p < 1. Then for each
given € > 0, and a positive integer n, there exists a set E € (1, o) that depends on f, and it
has finite logarithmic measure, such that for all z satisfying |z| = r € E U [0, 1], we have
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< |Z|p—1+e'

Lemma 2.4. [7] Let a be a meromorphic function, let k be a positive integer, and let ¢ be a
nonzero finite complex number. If A¥a = 0, then either p(a) = 1 or a is a polynomial with
deg(a) <k —1.

Lemma 2.5. [12, 6] Let f be a meromorphic function such that f (k) # 0, and let k be a
positive integer. Then

T, f®Y ST, f)+ kN, ) +ST.f)
N (7, %) <n(r ]—{) + kN, ) + S, f).

Lemma 2.6. [12, 11, 6] Let f be a nonconstant meromorphic function, let k be a positive
integer, and let ¢ be a nonzero finite complex number. Then

1

T(r, f) <N f) + N(r,f) +N (rf(%)_c) ~N (rﬁ) + S f)
SN, f) + Ny (r,]%) + IV(r,f(k;)_c) — N, (r,ﬁ) +S(r, f)

where N, (r, ]ﬁ) is the counting function which only counts those points such that
FED(2) = 0,but £(2)(fF P (2) — ¢) # 0.
Lemma 2.7. [10, 12, 11, 6] If f is a meromorphic function, k € N. And then
oy _
m(r, 7 ) =S(r,f).

Lemma 2.8. [10, 1] Let f(z) be a meromorphic function and a be a finite complex number.
Then

OT(r-2) =T, H+0)

®)
(i) m(r,];T)) =S(r,f), for k>1=0

WD) T(r ) < NG f) + N (r, f_all (Z)) +N (r,f_alz (Z)) + 50, f)

where a,(2), a,(z) are two meromorphic functions such that T(ra;) = S(r, f), (i =1, 2).

Lemma 2.9. [6] Let f be a nonconstant entire function, and let k(= 2) be a positive integer.
If f(2)f®(2) # 0, then f(2) = e®**P | where a(# 0), b are two constants.

Lemma 2.10. [13, 6] Let f and g be two nonconstant entire functions, and let n(= 1) be a
positive integer. If f"f'g" g’ = 1, then f(2) = c,e?, g(z) = c,e™ %, where ¢4, ¢, and ¢ are
three constants satisfying (c;c,)"*1c? = —1.

3 MAIN RESULTS

Theorem 3.1. Let a, (# ), a, be two distinct complex numbers and n € Z*, let f be a
transcendental meromorphic function of finite order with two Borel exceptional values a;,
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a, and c is a non-zero constant such that Y (f) # 0. If f and Y(f) share a,;, a, CM, then
a1 = 0, az = 00,

Proof. Case 1. a, is a nonzero finite complex number, a, = . Since a4, oo are two distinct
Borel exceptional values of f and f is of finite order, by Hadamard’s factorization theorem,
we have

f2)=a, + a(z)e”(z), (3.1)

where a(# 0, 00) is a meromorphic function such that p(a) < p(f) and p is a non constant
polynomial with deg(p) = p(f). Hence we have

T(r,a) = S(r,eP), T(r,f)=T(r,e?)+S(,f). (3.2)
Thus, we have
f'(2) = ae?@p/(2) + & (2)e?®
= e?D[a(2)p'(2) + a'(2)]
= ePAT, (2),
where Ty (2) = a(2)p'(2) + &' (2).
f"(2) = e?@T'(2) + T1(2)e?@p’(2)
= e’ [T, (2)p'(2) + T'1(2)]
= ePAT,(2),

where T, (z) = T;(2)p'(2) + T'1(2).

f(2) = DT (2),
where Ty (2) = Ty_1(2)p'(2) + T'_1(2).
And
f®(z + b;) = ePEPIT, (z + by),
where Ty (z + b;) = Ty—1(z + b)p' (z + b)) + T'y,_1(z + b)).

Hence (3.1) becomes

Y(f) = Lie1 ATy, (2)e?® + EiLy Bi(2)Ty, (z + b;)eP+P0,

= [B1, Ai (DT, (2) + Iy Bi(2)Ty,(z + b)) eP FHP0-P@]ep()
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= H(2)e?®, (3.3)

where H(z) = Y111 A;(2)Ty,(2) + Xity Bi(2)Ty,(z + b;)eP@HPD~P@, Since (z) £ 0, it
follows that H(z) # 0. Thus H(# 0) is a meromorphic function with p(H) < p(eP).

