
Self Balancing of Unicycle Robot 

 
         Divya . A                                                                                     Shyju Susan Mathew  

PG Scholar                                                                                 Assistant Professor 

Electrical & Electronics Dept                                                                 Electrical & Electronics Dept. 

Mar Baselios college of Engineering,                                                   Mar Baselios college of Engineering, 

Thiruvananthapuram, Kerala, India                          Thiruvananthapuram, Kerala, India 
 

                                                                                                                               
 

Abstract:-  This paper deals with the control of Unicycle mobile robot 

which is a vehicle which touches the ground with one wheel. It have 

many advantages over multi wheeled mobile robot that it can have 

higher degree of mobility and less space as it has only  one wheel to 

move. The system consists of three parts which are the lower, upper and 

middle  parts. The lower part is composed of a wheel which is moving 

back and forth to stabilize the pitch angle. Meanwhile, the upper part 

consists of a balance weight and middle is main frame that functions to 

stabilize the roll angle and yaw angle of the unicycle system. At first 

(Linear Quadratic Regulator) was used to control the pitch, yaw and roll 

angles. Then SMC was used to study the roll angle characteristics .At 

last a combination of LQR (pitch and yaw control) and SMC (roll 

control) is proposed. The dynamic model of the unicycle mobile robot is 

to be developed and verification is done through simulation using 

MATLAB software.  

 

Index Terms-Unicycle Robot, Dynamic Modelling, LQR, SMC 

 

I. INTRODUCTION 

In the near future personal mobile robots will be providing a 

better life not only to common people but especially to 

elderly and impaired. In particular wheeled robots will be 

expected to provide many convenient and user friendly 

transport solutions for both people and objects. The 

importance of the wheeled mobile robots have long been 

recognized by the robotics research community as shown by 

the numerous robotic competitions and research projects run 

worldwide in the last decades. The importance of the subject 

motivated and continues motivating many projects.  
 

     Unicycle is a vehicle consists of one wheel, driven by 

pedals and also known as monocycle. The unstable dynamics 

of the unicycle has attracted a lot of researchers to analyze 

and design unicycle robot and its controller[1]. An 

autonomous unicycle in the form of mobile robot is quite 

unique because of the challenge posted by the robot to 

balance its position either in static condition or when it is 

moving. The class of unicycle type (mobile) robots, i.e.robots 

having some forward speed but zero instantaneous lateral 

motion, is frequently selected for designing and modelling 

robots. 
 

      Idea of having unicycle mobile robot is enlightened from human 

riding unicycle and researchers use inverted pendulum to achieve 

the goal. Human riding unicycle stabilizes roll angle by moving his 

arm, wrist and body together, while pitch angles stabilized by 

controlling the speed and the position of the wheel using his legs. 

The pictorial representation of unicycle robot is given as Fig.1 

                                        

 

Fig : 1 Unicycle 

    This paper is intended to study the dynamics of unicycle 

mobile robot focusing on stabilizing the lateral and 

longitudinal position of the robot[2]. The proposed unicycle 

robot consists of a wheel, a frame and a balance weight  as 

shown in Fig. 2. The 3D unicycle robot system can be 

characterized by three tilt angles namely the roll the pitch and 

the yaw angles. The robot can reach longitudinal stability by 

appropriate control of the wheel (control of pitch angle) and 

lateral stability by applying appropriate torque generated by 

the rotating disc (control of roll angle). In order to do that the 

system requires at least three motors to balance the robot so 

as to achieve the longitudinal and lateral stability. 

 

Fig :2 Parts of Unicycle Mobile Robot System 

     Unicycle mobile robot system is an underactuated system 

since it possesses fewer control inputs than the total number 

of degree of freedom (DOF) . The robot is also considered as 

nonholonomic system because it has nonholonomic  

constraint 
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Unicycle mobile robot have many advantages over multi 

wheeled mobile robot such as 

  a) higher degree of mobility  

  b) less space as it only has one wheel to move. 

It is a vehicle performing missions in fixed or uncertain 

environments. 

 The organization of this paper can be summarized as 

follows. The dynamic modelling of the Unicycle Robot  are 

explained in Section II. Different controllers are implemented 

and compared in this section. Conclusion based on the 

experimental work is given in Section III. 

II.  DYNAMIC MODELLING 

The Unicycle Robot can be considered as a system having 

three major parts, a wheel, a frame and a balance weight. The 

pitching balance is controlled by the motor driving the wheel. 

Balance weight controls the rolling balance and rotation of 

motor on the body/frame controls the yaw angle. 

