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Abstract—Cantilever springs are simple flat springs in which 

one end is fixed and the other end is loaded. There are various 

applications for cantilever springs that include automobiles, 

medical devices and consumer products. Cantilever springs 

commonly have straight, slender and uniform beam 

configurations and are designed for small deflections that are 

perpendicular to the beam axis. Because of the small transverse 

deflection, the longitudinal deflection is usually ignored, the 

spring stiffness is regarded as constant and the maximum stress 

is considered to be proportional to the deflection. With the 

increase of the transverse deflection of a cantilever spring, the 

longitudinal deflection gradually becomes large that cannot be 

ignored, the spring stiffness can no longer be regarded as 

constant, the maximum stress does not have linear relationship 

with the transverse deflection. It is not trivial to design nonlinear 

cantilever beam springs. In this paper, the longitudinal deflection 

is derived for a nonlinear cantilever spring. The shape of a 

cantilever spring is designed to reduce its longitudinal deflection. 

The results of the paper provides a roadmap for designing 

nonlinear cantilever beam springs. 

Keywords—Cantilever Spring; Shape Design; Deflection; 

Analysis. 

I.  INTRODUCTION 
Flat springs usually refers to springs that are made of sheet, 

strip or plate. Although term flat is used, the shape of a flat 
spring is not necessarily flat. It may contain bends and other 
complicated forms [1]. The main purpose of using term flat is 
to distinguish the shapes of flat springs from those of helical, 
spiral, washer or power springs. Cantilever springs are simple 
flat springs in which one end is fixed and the other free end is 
loaded. They are designed to generate desired force and 
deflection relationships. There are various applications for 
cantilever springs that include automobiles, medical devices 
and consumer products [2]. 

Cantilever springs commonly have straight, slender and 
uniform beam configurations and are designed for small 
deflections that are perpendicular to the beam axis. Because of 
the small transverse deflection, the longitudinal deflection is 
usually ignored, the spring stiffness is regarded as constant and 
the maximum stress is considered to be proportional to the 
deflection.  

Figure 1 shows a cantilever beam with uniform rectangular 
cross section. The in-plane thickness and out-of-plane width of 
the cantilever beam are t and b, respectively. The beam has 

length of L. When the transverse deflection ( x ) at the loading 

end is small, it can be calculated as follows [3]. 
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In Equation (1), E is Young’s modulus of the beam material. 
F is the force that is perpendicular to the beam axis and applied 
at the free end of the cantilever beam. 

When the longitudinal deflection at the loading end of the 
beam is ignored, the bending stress ( ) along the beam axis (y) 

can be calculated by the following formula [4]. 
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The maximum bending stress (
2

max 6 btFL ) occurs at 

the fixed end of the beam. Bending stress is tensile on one side 
of the beam and compressive on the other side. 

 

Fig. 1 A cantilever beam with straight and uniform undeformed shape. 

The material of the cantilever beam is considered as 
homogeneous and isotropic in the paper. The slender beam is 
assumed to be inextensible. The strain ( ) of the beam remains 

small and is within its linear elastic range. The cantilever beam 
in the paper is an Euler-Bernoulli beam. Plane hypothesis holds 
for the cantilever beam, i.e., a plane cross section that is 
perpendicular to the neutral axis of the beam before 
deformation remains plane and perpendicular to the neutral axis 
after deformation. The bending moment (M) of an Euler-
Bernoulli beam is proportional to its curvature ( ). The 
relationship can be written as follows [5].  
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In Equation (3), s is the arc length along the deflection 

curve,   is the radius of curvature,   is the slope of the 

deflection curve, I is the moment of inertia of the cross section 
of the beam. 
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In the rectangular coordinate system as shown in Figure 1, 
the curvature of the deflection curve of the cantilever beam can 
be written as: 
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Equation (4) is a second order nonlinear differential 
equation. It is difficult to have an analytical closed-form 

solution to the equation. When beam deflection is small, dydx  

is small and 
2)( dydx  approaches zero. When the denominator 

of Equation (4) is approximated as one, the nonlinear 
differential equation is simplified as follows.  
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)(yM  in Equation (4) can be derived from Figure 1 as: 

 yLFyM y  )(  (6) 

