Seismic Analysis of Rectangular and Circular RC Elevated Water Tank

Salitha Elizabeth Ninan
PG Scholor
Dept. of Civil Engineering
Saintgits College of Engineering
Kottayam, India

Afia S Hameed
Assisstant Professor
Dept. of Civil Engineering
Saintgits College of Engineering
Kottayam, India

Abstract

Elevated water tanks are large storage containers constructed for storing water supply at certain height to pressurize the system of water distribution. It comprises of a heavy water mass at the top of a slender staging which is utmost critical parameter consideration for the collapse of the tank during earthquakes. A detailed understanding of the performance of the structures under seismic forces is necessary to meet the safety objectives during construction and maintenance. Other modes of failures considered are sloshing damage at roof, buckling, inlet or outlet pipe breaks. From previous studies it was clear that inadequately designed elevated tanks were damaged heavily at the time of earthquakes. This may be due to the lack of knowledge regarding the behaviour of supporting system of the tank, and also due to improper selection of geometry of staging patterns. In the present work seismic analysis of rectangular and circular elevated water tanks are analysed using SAP 2000. From the study it is concluded that the primary mode shape of rectangular tank is translation and that of circular tank is torsion which needs to be eliminated. To eliminate the torsional mode shape in circular elevated water tank, orientations of columns are modified.

Keywords- Circular tank, rectangular tank, two mass idealisation, SAP 2000

I. INTRODUCTION

Elevated water tanks are lifeline structures and are important for the continuous supply of water. Their performances are critical during and after strong earthquakes. So a thorough understanding about the seismic behaviour of these tank structures is necessary, to meet proper safety objectives while construction and maintenance. From past studies it was clear that inadequately designed e water tanks were damaged heavily at the time of earthquakes. This may be due to the lack of knowledge regarding the behaviour of supporting system of the tank, and also due to improper selection of geometry of staging patterns. As a result of the dynamic effect of water when tank containing water is subjected to seismic force, sloshing effect is generated. This exerts hydrodynamic force on the base and walls of the tank along with hydrostatic forces. So to include these hydrodynamic forces, the elevated tanks should be idealised as spring mass model according to IS 1893 (part 2) 2014.

II . SPRING MASS MODEL

Two mass idealization is more appropriate than one mass system since the tanks are not always full. When a tank with
water mass is subjected to horizontal seismic motion walls of tank and liquid contained are subjected to horizontal acceleration [3]. The water mass in the inferior section of the tank behaves like a rigid mass connected to the walls of the tank and is called as impulsive mass which accelerates along the tank wall which exerts impulsive hydrodynamic pressure on the tank wall. Similarly water mass in the topmost region of the tank undergoes sloshing motion and this mass is known as convective mass and it induces convective hydrodynamic pressure on the base and walls of the tank. Thus entire liquid mass is divided into two masses, convective mass and impulsive mass [3]. The two mass idealization system is shown in Figure 1.

Figure 1: Two Mass Idealization

III. DETAILS OF ELEVATED RC WATER TANK

For the analysis circular and rectangular elevated water tank of $100 \mathrm{~m}^{3}$ with a staging height of 12 m is used as in figure 2 . The intermediate height taken is 2.5 m . Seismic Zone III is considered.

Diameter	6.52 m
Roof Slab	120 mm
Floor Slab	200 mm
Floor Beam	250 mmX 600 mm
Wall	200 mm
Gallery	110 mm
Braces	300 mmX 450 mm
Column	450 mmX 500 mm

Table 2: Details of Rectangular tank

Length	8.2 m
Breadth	4.1 m
Roof Slab	180 mm
Floor Slab	200 mm
Floor Beam	250 mmX 600 mm
Wall	200 mm
Gallery	150 mm
Braces	300 mmX 450 mm
Column	450 mmX 500 mm

(a) without braces

(c) Without braces

(b) with X braces

(d) with X braces

Figure 2: Tank Models

IV. FINITE ELEMENT MODELLING OF TANKS

The structural elements of the supporting frame system were modelled as beam elements and area elements such as tank wall, roof slab and floor slab were modelled using shell elements. To incorporate the dynamic behaviour of the fluid mass in the FEM tank models, two masses were considered. The primary mass is the impulsive mass component of the fluid which is calculated as per IS 1893 (part 2). It is firmly connected to the tank wall by constraining the movement in y and z direction. The second mass is the convective mass component of the fluid which is connected using a system of springs to the walls of the tank constrained in x and y direction; the stiffness of the spring is calibrated to create the first convective mode. The spring mass parameters calculated
during initial design are given in Table 3 and 4. The impulsive mass has been modeled as concentrated mass placed at a height h_{i} from the bottom of the tank. This mass is connected using a system of "link" elements to the vertical walls. The convective mass, which is at a height h_{c}, is connected to the walls using a system of springs to imitate the equivalent stiffness as accurately as possible. The stiffness of each spring has been calibrated in turn to have stiffness in the direction equal to $\mathrm{kc} / 2$.