      The unicycle robot is an under-actuated, nonlinear and 

unstable system. The Routh equation is the basis for the  

dynamic modeling of the robot .This equation is very close to 

the second kind Lagrange equations. But it introduces the 

Lagrange multiplier, and has the advantages of Lagrange the 

first equation. It could solve the non holonomic system or c 

holonomic system with redundant coordinates and is 

applicable in practical engineering. 

The assumptions are made as following: the unicycle robot 

components are all rigid body, the wheel is a hollow ring and 

its centroid is in the center of the ring, the wheel is pure roll 

on the ground and other frictions and external disturbances 

are ignored. 

 
 

                    Fig :3. Dimensional Details of Unicycle Robot 

As per  Fig. 3, ω is the wheel rotation angle .The body roll 

angle is α . The pitch angle is β . The yaw angle is γ . The 

balance weight is connected with the rod of pendulum, the 

pendulum angle is p  The o-xyz is the fixed coordinate 

system. W-x1 y1 z1 , F-x2 y2 z2  and B-x3 y3 z3 are the 

moving coordinate system of the wheel, frame and the 

balance weight respectively. In accordance with the principle 

of dynamics, we set each rotation matrix as follows:    
    

𝑅(𝑥,𝛼) = [
1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

]                   (1) 

 

𝑅(𝑦,𝛽) = [
cos 𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

]                (2) 

 

𝑅(𝑧,𝛾) = [
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0

0 0 1
]            (3) 

 

The coordinate the wheel on the ground is(xc yc,0). The wheel 

is pure roll on the ground. The constraint equation of the 

wheel center is given as (4). 

{
𝑥�̇� − 𝑟1�̇�𝑐𝑜𝑠𝛾 = 0

𝑦�̇� − 𝑟1𝑠𝑖𝑛𝛾 = 0
}                                               (4) 

 

A. The Analysis of the Wheel Kinetic Energy and Potential 

Energy 

           (  x1 , y1 , z1 ) is the coordinate of the wheel center. 

Assume that the quality of wheel is m1 and the radius is r1 . 

By the coordinate transformation eqn (5) can be obtained. 

The wheel also has the rotation kinetic energy during the 

translation is given by eqn (6). Consequently, the 

translational kinetic energy  T11 , rotation kinetic energy  T12 

and the gravitational potential energy V11 given by eqn (7),(8) 

and (9) 

 

[

𝑥1

𝑦1

𝑧1

] = [

𝑥𝑐

𝑦𝑐

𝑧𝑐

] + 𝑅(𝑧,𝛾)𝑅(𝑥,𝛼) [
0
0
𝑟1

]                                    (5) 

                                     

[

𝑤1𝑥

𝑤1𝑦

𝑤1𝑧

] = [
�̇�

�̇� + �̇�𝑠𝑖𝑛𝛼
�̇�𝑐𝑜𝑠𝛼

]                                                      (6)                

 

𝑇11 = 1
2⁄ 𝑚1𝑥1

2̇ + 1
2⁄ 𝑚1𝑦1

2 + 1
2⁄ 𝑚1𝑧1

2̇̇
      (7) 

 

𝑇12 = 1
2⁄ 𝐽11𝑤1𝑥

2 + 1
2⁄ 𝐽12𝑤1𝑦

2 + 1
2⁄ 𝐽13𝑤1𝑧

2̇̇
  (8) 

 

𝑉11 = 𝑚1𝑔𝑟1𝑐𝑜𝑠𝛼                                                      (9) 
 

𝐽11 = 𝑚1𝑟1,

,
2 𝐽12 = 𝐽13 = 1

2⁄ 𝑚1𝑟1
2  

 

B. The Analysis of the Frame Kinetic Energy and Potential 

Energy 
 

( x2 ,y2 , z2) is the coordinate of the centroid of frame is given 

by eqn no (10). The frame is equivalent to a cylinder. The 

quality of frame is  m2 ,the length is  l2 and the radius is  r2 . 

The distance between the centroid of frame and the centerof 

the wheel is h2 . 