When y  is ignored as zero for small deflection, )(yM can 

be approximately simplified as  yLFyM )( . Equation (5) 

becomes a second order linear differential equation with the 

simplified )(yM . Its analytical closed-form solution can be 

solved as: 
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When beam deflection is not small, the denominator in 
Equation (4) cannot be simplified as one, and the longitudinal 

deflection y  in )(yM  can no longer be ignored. Although it 

is difficult to have an analytical closed-form solution to the 
second order nonlinear differential equation of Equation (4), 
many different numerical approaches have been proposed and 
published [6], which include elliptic integral approach [7], 
power series approach [8], Runge-Kutta approach [9], finite 
element approach [10], equivalent system approach [11], and 
others [12]. In most existing approaches, the problem is focused 
on solving the large deflection curve of a cantilever beam or a 
frame under a given loading such as concentrated, distributed 
or combined. However, we are more interested in the reverse 
problem for cantilever beam springs, i.e., solving the needed 
reaction force (F) and corresponding longitudinal deflection (

y ) under the given transverse deflection ( x ). For a cantilever 

beam spring, y  is usually an undesired axial deviation that can 

be reduced by designing the shape of the cantilever beam. The 
authors of the paper are motivated by the challenges facing 
cantilever beam springs. The research objective of the paper is 
to provide a guideline and systematic approach for the analysis 
and shape design of cantilever beam springs. 

The remainder of the paper is organized as follows. The 
beam deflection analysis is presented in section II. The analysis 
on cantilever beam springs is provided in section III. Section 
IV is on the shape design of cantilever beam springs. 
Conclusions are drawn in section V. 

II. BEAM DEFLECTION ANALYSIS 

For the cantilever beam shown in Figure 1, we assume x  

is given together with known beam’s cross sectional sizes (t and 
b) and Young’s modus (E) of the beam material. We are trying 

to find out y  and F. 

Rearranging Equation (3) yields the following equation. 
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Differentiating both sides of Equation (8) with respect to s, 
we have 

ds

sdM

ds

d
EI

)(
2

2




 (9) 

)(sM  is calculated by Equation (6) as  yLF y  . We 

have dsdyFdssdM )( . Since cosdsdy , we have 

cos)( FdssdM  . Substituting the expression of 

dssdM )(  into Equation (9) and moving the term on the right 

hand side to the left yields the following equation. 
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From Equation (10), we have 
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Equation (11) can be solved with its solution as 
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C in Equation (12) is an arbitrary constant. It can be decided 
by the boundary condition of the deflected cantilever beam. At 
the loading end of the beam, we have Ls  , 0)( LM , and 

0
Lsds

d
. Assume the slope of the beam at the loading end 

is m . Substituting the expressions of dsd  and   at the 

loading end into Equation (12) yields the following equation. 
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Substituting Equation (13) into Equation (12), we have 
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Taking square root on both sides of Equation (14) yields the 
following equation. 
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Rearranging Equation (15) yields the following equation. 
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Integrating Equation (16) from the fixed end to the loading 
end of the cantilever beam yields the following equation. 
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Substituting Equation (16) into dsdx cos  yields the 

following equation. 
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Integrating Equation (18) from the fixed end to the loading 
end of the cantilever beam yields the following equation. 
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m  and F are unknowns now. They can be solved by 

Equations (17) and (19). Combining Equations (17) and (19) 
and Eliminating F from them yields the following equation. 
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m  is the only unknown in Equation (20). It can be solved 

numerically. 

After m  is solved through Equation (20), F can then be 

solved from either Equation (17) or (19). 

Substituting Equation (16) into dsdy sin  yields the 

following equation. 
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Integrating Equation (21) from the fixed end to the loading 
end of the cantilever beam yields the following equation. 
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Equation (22) leads to the solution of y . 

III. CANTILEVER SPRING ANALYSIS 
The deflection and reaction force of a cantilever beam 

spring can be directly analyzed by finite element analysis 
software ANSYS [13-15]. The stress of the deflected beam can 
also be directly obtained during the analysis process. 

Figure 2 shows the solid model of an initially straight and 
uniform cantilever beam spring. The height of the beam is 150 
mm. The thickness (t) and width (b) of the beam are 0.25 mm 
and 10 mm, respectively. The material of the cantilever spring 
is structural steel with Young’s modules (E) of MPa, Poisson’s 
ratio (ν) of 0.3, yield strength (σy) of 250 MPa. The Design 
Modeler [16] of ANSYS is used to create the solid model. 
ANSYS Design Modeler is an ANSYS Workbench application 
that provides modeling tool for the creation and modification of 
geometries.  