Table 3: Parameters of Spring Mass Model for circular tank

Mass of water	100163 Kg
Mass of structure	91149.5 Kg
Impulsive mass	82654.31 Kg
Convective mass	46074.98 Kg
Spring stiffness of convective mode, k_{c}	$103.42 \mathrm{kN} / \mathrm{m}$
Height of convective mass, h_{c}	2.96 m
Height of impulsive mass h_{i}	2.405 m

Table 4: Parameters of Spring Mass Model for rectangular tank

Mass of water	100856 Kg
Mass of structure	127380.56 Kg
Impulsive mass	89761.84 Kg
Convective mass	43368 Kg
Spring stiffness of convective mode, k_{c}	$128.25 \mathrm{kN} / \mathrm{m}$
Height of convective mass, h_{c}	2.96 m
Height of impulsive mass h_{i}	2.405 m

V. RESULTS AND DISCUSSIONS

Table 5: Time period of circular tank

Model	Time period (s)
Circular water tank	5.23
Circular tank with X braces	4.81
Rectangular tank	7.31
Rectangular tank with X braces	6.56

Mode shape: Torsion

Mode shape: Translation along Y axis

Figure 3: Mode shapes

Table 6: Convective and Impulsive Time Period

Model	Convective Time Period (s)	Impulsive Time period (s)
Circular water tank	2.13	1.01
Circular tank with X braces	2.05	0.982
Rectangular tank	2.36	1.035
Rectangular tank with X braces	2.25	0.996

Table 7: Base shear

Model	Base Shear (kN)
Circular water tank	1015.73
Circular tank with X braces	1422.35
Rectangular tank	1245.11
Rectangular tank with X braces	1586.09

Table 8: Base Moment

Model	Base Moment (kNm)
Circular water tank	3213.54
Circular tank with X braces	4765.87
Rectangular tank	4532.18
Rectangular tank with X braces	6731.41

INFERENCES

- The mode shape for braced and un braced circular water tank is torsion and that for rectangular water tank is translation as in figure 3.
- Time period decreases when bracings are added.
- Base shear and moment is more for rectangular water tank than circular water tank.
- Shear and moment increases with the introduction of bracings.
Since the primary mode shape of elevated circular water tank is torsion, it is critical during earthquakes and is needed to be eliminated. So the positions of alternate columns are rearranged to eliminate torsion as in figure 4.

Figure 4: Tank model with rearranged column position

Table 8: Modal analysis Result

Model	Time period (s)
Circular water tank	5.56
Circular tank with X braces	5.04
Rectangular tank	7.49
Rectangular tank with X braces	6.83

INFERENCES

- The mode shape is translation along Y direction.
- So the position of columns can be rearranged to eliminate torsional seismic mode.
- This is because as the structure becomes irregular its torsion effect decreases.

VI. CONCLUSION

Circular and rectangular RC elevated water tanks were analysed using SAP 2000 and the following conclusions obtained were as follows

- The mode shape of circular water tank is torsion and that of rectangular is translation along Y axis.
- Time period decreases for water tank models with bracings.
- Shear and moment values increases for braced structures. This is due to the increase in mass due to bracings.
- The torsional mode shape of circular tank can be eliminated by rearranging the positions of column.
- Element size required for rectangular tank is more when compared to circular tank. So circular tank is more economical.

ACKNOWLEDGEMENT

I am grateful to my guide Asst. Professor Afia S Hameed in Civil Engineering Department for her continuous support and guidance and also Asst. Professor Vivek Philip in Civil Engineering Department for his timely help and suggestions. Also I thank my parents, friends and above all the god almighty for making this work complete successfully.

REFERENCES

[1] Raji Ruth George and Asha Joseph (2016) "Dynamic Analysis of Elevated Cement Concrete Water Tank". International Journal for Innovative Research in Science \& Technology, Volume 3, Issue 03.
[2] Ankush N. Asati, Dr.Mahendra S.Kadu , Dr. S. R. Asati (2016)" Seismic Analysis and Optimization of RC Elevated Water Tank Using Various Staging Patterns "Int. Journal of Engineering Research and Application, Vol. 6, Issue 7, (Part -1) July ,pp.20-25
[3] IITK-GSDMA GUIDELINES for Seismic Design Of Liquid Storage Tanks Provisions with Commentary and Explanatory Examples.
[4] Rupachandra J. Aware, Dr. Vageesha S. Mathada (2015) "Seismic Performance of Circular Elevated Water Tank" International Journal of Science and Research, Volume 4 Issue 12, December 2015
[5] Nishigandha R. Patil, Rajashekhar S. Talikoti (2015) "Seismic behavior of elevated water tank" International Journal of Research in Engineering and Technology Volume: 04 Issue: 05 | May-2015
[6] Gaurav S. Atalkar and Anand M Gharad (2014) "Comparative Analysis Of Elevated Water Storage Structure Using Different Types Of Bracing Patterns In Staging". Journal on Structural Engineering, Vol. 3 l No. 1 l March - May 2014.
[7] M. V. Waghmare, S.N.Madhekar (2013) "Behaviour Of Elevated Water Tank Under Sloshing Effect". International Journal Of Advanced Technology In Civil Engineering, Volume-2, Issue-1.
[8] Dr. Suchitra Hirde, S A Bajare and M.Hedaoo (2011) "Seismic perfomance of elevated water tanks". International Journal of Advanced Engineering Research and Studies, 1(1), 78-87
[9] O. R Jaiswal and Sudhir K Jain (2005) "Modified proposed provisions for seismic design of liquid storage tanks" Journal of Structural Engineering Vol. 32, No.4, October-November, pp. 297-310
[10] Jain S K and P. Medhekar (1993) "Proposed provisions for aseismic design of liquid storage tanks :part ii- commentary and examples ". Journal of Structural Engineering 20(4), 167-175.
[11] Housner G W (1963) "The Dynamic Behavior of Water Tanks". Bulletin of the Seismological society of America, 53(2),381-387.