 

[

𝑥2

𝑦2

𝑧2

] = [

𝑥1

𝑦1

𝑧1

] + 𝑅(𝑧,𝛾)𝑅(𝑥,𝛼)𝑅(𝑦,𝛽) [
0
0

ℎ2

]                                    (10) 

 

 

[

𝑤2𝑥

𝑤2𝑦

𝑤2𝑧

] = [

�̇�𝑐𝑜𝑠𝛽 − �̇�𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽

�̇� + �̇�𝑠𝑖𝑛𝛼
�̇�𝑠𝑖𝑛𝛽 − �̇�𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽

]                                     (11) 

 

𝑇21 = 1
2⁄ 𝑚2𝑥2

2̇ + 1
2⁄ 𝑚2𝑦2

2 + 1
2⁄ 𝑚2𝑧2

2̇̇
                   (12) 

𝑇22 = 1
2⁄ 𝐽21𝑤2𝑥

2 + 1
2⁄ 𝐽22𝑤2𝑦

2 + 1
2⁄ 𝐽23𝑤2𝑧

2̇̇
       (13) 
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𝑉21 = 𝑚2𝑔(𝑟1 + ℎ2𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛼                                     (14) 

𝐽21 = 𝐽22=
𝑚2

12⁄ (3𝑟2

,
2 + 𝐼2

2, 𝐽23 = 1
2⁄ 𝑚2𝑟2

2  

 

The frame also has the rotation kinetic energy during the 

translation is given by eqn(11). Consequently, we could get 

the translational kinetic energy  T21 , rotation kinetic energy  

T22 and the gravitational potential energy  V21 are given by 

eqns (12),(13)and (14). 

 

C. The Analysis of the Balance Weight Kinetic Energy and 

Potential Energy 

(x3 , y3 , z3) is the coordinate of the centroid of balance 

weight is given by eqn (15). The balance weight is equivalent 

to a long cylinder. The quality of balance weight is  m3 , the 

length is  l3 and the radius is  r3 .The pendulum connects the 

frame and the balance weight. The distance between the 

centroid of the balance weight and the connection point of the 

frame top is  s3 . The distance between the frame top and the 

center of the wheel is h3. The balance weight also has the 

rotation kinetic energy during the translation is given eqn 

(16). Consequently, we could get the translational kinetic 

energy T31 , rotation kinetic energy  T32 and the gravitational 

potential energy  V31 are given by eqns (17),(18) and (20) 
 

[

𝑥3

𝑦3

𝑧3

] = [

𝑥1

𝑦1

𝑧1

] + 𝑅(𝑧,𝛾)𝑅(𝑥,𝛼)𝑅(𝑦,𝛽) [

0
−𝑠3𝑠𝑖𝑛𝑝

ℎ3 + 𝑐𝑜𝑠𝑝
]                                (15) 

 

[

𝑤3𝑥

𝑤3𝑦

𝑤3𝑧

] = [

�̇�𝑐𝑜𝑠𝛽 − �̇�𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 + �̇�

�̇� + �̇�𝑠𝑖𝑛𝛼
�̇�𝑠𝑖𝑛𝛽 + �̇�𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽

]                                     (16) 

𝑇31 = 1
2⁄ 𝑚3𝑥3

2̇ + 1
2⁄ 𝑚3𝑦3

2 + 1
2⁄ 𝑚3𝑧3

2̇̇
                        (17) 

𝑇22 = 1
2⁄ 𝐽31( �̇� − 𝑝)̇2  + 1

2⁄ 𝐽32�̇�2                                  (18) 

𝑉31 = 𝑚3𝑔(𝑟1 + (ℎ3 + 𝑠3𝑐𝑜𝑠𝑝)𝑐𝑜𝑠𝛽]𝑐𝑜𝑠𝛼                 (19) 

𝐽21 = 𝐽22=
𝑚3

12⁄ (3𝑟3

,
2 + 𝐼3

2, 𝐽32 = 1
2⁄ 𝑚3𝑟3

2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. The Dynamics Modeling of the robot  

 

                   The Routh equation defined as following 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗 + ∑ 𝜇𝛽𝐴𝛽𝑗

𝑟
𝛽=1 ’ 

             The Total KE is  

                     T=T11+T12+T21+T22+T31+T32           (20) 

             The Total PE is 

                    V=V11+V21+V31                              (21) 

             Where 

             q= (xc, yc, ω, β, α, p, γ ) 

             















0000sin10

0000cos01

1

1

27





r

r
A

 

        The generalized force equation is  

      𝑄 = [0 0 𝜏𝜔 − 𝜏𝜔 0  𝜏𝑝 𝜏𝛾]𝑇 

         From eqn (4) the following eqn can be deduced 

         {𝑥�̈� = 𝑟1�̈�𝑐𝑜𝑠𝛾 − 𝑟1�̇��̇�𝑠𝑖𝑛𝛾}           (22) 

          {𝑦𝑐 =̈ 𝑟1�̈�𝑠𝑖𝑛𝛾 + 𝑟1�̇��̇�𝑐𝑜𝑠𝛾} 

   The dynamic equation, 

              𝑥 = [𝜔 𝛽 𝛼 𝑝 𝛾]𝑇  

  On simplification kinetic equation can be obtained 

    𝑀(𝑥)�̈� + 𝐺(𝑥, �̇�) = 𝑁𝜏                           (23) 

Where  
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III. The State Equation Of The Unicycle Robot 

The state equation of a continuous time system is 

)24.........(..........DuCxy

BuAxx






 

The M in the equation (23) is a block diagonal matrix and the 

unicycle robot could be divided into three subsystems. 