Hence H is a small function of eP. By second fundamental theorem and (3.3) we have
T(r,e?) <T(r,He?) + T (r, %) + 0(1)
< T(r,HeP) + S(r,eP)

< N(r,HeP) + N(r,—) +N (r ;) + S(r,eP)

1
HeP "HeP-a,

<N (r, Hepl—al) + S(r,eP)

1
= - r eP 4
N(r, 0 a1)+5( ,eP). (3.4)

Since f and Y (f) share a;CM, it follows that

N (r, i) >T(r,eP) + S(r,eP). (3.5)

Thus, we deduce from (3.2) and (3.5) that A(f — a;) = p(f), this contradicts that a, is a
Borel exceptional value of f. Hence this is absurd.

Case 2. a; = 0, a, = . Since 0, o are two distinct Borel exceptional values of f and f is
of finite order, by Hadamard’s factorization theorem we have

f(2) = a(2)e?®, (3.6)

where a(Z 0, %) is a meromorphic function such that p(a) < p(f) and p is a non constant
polynomial with deg(p) = p(f) = 1. Hence we have

T(r,a) = S(r,eP), T(r,f)=T(r,e?)+S(,f). (3.7)
Thus, we have
Y(f) = H(2)er®,
where H(z) = XL, A4;(2)Ty,(2) + iy Bi(2) Ty, (z + b;)eP@HbI—p@), (3.8)
Since f and Y (f) share 0, 00 CM, there exists a polynomial g satisfying

n AT (2) n Bi@Tk(z+by)
=1 a2 =17 gy €

It follows from (3.9) and Lemma (2.1) that

p(z+b)-p(2) = £4(2). (3.9)

(Bi(Z)Tki(Z+bi)

e ) <deg(p) —1, deg(q) <deg(p)—1. (3.10)

We consider two subcases.

Case 2.1. deg(p) = 2. Here again we have two subcases.
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Case 2.1.11 < deg(q) < deg(p) — 1.
Thus by (3.9) we obtain

NM@T,@) | B@T, @ +b) L, @@
a(z) a(z) a(z)
Ba@T( +b2) iy 4. ..y A0 (2
a(z) ¢ a(z)
Bn(Z)Tkn (Z + bn)
a(z)

eP(Z+bn)-p(2) = pa(2),

1
@ [A1 ()T, (2) + By (2)Ty,(z + by)ePEHPIPE + 4, ()T, (2)
+ By(2)Ty, (z + by)ePE2)P@ ... 4 4, (2)Ty, (2)

+ B (2)Ty, (z + by)eP @t =p@] — 0d@ = 1, (3.11)
Set
Ai(2)Ty(z) = Bi(2)Tk;(z+D))
(7) = i i p(z+b)-p(2) = 4(2)
fi(2) s o e e??), (3.12)
=1,2,...,n foz1=1—e1®, (3.13)
Then by (3.11) we have
@)+ f(2) +- - + (@) + fara(2) = 1. (3.14)
If n=1, then by (3.12) - (3.14) we obtain
T(T' ep(z+b1)—p(z)) < T <T' Bl(Z)Tk1 (Z + bl) ep(Z+b1)—p(Z) ) 4 T (‘r, a(Z) ))
a(z) B, (Z)Tkl (z + by)

a(z)

<N(r By (2)T, (z+b1) ePZ+b)-p(2) ) 1 N 1
’ 'w p(z+b1)-p(2)

a(z)
1
+S T'ep(z+b1)—p(z))
( B1(Z)Tk (z+b,y) ep(zt+b))-p(2) _ 1 (
a(z)
1
+S r,ep(Z”’l)_p(Z)
( EALCALY ep(z+b)-p(2) _ 1 ( )
a(z)

< N T' -|- S(r ep(z+b1) p(Z))

- ed (Z)

< S(r,eP+b0-p(2)y
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a contradiction.

If n > 2 then by (3.12) - (3.14) we know that f;, f,, - -, f,, are nonconstant. f,,1 # 0 and
(2.1) is valid, thus by Lemma (2.2) we obtain that f,,,; = 1 a contradiction.

Case 2.1.2. deg(q) = 0.1f 1 — e9® = 0, then by using the same argument as used in case
2.1.1 we obtain a contradiction.

If 1 — e9® = 0, then by (3.11) we have
A@DT@ | BT @b i e, A@T@
a(z) a(z) a(z)

Bo(@Tk(z+ b2) i) R An(2)Ty, (2)
a@ a(2)

wep(z+bn)—19(z) = 1.
a(z)

By second fundamental theorem and Lemma (2.2) and using the same argument as used in
case 2.1.1 we obtain a contradiction.

