
Seed Based Approach for Near Lossless to

Lossless Image Compression

Tanuja R. Patil 1
School of Electronics & Communication Engg

K. L. E. Technological University

Hubballi, India

Vishwanath P. Baligar 2
School of Computer science & Engg.

K. L. E. Technological University

Hubballi, India

Abstract— Image compression is inevitable nowadays as there

is a huge transaction of data in the form of images .In this

paper, a novel approach to achieve near lossless compression

and further lossless compression, is discussed. Here a seed

based technique over gray scale images to achieve better

quality, has been discussed. In this technique, 4 bytes of data is

converted into three bytes with a transformation technique.

Later a seed data is added to achieve near lossless results.

Further by adding additional seed data, lossless compression

can be achieved. A metric called correctness ratio is used to

measure the quality of the reconstructed images. The quality of

reconstructed images is near lossless i.e. very high when

compared with JPEG approach at same PSNR values. Results

of lossless compression are just comparable with JPEG-LS

with slight compromise in compression ratio.

Keywords—Image compression; near lossless; lossless ;

comparison with JPEG ; Seed based approach.

I. INTRODUCTION

Image compression is a type of data compression applied to

digital images, to reduce their cost for storage or

transmission, as most of the data transmitted nowadays is in

the form of images. These images can be either color or gray

scale.

For image processing tasks, gray scale images can be

preferably used, as much of today's display and image

capture hardware can only support 8-bit images and it is

more complicated and harder to process color images.

The gray scale pixel intensity value is stored as an 8-bit

integer with 256 possible different shades of gray from

black to white. A lot of redundancy exists in the use of 8 bit

representation. This redundancy exists in 3 major forms. i.e

coding redundancy, inter-pixel redundancy and pshycho-

visual redundancy.

Compression can be achieved, if these redundancy can be

reduced by suitable techniques. These image compression

techniques will result into two types of compression i.e.

lossless and lossy image compression. Lossless image

compression is usually required for applications like

medical field,where each & every detail is important. This is

because lossy compression methods produce compression

artifacts to images and sharp-edged lines become blurr when

using strong compression. But lossy compression is a good

choice for natural images where slight loss is acceptable

to achieve smaller file size. Lossy compression is usually

based on techniques that removes certain information which

the human eye typically doesn't notice. Mostly used lossy

compression methods are transform coding such as discrete

cosine transform (DCT, used in JPEG) or wavelet

transform (used in JPEG 2000). Similarly many researchers

are trying with different transformation techniques.

 The most widely used methods of lossless compression in

images are run-length encoding (RLE), entropy

coding and dictionary coders. Recently researchers are

working with prediction based coding techniques to

improve the compression ratio. In this paper, we discuss

about a novel approach wherein 4 bytes of data is converted

into three bytes by using a transformation technique by

which lossy compression is achieved. A seed data is added

to improve the quality, so that near lossless results have

been achieved. further by adding additional seed data

lossless compression can be achieved and these results are

in-par with JPEG-LS methods

II. LITERATURE SURVEY

Many research works are going on to improve the

compression ratio, improve the quality of reconstructed

images, decrease the computation cost and reduce time

complexity. We surveyed many papers and listed some

highlights.

Subramanya, A, gives an overview of the major image

compression techniques. The Joint Photographic Experts

Group (JPEG) is a standard developed for compressing

continuous-tone still images. And it has been widely

accepted for still image compression throughout the

industry. JPEG can be used on both gray-scale and color

images. [1]

Nedhal Mohammad Al-Shereefi, discuss about the wavelet

based lossy image compression. to achieve high

compression ratio in images using 2D daubechies

mWavelet Transform by applying global threshold for the

wavelet coefficients.[2]

G. Ulacha1 and R. Stasiski, discuss about an efficient and

simple context-based data modeling technique for lossless

image compression. Similarly as preprocessing stage of

JPEG-LS, it uses only 3 contexts, which makes it time-

efficient, and does not force the message headers to be long.

Enhanced, but more computationally complex versions of

the method are also analyzed. Extensive experiments show

that indeed, the new technique is clearly better from data

compression point of view than the preprocessing stage of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070229
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

416

www.ijert.org
www.ijert.org
www.ijert.org

JPEG-LS, while its computational complexity is

approximately the same.[3]

Mamatha A.S, Vipula Singh discuss about a simple

arithmetic calculation which uses, finding the difference

between pixels , for Near Lossless Image Compression .

They have used Raster, Orthogonal, Diagonal and Snake

scanning methods.CR and PSNR for base value 16 is 3.628

and 35.1912 respectively.[4]

Vishwanath P. Baligar, L.M. Patnaik, G.R. Nagabhushana

discuss about the design and implementation of an image

coding algorithm which uses a thresholding method.

Threshold is the Peak Absolute Error (PAE) allowed in the

reconstructed image. It has been shown that lossless edges

with near-lossless filled area give a high fidelity images.

Results are compared with Set Partitioning In Hierarchical

Tree (SPIHT) and proven to be better . [5]

As per Sinisa ILIC, Mile PETROVIC, Branimir JAKSIC,

Petar SPALEVIC, at lower PSNR levels, there will be noise

effects from the compression methodology used in JPEG.

