

Sensor Fault Detection

Rishabh Kumar, Prashant Kumar, Vaibhav Yadav, K.prabhanjan kumar
Computer science and engineering

(Noida Institute of Engineering & Technology)
Greater Noida, India

Abstract - - Here the system we are focusing on is the Air
Pressure system (APS) which generates pressurized air that is
used in various functions in a truck, such as braking and gear
changes. In this given dataset positive class corresponds to
component failures due to particular components of the APS
system. The negative class corresponds to failures not related to
the APS system, Aps system uses natural air which is easily and
readily available anywhere and have long term sustainability
which is not present in hydraulics system when used and that's
why it has an advantage over hydraulics which is also used in
braking and gear changes. - The problem is to reduce the cost
due to unnecessary repairs,

INTRODUCTION

The problem is to reduce the cost due to unnecessary
repairs
So it is required to minimize the false predictions
that is the total cost
 when a faulty truck is left unchecked or treated as
not faulty and when a
perfectly alright truck is repaired without need. -This
is a binary classification
problem Assume , Cost 1=10, Cost 2 = 600 - The
total cost of a prediction modelis the sum of ̀ Cost_1`
multiplied by the number of Instances of type 1
failure
and `Cost_2` with the number of instances with type
2 failure, which result in
 the `Total_cost`. Here `Cost_1` refers to the cost
when an unnecessary check
 needs to be done by a mechanic/worker at a
workshop that is when the truck is not
 faulty, while `Cost_2` refer to the cost of missing a
faulty truck, which may cause
 a total breakdown of the truck which will result in a
heavy cost of repair.
 - `Total_cost = Cost_1 * No_Instances + Cost_2 *
No_Instances.` -
In the problem statement we can observe that, we
have to reduce both
 false positives and false negatives. But more
importantly we have to reduce false
 negatives because the total cost due to false negative
is 60 times higher than
 the false positives.

In this project we have used various ml algorithms
like few gradient boosting algorthims
For ex-catboost classfier, Xgboost classifier, and
lightgbm and decision trees are the
The backend of all these algorithms. In random
forests, the results of decision trees are aggregated
at the end of the process, while in Gradient boosting
it doesn't happen so and instead
aggregates the results of each decision tree along the
way to calculate the final result.

In this project, before applying lightgbm classifier
on large dataset we have performed
Hyperparameter tuning to get the best params for
lightgbm to work on and give the best results which
might take a lot of time because it is done using grid
search cv
ich tests for each pair of values provided as a
combination of values

Advantages of using lightgbm over XGboost

Xgboost algorithm is a type of gradient boosting algorithm
that works on splitting data level wise while lightgbm is also
a type of gradient boosting algorithm which works on
splitting data leaf wise.

 Both work well on binary classification problems and
where dataset is large but lightgbm outperforms Xgboost
algorithm when data is large but before that it requires some
hyperparameter tuning.
Gradient boosting can be applied in 2 scenarios like
1. Regression 2.Classification

Level wise growth shown in Xgboost classifier algorithm

712

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050342
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Leaf wise growth in lightgbm classifier algorithm

Both LightGBM and XGBoost accept only numerical
features . This means that the nominal features in our data
need to be encoded into numerical features.

Lightgbm works better than Xgboost in case of sensor data
because Xgboost by default treats the categorical variables
as numerical variables with order. But lightgbm has a
parameter to check whether the column is categorical or
numerical and handles this issue with ease by splitting on
equality

Working of Lightgbm Algorithm

Xgboost algorithm is a type of gradient boosting algorithm
that works on splitting data level wise while lightgbm is also
a type of gradient boosting algorithm which works on
splitting data leaf wise.

In boosting we have a baseline model which predicts on
some values of data say 100 values , And gives errors i.e. ,
e1,e2,e3 and so on and next model M1 is fed with these
errors and data to work on it learns from these errors what
mistakes not to repeat. This process goes on repeating till
the last model. All of these internally use decision trees and
splitting on basis of entrophy, gain etc but lightgbm uses
binning of data features which is also used in histograms
which is one of the reasons for better performance of
lightgbm Secondly lightgbm uses exclusive feature
bundling technique to bundle the features which takes
values which are mutually exclusive so giving them unique
values for ex – male -1 , female-0 will be bundled to a new
feature taking values 11 or 10 based on male or female
which makes it fast.

Sensor data is a case of highly imbalanced dataset so we
have performed smote+tomek technique to balance the data
and to oversample the minority class.

We have dropped the columns having more than 60%
missing values and imputed the null values in the rest using
simple imputer and the constant strategy with filling by zero
in place of null.
Manually encoded positive class to be 1 and negative to be
0.

It also uses gradient based one side sampling technique in
which we sort gradient data in asc order and take top 20
percent from it out and form a bin and then from left 80
percent we randomly take 10 percent data and mark it as
bottom selection is one sided and hence it is named so one
sided sampling technique , this feature increases its
efficiency a lot and this process is repeated several times.