Case 2.2. deg(p) = 1. Thus by (3.6) we have
f(2) = a(z)e’®, (3.15)

where a(# 0, 00) is a meromorphic function such that p(a) < 1 and A4 is a nonzero constant.
By (3.9) and (3.15) we obtain

n Ai@Da;(2) n Bi@ay;(z+by) .,
i=1 a(z) i=1 (Z(Z) e L= B (3.16)

where A, B are two nonzero constants. We now write equation (3.16) in the form

Abi\n ¥ @k, (2)) Y(@kp_1(@) |
(e™) a(z) Bn1 a(z) +

W(aw, (@) _

‘ +Bl (X(Z)

(3.17)

where B, = (e4?))",B,_,," - -, B; are constants.

We choose € such that 0 < € < 1 — p(a). Lemma (2.3) asserts that there exists a set E C
(1, +o0) of finite logarithmic measure, such that for all |z| =7 € E U [0, 1]

Y@k, (2)) _ ;
o = o), forlsj<n (3.18)

Let |z| =7 € E U[0,1] and |z| = oo, then it follows from (3.17) and (3.18) that B = 0.

Thus, we have

(e (1, (2)) + By (@i, () + -+ + Bup(t, (2)) = 0. G19

If Y (ay, (2)) = 0 then by Lemma (2.4) we know that « is a nonzero constant and f(z) =
e7*B If (ay, (2)) # 0 then it follows from p(P(ax,(2))) < p(a) < 1,(3.19) and
Lemma (2.3) that B; = 0. Now suppose that B, # 0,B,_; =0,---,B;, =0, 2 < | < n.
Thus, we have
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b; —
(e*P)™p(ay, (2)) + Buoap(ak,_,(2)) + -+ + Bip(ay,(2)) = 0, B, # 0. (3.20)

We claim that (@, (z)) = 0. Otherwise, we have

4o 4B Y@ __p (3.21)

Abyn ¥ (@ky (2)) Y(ak,_,(2)
(e by (ar, (2)

Ylag () " pla(2)
By Lemma (2.3) and (3.21) we deduce that B; = 0 a contradiction. Thus, we prove that
Y(ay,(z)) = 0. Hence, we have from (3.17) that

Wak, )@

o B, (3.22)

l
i=1 B1,i-i
where By ;_q," + -, B4, By, B are constants and B # 0, Y (ay,(2)) = a.

Now using the same argument as for proving 1 (ay,(z)) = 0 we obtain that ll)(akll (2)) =0,
1< <Il-1

By taking [; = 1 we have Y(ay, (2)) = 0 and by Lemma (2.4) we deduce that a; (z) is a
nonzero constant. Hence the theorem is proved. [

Theorem 3.2. Let f and g be two meromorphic functions and n, k be two positive integers
with 7> 3k + 8 — Opin(k + 4), if Oy, = ——, otherwise n > 3k + 6. If (L(F™) ™ and
(L(g™)™ share 1 CM; L(f™) and L(g™) share oo IM and

H =[(k+2)6(co,f)+26(0,g)+6(0,f) +6(0,9) +ndy11(0, f) + nb41(0,9)]
>n+k+6 (3.23)

then either L(f™) = c;e, L(g™) = c,e”* , where ¢4, ¢, and ¢ are constants satisfying
(=¥ (cic)™ (nc)?* =1, or f = tg for a constant t such that t" = 1.

Proof. Set F = [L(f™)]®, G =[L(g™)]®.

Since [L(f™)]%® and [L(g™)]® share 1 C M then F and G share 1 C M. By Lemma (2.5) we
obtain

T(r,F) =T(r,[LGFMIY)
<T@, LF™) +kN(r, ) + S0, f)
Sm+k)T@,f)+S, ).
It follows S(r, F) = S(r, f). Similarly, we get S(r,G) = S(7, g).

F' leld
Set (= FFD e D (3.24)
Next we consider two cases.
Case 1. { = 0 then by (3.24)
F—1 G-1
- c v (325)
| JERTV 15| S020037 Page 8
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where c is a finite complex constant.

In the following we consider two subcases.

Case 1.1 ¢ = 1. It follows from (3.25) that F = G, that is [L(f™)]® = [L(g™)]%®. Which
implies L(f™) = L(g™) + P, where P is a polynomial with degree(P) < k — 1.

