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Abstract - - Here the system we are focusing on is the Air 
Pressure system (APS) which generates pressurized air that is 
used in various functions in a truck, such as braking and gear 
changes. In this given dataset positive class corresponds to 
component failures due to particular components of the APS 
system. The negative class corresponds to failures not related to 
the APS system, Aps system uses natural air which is easily and 
readily available anywhere and have long term sustainability 
which is not present in  hydraulics  system when used  and that's 
why it has an advantage over hydraulics which is also used in 
braking and gear changes. - The problem is to reduce the cost 
due to unnecessary repairs,  

 
INTRODUCTION 

The problem is to reduce the cost due to unnecessary 
repairs  
So it is required to minimize the false predictions 
that is the total cost 
 when a faulty truck is left unchecked or treated as 
not faulty and when a  
perfectly alright truck is repaired without need. -This 
is a binary classification 
problem Assume , Cost 1=10, Cost 2 = 600 - The 
total cost of a prediction modelis the sum of ̀ Cost_1` 
multiplied by the number of Instances of type 1 
failure 
and `Cost_2` with the number of instances with type 
2 failure, which result in 
 the `Total_cost`. Here `Cost_1` refers to the cost 
when an unnecessary check 
 needs to be done by a mechanic/worker at a 
workshop that is when the truck is not 
 faulty, while `Cost_2` refer to the cost of missing a 
faulty truck, which may cause 
 a total breakdown of the truck which will result in a 
heavy cost of repair. 
 - `Total_cost = Cost_1 * No_Instances + Cost_2 * 
No_Instances.` -  
In the problem statement we can observe that, we 
have to reduce both 
 false positives and false negatives. But more 
importantly we have to reduce false 
 negatives because the total cost due to false negative 
is 60 times higher than 
 the false positives. 
 

In this project we have used various ml algorithms 
like few gradient boosting algorthims 
For ex-catboost classfier, Xgboost classifier, and 
lightgbm and decision trees are the  
The backend of all these algorithms. In random 
forests, the results of decision trees are aggregated 
at the end of the process, while in  Gradient boosting 
it doesn't happen so and instead 
aggregates the results of each decision tree along the 
way to calculate the final result. 
 
In this project, before applying lightgbm classifier 
on large dataset we have performed  
Hyperparameter tuning to get the best params for 
lightgbm to work on and give the best results which 
might take a lot of time because it is done using grid 
search cv  
ich tests for each pair of values provided as a 
combination of values  
 
Advantages of using lightgbm over XGboost  
 
Xgboost algorithm is a type of gradient boosting algorithm 
that works on splitting data level wise while lightgbm is also 
a type of gradient boosting algorithm which works on 
splitting data leaf wise. 
 
 Both work well on binary classification problems and 
where dataset is large but lightgbm outperforms Xgboost 
algorithm when data is large but before that it requires some 
hyperparameter tuning.  
Gradient boosting can be applied in 2 scenarios like  
1. Regression 2.Classification 
 

 
 
Level wise growth shown in Xgboost classifier algorithm  
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Leaf wise growth in lightgbm classifier algorithm 
 
Both LightGBM and XGBoost accept only numerical 
features . This means that the nominal features in our data 
need to be encoded into numerical features. 
 
Lightgbm works better than Xgboost in case of  sensor data 
because Xgboost by default treats the categorical variables 
as numerical variables with order. But lightgbm has a 
parameter to check whether the column is categorical or 
numerical and handles  this issue with ease by splitting on 
equality   
 
Working of Lightgbm Algorithm 
 
Xgboost algorithm is a type of gradient boosting algorithm 
that works on splitting data level wise while lightgbm is also 
a type of gradient boosting algorithm which works on 
splitting data leaf wise. 
 
In boosting we have a baseline model which predicts on 
some values of data say 100 values , And gives errors i.e. , 
e1,e2,e3 and so on and next model M1 is fed with these 
errors and data to work on it learns from these errors what 
mistakes not to repeat. This process goes on repeating till 
the last model. All of these internally use decision trees and 
splitting on basis of entrophy, gain etc but lightgbm uses 
binning of data features which is also used in histograms 
which is one of the reasons for better performance of 
lightgbm Secondly lightgbm uses exclusive feature 
bundling technique to bundle the features which takes 
values which are mutually exclusive so giving them unique 
values for ex – male -1 , female-0 will be bundled to a new 
feature taking values 11 or 10 based on male or female 
which makes it fast.   
 