Advantages of using lightgbm classifier

Xgboost works faster on cpu while on gpu lightgbm
performs way better than Xgboost

• Lightgbm is prone to overfitting in case of small
datasets<10,000 rows while in our case dataset is
fairly large with nearly 36,000 rows and 163
colums and out of these 162 are numerical while
only 1 is categorical column , lightgbm has
max_depth parameter to limit the tree depth but
still the tree will grow leaf wise only.

• Faster training speed and higher efficiency: Light
GBM uses a histogram-based algorithm i.e it
buckets continuous feature values into discrete
bins which fasten the training procedure.

• Lower memory usage: Replaces continuous values
to discrete bins which results in lower memory
usage.

• Better accuracy than any other boosting
algorithm: It produces much more complex trees
by following leaf wise split approach rather than a
level-wise approach which is the main factor in
achieving higher accuracy.

• Compatibility with Large Datasets: It is capable of
performing equally well with large datasets with a
significant reduction in training time as compared
to XGBoost.

 Disadvantages

• It is prone to overfitting.

Hyperparamter tuning in lightgbm

 'num_leaves': [10,20,31,56, 127],
 'reg_alpha': [0.1, 0.5],
 'min_data_in_leaf': [30, 50, 100, 300,
400],
 'lambda_l1': [0, 1, 1.5],
 'lambda_l2': [0, 1],
 'learning_rate':[0.01,0.2,0.5,0.7]

Parameters are passed in a grid of params to test
for the best params in case of sensor data.

713

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050342
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Hyperparameter tuning might take a long time if performed
using grid search cv since it matches all possible
combinations of intermediate hyperparameters to find the
one which gives best accuracy, which makes it
computationally very expensive

Num_leaves: This is the main parameter to control the
complexity of the tree , in good practice we should keep the
value of this parameter to be less than (2^max_depth) in our
case 56 is best value of this parameter

Min_data_in_leaf: This is a very important parameter to
prevent over-fitting in a leaf-wise tree. Its optimal value
depends on the number of training samples
and num_leaves. Setting it to a large value can avoid
growing too deep a tree, but may cause under-fitting. In
practice, setting it to hundreds or thousands is enough for a
large dataset, optimal value for our case comes out to be
400

Learning_rate: If this parameter is set too high the model
will skip some of the important information to learn while
if kept too low it will leanr very slowly and tend to overfit
default value is 0.1 while in our case value 0.7 gave the best
results.
Max_depth: It is by default set to -1 , it is used to set the tree
depth explicity ,-1 means to infinite depth till best results.

Conclusion and future work possible:

Lightgbm classifier gave an accuracy of 99.74% which
is the highest followed by Xgboost with 99.67%
accuracy and since hyperparameter tuning is a broad
field, it has a huge scope for improvements.

For better accuracy

• Use large max_bin (may be slower)
• Use small learning_rate with large num_iterations
• Use large num_leaves (may cause over-fitting)
• Use bigger training data
• Try dart

For dealing with overfitting

• Use small max_bin
• Use small num_leaves
• Use min_data_in_leaf and min_sum_hessian_in_l

eaf
• Use bagging by

set bagging_fraction and bagging_freq
• Use feature sub-sampling by set feature_fraction
• Use bigger training data
• Try lambda_l1, lambda_l2 and min_gain_to_split

for regularization
• Try max_depth to avoid growing deep tree

REFERENCES

[1] Books: • [1.1]"Fault Detection and Diagnosis in Engineering

Systems" by Janos Gertler
[1.2]"Sensor and Data Fusion: A Tool for Information
Assessment and Decision Making" by H.B. Mitchell
•[1.3] "Introduction to Autonomous Robots: Sensor Systems
and Algorithms" by Nikolaus Correll, et al.
•[1.4] "Fault Detection, Supervision and Safety of Technical
Processes" by L. Ljung
•[1.5] "Data-Driven Modeling & Scientific Computation:
Methods for Complex Systems & Big Data" by J. Nathan Kutz

[2] Research Papers: •[2.1] "Sensor Fault Detection and Identification

Using Nonlinear Principal Component Analysis" by Xuebo Zhang, et
al.

• [2.2]"Sensor Fault Detection in a Complex System Using
Analytical Redundancy Relations" by Daniel Simon

• [2.3]"An Improved Sensor Fault Detection and Diagnosis
Method Based on Dynamic Principal Component
Analysis" by Qi Yan, et al.

[2.4] "Data-Driven Sensor Fault Detection and Isolation for Dynamic
Systems" by Liuping Wang, et al.
[2.5] "A Review on Sensor Fault Detection and Diagnosis Methods"
by Qiang Chen, et al. 3.

714

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050342
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