If P # 0, then we have

L™ 1@ _
P p

(3.26)
Since f and g are two nonconstant meromorphic functions, then
T(r,f) =logr+0(Q), T(r,g)=logr+ 0(1). (3.27)

By second fundamental theorem and (3.27) we obtain

T(r,2 2 ) < 1@ L(F) + T, P) + 0(1)

< nT(r, L(f)) + (k — 1)logr + 0(1)
< (n+k—1DT L)) + 0(1).

Hence, we get

s(r22) = s(r.p). (3.28)

By n > 2k + 4, Nevanlinna second fundamental theorem and (3.26) - (3.28) we have

nT(r,L(F) = T(r, L(f™) < T (r,°L2) + T(r, P)

= (LMY | & P = 1
<N (r, 5 ) +N (T'L(fn)) +N <r,¥—)_1> + (k — 1)logr + 0(1)

1
L(g)

< N(r,L(f)) + N(r,%f)) + N(r,

) +2(k = Dlogr + S(r, f)

< 2kT(r,L(f)) + N (rﬁ) + S(r, f). (3.29)
Which implies

(n—2K)T(r,L(f)) < N (rﬁ) +S(r, f). (3.30)

Similarly

(n—2K)T(r,L(g)) < N (rflf)) +5(r, ). (3.31)
By either n > 3k + 6 orn > 3k + 8 — Opyin(k + 4) > 2k + 4 we get

T(r,L(f))+T(r L(g) =S f)+S(.9)

a contradiction.

Hence P = 0. It follows f = tg where t is a constant such that t™ = 1.
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Case 1.2 ¢ # 1. Then by (3.25) we obtain

=1-c. (3.32)

1
F
Since f and g share oo IM, it follows from (3.32) that F # oo and G # co. Hence% # 0 and
then by (3.32) we deduce that G # c—% By Lemma (2.6) we obtain

nT(r,L(g)) = T(r,L(g™)

n 1
< N(r,L(g ))+N( (n))-l-N( —(L( ) L)

1
—N (T,W) + S(T,g)

< (k+ DN, i ))+ S, g).
It follows from either n > 3k + 6 orn > 3k + 8 — O,; (k + 4) = 2k + 4 that
T(r,g) < S(r,g) a contradiction.

Case 2. { £ 0. Let z, be a pole of [L(f™)] with multiplicity [;. Then by [L(f™)]and
[L(g™)]share co IM we know that z; is a pole of [L(g™)] with multiplicity L,.

Set | = min{l, l,} by (3.24) we deduce that z, is a zero of { with multiplicity > nl + k — 1.
Hence by Lemma (2.7) we have
1
n+k-1 (7‘, E)

N(r,L(f™) = N(r,L(g™) <
T(r,0))+00)

~ n+k-1

()

<

—— ¥ (r, ) +N (r, g)] + S, f) + S0, 9). (3.33)
It follows from Lemma (2.5) that
N(rz) =N (" agmm)

=N (" amm) ~ IV (ggmm) = ¥ (mamm)]

< N( L(fn)) + kN(r, L(f)) — [N( W) - N( (L(fn))(k))] + S(r,f)

< (k+ DN (1, 7055) + kNG LE™) +5( )
< 2k + DT(r, f) + S(r, f). (3.34)
Similarly,
N(r2) < 2k + DT(r, 9) + 5. ). (3.35)
IJERTV15I S020037 Page 10
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By (3.33) - (3.35) we get

NG, LUF™) = N(r, L(g™) < == [T(r, f) + T(r, 9)] + S(r. f) + S(r, 9). (3.36)
Set G=S-2 -S4 (3.37)

Suppose {; # 0. Let z, be a common simple zero of F(z) — 1 and G(z) — 1, by a simple
computation we see that {; (z,) = 0. Thus by first fundamental theorem and Lemma (2.7) we

have
My (1) = Mo (1 5)

<N (r, (—11) < T(r, ) +0(1)
< N(r,¢) + S(r, F) + S(r, G), (3.38)

where Nyy (7 ( . ) is the counting function of simple zeros of F(z) — 1. It follows from F
and G share 1 CM and (3.37) that

N6 < FG L) + HGr Lg™) + (v, )

N (7 705) + Mo (7 rgpmyem) + Mo (7 myaem) (3.39)

where N, (7‘, W) is the counting function for which (L(f™))**%) = 0 and
L(f™)[F(z) — 1] # 0. Since F and G share 1 CM, then we get

N( )+N(ri)_21v( )<N1)( )+N( Fll) (3.40)

By Lemma (2.6) we have
_ 1 _ _
T(r,L(f™)) < N(r,L(f)) + Niy4q (r, m) + N (r, —) — N, (r, —,) + S(r,f). (341

— 1 = 1 = 1
T(rL(g™) S N@ L@ + News (1 15m) + N (n55) = Mo () + SChg). 3.42)
It follows from (3.38) - (3.42) that

T(r,L(F™) +T(r,L(g") < 2N, L(M) + 2N L(9) + Niewa (7755

N (7 ( "L(g n)) + N( L(f)) + N( L(lg))
+N (, W) +S(r, f) + 51, 9). (3.43)

Since, N (7, m) < T(r, L(f™) + kN(r, L(f)) + S(r, ).