The state equations of the subsystems are as below. 

 

Subsystem 1: The state equation of pitching direction is as 

follows. 
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Subsystem 2: The state equation of rolling direction is as 

follows. 
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Subsystem 3: The state equation of yawing direction is as 

follows. 
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The ranks of the controllability discrimination matrix of 

Subsystem 1, the Subsystem 2 and the Subsystem 3 are 4, 4, 

2, and the same as the rank of the observability criterion 

matrix through the calculation. The three subsystems all have 

controllability and observability but they are instable. 

Therefore, the effective controllers are need to be designed to 

control the system. 

III. THE DESIGN OF UNICYCLE ROBOT CONTROLLER 

A.LINEAR QUADRATIC REGULATOR 

The theory of optimal control is concerned with operating 

a dynamic system at minimum cost. The case where the 

system dynamics are described by a set of linear differential 

equations and the cost is described by a quadratic function is 

called the LQ problem. One of the main results in the theory 

is that the solution is provided by the linear-quadratic 

regulator (LQR). 

The LQR have certain advantages as: 

a) Provides a systematic method of calculating the state 

feedback gain matrix  

b) The designed system is always stable.  

According to the principle of the LQR regulator, there is state 

equation ẋ = Ax + Bu . The mimimum control performance 

indicator   

)25()(
0

dtRuuQxxJ TT





 

through determining the matrix K in the feedback control   

u(t) = −Kx(t) .Q is a positive definite or positive semi definite 

matrix or a real symmetric matrix. R is a positive definite or a 

real symmetric matrix. Q and R are the weighted matrix of x 

and u. The Riccati equation is given by: 

  

)26(01   PBPBRQPAPA TT  

  

The matrix P , is obtained by solving this equation. If there is 

a positive definite matrix P , the system would be stable. 

Then take the matrix P into the 
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𝐾 = 𝑅−1𝐵𝑇𝑃                                    (27) 
 The matrix K is obtained. 
 

 

B. SLIDING MODE CONTROL (SMC): 

   Sliding mode control (SMC) is a nonlinear control 

technique featuring remarkable properties of accuracy, 

robustness, and easy tuning and implementation.  

 

SMC systems are designed to drive the system states onto a 

particular surface in the state space, named sliding surface. 

Once the sliding surface is reached, sliding mode control 

keeps the states on the close neighbourhood of the sliding 

surface. Hence the sliding mode control is a two part 

controller design. The first part involves the design of a 

sliding surface so that the sliding motion satisfies design 

specifications. The second is concerned with the selection of 

a control law that will make the switching surface attractive 

to the system state . 

There are two main advantages of sliding mode 

control. First is that the dynamic behaviour of the system may 

be tailored by the particular choice of the sliding function. 

Secondly, the closed loop response becomes totally 

insensitive to some particular uncertainties. This principle 

extends to model parameter uncertainties, disturbance and 

non-linearity that are bounded.  

From a practical point of view SMC allows for controlling 

nonlinear processes subject to external disturbances and 

heavy model uncertainties. 

 The SMC is widely recognized control strategy in the 

control system engineering which is to be insensitive to plant 

parametric uncertainties and external disturbances. For better 

understanding of SMC the Fig.4, it gives two phase plane 

plots showing the behaviour of SMC. 

 

Fig 4 Phase plot for  SMC 

 

 

 

 

 

The plant is defined as  

21

2

2
1

 variablesliding  with theu,f

xx

x

xx












  

The simplest SMC controller  ksignu   is 

applied.  

 In the phase plot, after the initial reaching period, the 

controller is forcing the trajectories to stay on the line 

21
xx    which corresponds to exponential decay of 

with the rate defined by the control parameter λ. The system 

has been reduced from being two-dimensional to be of just 

one dimension, i.e., the sliding surface along which system 

slides. When the hysteresis tends to zero width, any bounded 

disturbance will be rejected if k is chosen sufficiently large. 