 

Fig. 2 The solid model of a cantilever beam spring with straight 
undeformed shape. 

The solid model created in ANSYS Design Modeler is then 
analysed in ANSYS Mechanical [17] that is also an application 
of ANSYS Workbench. The lower end of the beam is fixed and 

its upper end is for loading. A x  of 50 mm is applied at the 

upper end of the beam. The deformed and undeformed shapes 
of the beam are shown in Figure 3. 

The deformation numbers and their corresponding colors 
shown in Figure 3 are for the transverse deformation of the 
cantilever beam that is directional deformation in ANSYS 
along x axis. Because of the large deformation of the beam, its 
loading end of the beam has a significant longitudinal 
deformation, which is shown in Figure 4. The longitudinal 
deformation is directional deformation in ANSYS along y axis. 

The y  of the cantilever beam is 10.41 mm, which is large that 

cannot be ignored. In Figure 4, the longitudinal deformation has 
negative sign. That is because it is downward and the positive 
y axis direction is upward. 

 

Fig. 3 The transverse deformation of the cantilever beam spring with 
straight undeformed shape. 

The maximum stress within the deformed cantilever beam 
is 175.51 MPa, which is below the yield strength of the beam 
material. The stress distribution in the deformed beam is shown 
in Figure 5. To have the transverse deformation of 50 mm at the 
loading end of the cantilever beam, an input force of 0.1315 N 
is needed. The input force is called reaction force in ANSYS 
Mechanical. The reaction force is shown in Figure 6. The input 
force is small because the cantilever beam is slim. 
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Fig. 4 The longitudinal deformation of the cantilever beam spring with 
straight undeformed shape. 

 

 

Fig. 5 The stress of the cantilever beam spring with straight undeformed 
shape. 

 

 

Fig. 6 The input force of the cantilever beam spring with straight 
undeformed shape. 

 

IV. SHAPE DESIGN OF CANTILEVER SPRINGS 

Shape design of a cantilever beam spring is to improve its 
performance and better meet its needs and requirements by 
changing its shape. The vertical cantilever beam spring 
analyzed in the preceding section has uniform cross section. Its 
height, width and thickness are 150 mm, 10 mm and 0.25 mm, 
respectively. In this section, we use the same spring material, 
beam cross section, beam height along y axis, but change the 
beam shape to see the performance difference under the same 

x  of 50 mm. 

The first shape change is to make the vertically straight 
undeformed shape become slantingly straight undeformed 
shape. Figure 7 shows the solid model of the cantilever spring. 
The slanted beam has vertical height of 150 mm that is along y 
axis. Its lower end is fixed. Its upper end is now away from its 

lower end horizontally by 50 mm. When a x  of 50 mm is 

applied at the free loading end of the slanted cantilever spring, 
its horizontal and vertical deformations along the beam are 

shown in Figures 8 and 9, respectively. The y  of the slanted 

cantilever beam is now 6.4863 mm, which is smaller than that 
of 10.41 mm from the vertical cantilever beam. As shown in 
Figure 9, the vertical deformation has positive sign, which 
means its direction is upward along positive y axis. 

 

 

Fig. 7 The solid model of a cantilever beam spring with slanted 
undeformed shape. 

 

 

Fig. 8 The horizontal deformation of the cantilever beam spring with 
slanted undeformed shape. 

The stress distribution in the deformed cantilever beam 
spring is shown in Figure 10. The maximum stress is 152.01 
MPa, which is below that of 175.51 MPa from the vertical 
cantilever beam. To have the horizontal deflection of 50 mm at 
the loading end of the slanted cantilever beam, an input 
horizontal force of 0.1013 N is needed, which is smaller than 
that of 0.1315 N from the vertical cantilever beam. 

The undeformed beam shape does not have to be straight. It 
can be curved. The solid model shown in Figure 11 has a 
circular undeformed shape. Both the fixed and loading ends of 
the cantilever beam are on the y axis. The arc length of the beam 
is set as the same as the length of the slanted straight beam 
shown in Figure 7, which is 158.11 mm. 
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Fig. 9 The vertical deformation of the cantilever beam spring with slanted 
undeformed shape. 

 

 

Fig. 10 The stress of the cantilever beam spring with slanted undeformed 
shape. 

 

 

Fig. 11 The solid model of a cantilever beam spring with right circular 
undeformed shape. 