We obtain from (3.43) that

T(r,L(g") < @+ N, L) + 280, L(9)) + 1l (7 755)
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+ NNy 44 (r,%g)) + N(r,rlf)) + N(r,%g)) +S(r, )+ S(r, 9).

Without loss of generality, we suppose that there exist a set [ with infinite measure such that
T(r,f)<T(r,g)forr €l.
Hence

nT(r,L(g)) = {6 +2n+k —[(k +2)0(, f) +20(,g) +0(0, ) + 6(0,9)

+ 18441(0, ) + n611(0,9)] + €}T (1, 9) +S(r, 9) (3.44)
forreland 0 <e <H — (6 +n+k)thatis

[H—(6+n+k)—€]T(r,g) <S(r,9).

That is
H—-(6+n+k)<0.
Which implies
H<6+n+k
which is a contradiction to our hypothesis H > 6 + n + k. Hence we get {; = 0.
That is
R B P (3.45)
F F-1 G G-1
Integrating this equation
— =21 (3.46)
F-1  G-1

where a(# 0), b are two finite complex numbers.
Next, we consider two subcases.
Case 2.1 b # 0. Since L(f™) and L(g™) share oo IM. We know that F and G share oo IM. It

follows from (3.46) that F # oo, G # . Hence ﬁ # 0 thus by (3.46) we deduce G # ?
Now we consider two subcases.

Case 2.1.1 b = a. It follows from —— # 0 and (3.46) that F # 1 + ..

In the following, we consider two subcases.

Case 2.1.1.1 b # —1. Then we have 1 +~ # 0. By Lemma (2.6) we obtain

nT(r,1(9)) < N(r,L(9)) + nNsa (7, %g)) +N <r, ﬁ) +5(r, 9). (3.47)

b
From (3.46) we can write

NQ@) < N(rﬁ) =N (r;)

By Lemma (2.8) we obtain the following inequality

N(r2) < (k+ DNE LK) + N (r3) + S0 f).
Hence

1

1
G- (1+5)
Therefore (3.47) becomes

N <N (r%) < (k+ DN, L) + N (r%) + 5@ ).

nT(r,L(g)) < [3+k+n—06(w,g) —0(0,f) —nbk41(0,9) — (k+)0 (0, )T (r,L(9))
+S(,f) + 5@, 9). (3.48)

Hence by (3.23) and (3.48) we deduce that

T(r,L(g)) < S(r,g) acontradiction.
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Case 2.1.1.2 b = —1. Thus a = —1 by (3.46) we deduce that FG = 1. That is

LENPDLEN® = 1. (3.49)

Since L(f™) and L(g™) share co IM then by (3.49) we deduce that L(f™) # o, L(g") # oo.
It follows from (3.49) that (L(f™))® # 0, (L(g™)® = 0, L(f*) # 0, L(f™) # 0. If k >
2, then by Lemma (2.9) we get L(f™) = c,e*, L(g") = c,e™“* , where ¢4, ¢, and c are
constants satisfying (—1) (c;¢3)™ (nc)?* = 1. If k = 1 then by Lemma (2.10) we get
L(f™) = c,e, L(g") = c,e™ %, where ¢4, ¢, and ¢ are constants satisfying

(cyc)™ = —1.

b— b— . :
Case 2.1.2 b # a. Hence we have Ta 0, G— Ta # 0. In this case by using the same
argument as in 2.1.1.1 we get a contradiction.

Case 2.2 b = 0 then by (3.46)
1 a—-1
F=-G+—. (3.50)

If a = 1 then by (3.50) we have F = G. That is (L(f™))® = (L(g™))®, by using the same
argument as in case 1.1, we get f = tg, where t is a constant such that t" = 1. If a # 1 then

by (3.50) we get a(L(f™))® = (L(g™)® +a — 1. That is a(L(F)® — (L(g™)™ =
a — 1. Thus, we obtain L(f™) = %L(g”) + P where P is a polynomial of degree k. Then by
using the same argument as in case 1.1 we get a contradiction. Hence the proof. ]
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