Sensor data is a case of highly imbalanced dataset so we 
have performed smote+tomek technique to balance the data 
and to oversample the minority class. 
 
We have dropped the columns having more than 60% 
missing values and imputed the null values in the rest using 
simple imputer and the constant strategy with filling by zero 
in place of null. 
Manually encoded positive class to be 1 and negative to be 
0. 
 
 
 
 

It also uses gradient based one side sampling technique in 
which we sort gradient data in asc order and take top 20 
percent from it out and form a bin and then from left 80 
percent we randomly take 10 percent data and mark it as 
bottom selection is one sided and hence it is named so one 
sided sampling technique , this feature increases its 
efficiency a lot and this process is repeated several times. 
 
Advantages of using lightgbm classifier   
 
Xgboost works faster on cpu while on gpu lightgbm 
performs way better than Xgboost 
 
 

• Lightgbm is prone to overfitting in case of small 
datasets<10,000 rows while in our case dataset is 
fairly large with nearly 36,000 rows and 163 
colums and out of these 162 are numerical while 
only 1 is categorical column , lightgbm has 
max_depth parameter to limit the tree depth but 
still the tree will grow leaf wise only. 

• Faster training speed and higher efficiency: Light 
GBM uses a histogram-based algorithm i.e it 
buckets continuous feature values into discrete 
bins which fasten the training procedure. 

• Lower memory usage: Replaces continuous values 
to discrete bins which results in lower memory 
usage. 

• Better accuracy than any other boosting 
algorithm: It produces much more complex trees 
by following leaf wise split approach rather than a 
level-wise approach which is the main factor in 
achieving higher accuracy. 

• Compatibility with Large Datasets: It is capable of 
performing equally well with large datasets with a 
significant reduction in training time as compared 
to XGBoost. 

 
    Disadvantages  

• It is prone to overfitting. 
 
Hyperparamter tuning in lightgbm  
 
 'num_leaves': [10,20,31,56, 127], 
    'reg_alpha': [0.1, 0.5], 
    'min_data_in_leaf': [30, 50, 100, 300, 
400], 
    'lambda_l1': [0, 1, 1.5], 
    'lambda_l2': [0, 1], 
    'learning_rate':[0.01,0.2,0.5,0.7] 
 
Parameters are passed in a grid of params to test 
for the best params in case of sensor data. 
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Hyperparameter tuning might take a long time if performed 
using grid search cv since it matches all possible 
combinations of intermediate hyperparameters to find the 
one which gives best accuracy, which makes it 
computationally very expensive  
 
Num_leaves: This is the main parameter to control the 
complexity of the tree , in good practice we should keep the 
value of this parameter to be less than (2^max_depth) in our 
case 56 is best value of this parameter  
 
Min_data_in_leaf: This is a very important parameter to 
prevent over-fitting in a leaf-wise tree. Its optimal value 
depends on the number of training samples 
and num_leaves. Setting it to a large value can avoid 
growing too deep a tree, but may cause under-fitting. In 
practice, setting it to hundreds or thousands is enough for a 
large dataset, optimal value for our case comes out to be 
400 
 
Learning_rate: If this parameter is set too high the model 
will skip some of the important information to learn while 
if kept too low it will leanr very slowly and tend to overfit 
default value is 0.1 while in our case value 0.7 gave the best 
results. 
Max_depth: It is by default set to -1 , it is used to set the tree 
depth explicity ,-1 means to infinite depth till best results. 
 
Conclusion and future work possible: 
 
Lightgbm classifier gave an accuracy of 99.74% which 
is the highest followed by Xgboost with 99.67% 
accuracy and since hyperparameter tuning is a broad 
field, it has a huge scope for improvements. 
 

 
 
 
 

 
 
 

 
 
 

For better accuracy 
 

• Use large max_bin (may be slower) 
• Use small learning_rate with large num_iterations 
• Use large num_leaves (may cause over-fitting) 
• Use bigger training data 
• Try dart 

 
For dealing with overfitting 
 

• Use small max_bin 
• Use small num_leaves 
• Use min_data_in_leaf and min_sum_hessian_in_l

eaf 
• Use bagging by 

set bagging_fraction and bagging_freq 
• Use feature sub-sampling by set feature_fraction 
• Use bigger training data 
• Try lambda_l1, lambda_l2 and min_gain_to_split 

for regularization 
• Try max_depth to avoid growing deep tree 
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