When a x  of 50 mm is applied at the free loading end of 

the circular cantilever spring, its horizontal and vertical 
deformations along the beam are shown in Figures 12 and 13, 

respectively. The y  of the right circular cantilever beam is 

now 6.0895 mm, which is close to that of 6.4863 mm from the 
slanted cantilever beam. As shown in Figure 13, the vertical 
deflection is downward along negative y axis. 

 

 

Fig. 12 The horizontal deformation of the cantilever beam spring with 
right circular undeformed shape. 

 

 

Fig. 13 The vertical deformation of the cantilever beam spring with right 
circular undeformed shape. 

The stress distribution in the deformed cantilever beam 
spring is shown in Figure 14. The maximum stress is 155.35 
MPa, which is close to that of 152.01 MPa from the slanted 
cantilever beam. To have the horizontal deflection of 50 mm at 
the loading end of the right circular cantilever beam, an input 
horizontal force of 0.1107 N is needed, which is slightly below 
that of 0.1013 N from the slanted cantilever beam. 

If the right circular cantilever beam is flipped with respect 
to y axis, the cantilever beam becomes a left circular beam. Its 

solid model is shown in Figure 15. When a x  of 50 mm is 

applied at the free loading end of the left circular cantilever 
spring, its horizontal and vertical deformations along the beam 

are shown in Figures 16 and 17, respectively. The y  of the left 

circular cantilever beam is now 16.995 mm, which is well 
above that of 6.0895 mm from the right circular cantilever 
beam. As shown in Figure 17, the vertical deformation is 
downward along negative y axis. The stress distribution in the 
deformed cantilever beam spring is shown in Figure 18. The 
maximum stress is 181.07 MPa, which is larger than that of 
155.35 MPa from the right circular cantilever beam. To have 
the horizontal deflection of 50 mm at the loading end of the left 
circular cantilever beam, an input horizontal force of 0.1429 N 
is needed, which is above that of 0.1107 N from the right 
circular cantilever beam. 
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Fig. 14 The stress of the cantilever beam spring with right circular 
undeformed shape. 

 

 

Fig. 15 The solid model of a cantilever beam spring with left circular 
undeformed shape. 

 

 

Fig. 16 The horizontal deformation of the cantilever beam spring with left 
circular undeformed shape. 

 

 

Fig. 17 The vertical deformation of the cantilever beam spring with left 
circular undeformed shape. 

 

 

Fig. 18 The stress of the cantilever beam spring with left circular 
undeformed shape. 

The shape design results are summarized in the following 
table. The cantilever beam spring in each case has the same 
material, same cross section, and same horizontal input 
deflection (50 mm). 

Table 1   Shape design results of the cantilever spring  

Cantilever Beam Spring 

Shape 

Vertical 

Deflection 
Maximum Stress 

Vertical Straight -10.41 mm 175.51 MPa 

Slanted Straight 6.4863 mm 152.01 MPa 

Right Circular -6.0895 mm 155.35 MPa 

Left Circular -16.995 mm 181.07 MPa 

 

As shown in Table 1, the cantilever beam spring with right 
circular shape has the smallest vertical deflection. The slanted 
straight spring’s vertical deflection is slightly above that of the 
right circular spring. Their vertical deflections have opposite 
directions. The lowest maximum stress comes from the spring 
with slanted straight shape. The right circular spring’s 
maximum stress is a little above that of the slanted straight 
spring. Cantilever beam springs with vertical straight or left 
circular shape have larger vertical deflection and higher 
maximum stress than cantilever beam springs with any of the 
other two shapes. 
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V. CONCLUSIONS 

A cantilever beam spring usually has straight shape and is 
designed for small deflection that is perpendicular to the 
spring’s straight line. When the transverse (horizontal) 
deflection at the free end of the cantilever beam is large, the 
longitudinal (vertical) deflection is also not small. To reduce 
the vertical deflection, the spring’s straight line can be slanted 
(which is no longer perpendicular to the horizontal deflection). 
A cantilever beam spring with slanted straight shape has 
smaller vertical deflection and lower maximum stress than its 
corresponding vertical straight spring. Besides slanting a 
vertical straight spring, the vertical straight shape of the spring 
can be changed to be circular to reduce its vertical deflection. 
There are two symmetric circular shapes among which one 
(called right circular in the paper) decreases vertical deflection 
and another (left circular) increases vertical deflection. 
Cantilever beam springs with slanted straight and right circular 
shapes have similar effects on reducing vertical deflection and 
lowering the maximum stress. Their vertical deflections have 
opposite directions. 
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