This disturbance rejection is known as the invariance 

property. These are the main advantages of SMC. The 

chattering in the sliding phase. Deviations are due to the 

hysteresis which is an imperfection .The strength of SMC lies 

in its robustness against plant parameter. High speed 

switching feedback gain is necessary to achieve these goals. 

In SMC, a high speed switching gain is attained using a 

control signal with a discontinuous element (sign function). 

The simple discontinuous control law , u=-ksig(σ) will switch 

the controller output from k to – k or vice versa for the 

slightest change across. Such a control law is theoretically 

realizing an infinite feedback gain with a finite-valued control 

signal. The discontinuous element implements high 
theoretically infinite gain that is the conventional mean to 

suppress the influence of disturbances and uncertainties in 

system behaviour and unlike systems with continuous 

control. The invariance is attained using finite control actions. 

Consider a SISO system with its state space model as:. 

buxaxax

xx








2211
2

21

 

Where  

and bbaa  0,0  are the known 

constraints. For design of SMC of above mentioned system, 

let us choose sliding surface as:  
,

21
xx   where λ is positive. 

For above sliding surface, a control law should be designed 

so that the sliding surface is reached to zero, i.e. made 

attractive towards the origin. This can be achieved by 

Lyapunov stability technique. Let us consider a Lyapunov 

function as:   

2

2

1
V

 

Where  

)(

])([

)(

1

2211

1










signbu

xaxabu
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sw

eq











 

sweq
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IV. The SIMULATION EXPERIMENT 

For LQR, Matlab the “care” command gives solution to the 

algebraic riccati equation (ARE) and determines the optimal 

control gain matrix  

 eg: care(A,B,Q,R) 

 In this paper the command calculates the optimal feedback 

gain matrix k such that the  feedback control law , u=-kx 

minimizes the performance. 

Here the weighted matrices Q and R for Subsytem 1 are 

assumed as, Q1 = diag(500,1,1,1) ,  R1 = 0.01 ) 
 

 

The K value for subsystem 1 (Pitching Direction) is obtained 

as follows: 

𝐾1 = [223.6068 36.5055 − 828.9929 − 42.7414] 
  

In subsystem 2(Rolling Direction), the weighted matrices Q 

and R are assumed as  

Q2=diag(200,200,200,200),R2=1 and K2 is obtained as 

K2 = [13.7343 − 14.1015   14.1421   14.4328] 
 

Similarly in Subsytem 3 (Yawing Direction), the weighted 

matrices Q and R are assumed as Q3=diag(10,1) and R3=0.01  

the gain K3 is obtained as  

K3 = [31.6228     11.3966] 
The body roll angle is assumed initially as  α= 0.05 rad, the 

pitch angle β=0.1 rad, the yaw angle as ϒ=0.1 rad for the 

intial moment. There is a disturbance at the fifth second. 

 

Fig 5 LQR control of pitch angle 

 

Fig :6. LQR control of roll angle 

 

Fig 7: LQR control of yaw angle 

Next the roll angle control is carried out using Sliding Mode 

control, using the gain value K2 obtained using the roll angle 

control using LQR. Using Matlab program the sliding surface 

“S “can be calculated. The value of sliding surface is 

obtained as 

𝑆 = [  0         0   -0.0170   -0.0170] 

Using this sliding surface the control law can be calculated 

which is fed back to the subsystem2 as input. A signal is 

build using signal generator with a disturbance on the 5sec 

and result is obtained in such a way that after the oscillations 

caused due to disturbance the system retrieved back to 

stability. 

 

 

Fig 8: SMC control of  roll angle 

 
      

Fig 9:The angle curves for LQR(pitch &yaw) and 

SMC(roll) control 
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V. CONCLUSION 

     The study of nonlinear, unstable under actuated non 

holonomic system of unicycle robot is carried out. The 

dynamic modeling of the system using Lagrange Approach is 

studied and being used here. The robot angles are initially 

simulated and studied using Linear Quadratic Regulator . Then 

a Sliding Mode control was used to study the roll axis. The 

simulation studies were carried out to investigate the 

performance of the controller. The roll angle control using 

SMC shows that the error when compared to LQR control is 

considerably reduced .So for roll control the better option of 

control is using SMC. The system is assembled with pitch and 

yaw angles controlled using LQR controller and roll angle 

using SMC. The designed controllers are reasonable and 

reliable, and consistent with the physical significance. All the 

simulation results show that the controllers basically achieve 

expected results. This paper could lay a foundation for the 

motion control of the robot prototype. 
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