Here Contour like structures appear, which are

uncomfortable for better visibility. [6]

We have discussed about some lossy compression

algorithms using surrounding pixels method, pixel count

method and byte shrinking method, where it is shown that at

low PSNR levels, number of exact pixels in reconstructed

image increases, thus reducing the contour effects that may

arise in JPEG at same PSNR values.[7,12,13]

From the above survey, we got the motivation to improve

the quality of images which give good correctness ratio

compared to JPEG. Hence we came up with a novel seed

based approach to improve the quality of the images which

is described in the next section.

III. METHODOLOGY

In this method, the gray scale image f[x][y],is divided into

blocks of four pixels .These four pixels are processed and

converted into three bytes of data to produce a transformed

image. For a block of 4 pixels, three byte data is generated.

Later seed data is added to get near lossless and lossless

results, which is explained with compression and

decompression algorithms below.

A Compression algorithm with examples

1) Three Byte generation

Gray scale image f[x][y],is processed in blocks of four pixels

in raster scan manner as shown in “Fig.1”

Fig.1 block of 4 pixels Fig.2 Sample block

Where, f[x][y] is the 8 bit

pixel intensity value

at row ‘x

and column ‘y’.

 a= f[x][y], b=f[x][y+1], c=f[x+1][y], d=f[x+1][y+1]

For e.g. consider 4 pixel values with, a=163, b=164, c=163,

d=161 shown in “Fig.2”

Convert all the 4 pixel values to binary form as shown

below.

 a=10100011 (163), b=10100100 (164),

 c=10100011 (163), d=10100001 (161)

a) Byte1 generation:

‘Byte1’ is generated by combining 7th & 6th bits of each of

the 4 pixels as shown.

 Byte1= a[7] +a[6] + b[7] +b[6]+ c[7] +c[6] + d[7] +

d[6] =10101010

 Thus generated ‘Byte1’ is saved in a file say’Byte1’.

b) Byte2 generation

A, 3 bit data is generated by considering 5th,4th &3rd bits of

each pixel. A bit position table is created and ‘1’ is marked in

that bit position indicated by 3 bit data. In the above

example, bits at bit positions 5,4,3, can be written as follows.

 a[5,4,3] =100, b[5,4,3] =100, c[5,4,3] =100, d [5,4,3] =100

In all these 4 pixels, bits at 5,4,3 bit positions are 100

(3 bit data) and bit position in decimal is 4, hence ‘1’ is

entered in 4th position as shown in the Table 1.

TABLE 1. BIT POSITION TABLE FOR BYTE2

 Byte2 is generated by logical ‘OR’ of a,b,c,d [5,4,3] bits.

 Byte2= a[5,4,3] OR b[5,4,3] OR c[5,4,3] OR d[5,4,3]

 Byte2=00010000 || 00010000 || 00010000 || 00010000

 =00010000

 Thus generated ‘Byte2’ is saved in a file say’Byte2’.

c) Byte3 generation

‘Byte3’ is generated as described. The bit positions of 2nd ,1st

and 0th bits of each pixel are checked and ‘1’ is marked in

the bit position indicated by 3 bit data. In the above example,

bits at bit positions 2,1,0, can be written as follows.

a [2,1,0] =011 (3), b[2,1,0] = 100 (4), c [2,1,0] = 011(3) d[2,1,0] =

001 (1) .At these positions ‘1’s are entered to generate

byte3 as shown in Table 2.

TABLE 2. BIT POSITION TABLE FOR BYTE3

 a b

 c d

163 164

 163 161

Pixels

Bit positions in decimal indicated by 5th,4th,3rd bits

7 6 5 4 3 2 1 0

 a 0 0 0 1 0 0 0 0

b 0 0 0 1 0 0 0 0

c 0 0 0 1 0 0 0 0

d 0 0 0 1 0 0 0 0

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070229
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

417

www.ijert.org
www.ijert.org
www.ijert.org

Byte3 is generated by logical OR of a,b,c,d [2,1,0] bit

representation.

Byte3= a[2,1,0]OR b[2,1,0]OR c[2,1,0]OR d[2,1,0]

Byte3=00001000 || 00010000 || 00001000 || 0000000

=00011010,

Thus generated ‘Byte3’ is saved in a file say’Byte3’

2) Seed Generation

Now, seed generation is done by counting the number of ‘1’s

in byte2 & byte3.The count of number of ‘1’s in byte2 and

byte3, will be either 1,2,3, or 4. If the number of ‘1’s is one,

reconstruction will be perfect and seed data is not required,

but if the number of ‘1’s is 2,3, or 4,we need to add extra bits

called as seeds so that perfect or lossless reconstruction is

possible. If the seeds for count 2 &3 are added, it will result

in near lossless image i.e. very high quality image with good

compression ratio and if seeds for count=4 are added, it will

result in lossless image compression.

a) Seed generation for count of number of ‘1’s in

byte2 or byte3 =2

Consider another block of 4 pixels, where a count of ‘2’is

expected in byte2 or byte3.for e.g. a=163, b=157,c=163,

d=157. Their binary representation can be given as a=10

100 011,b=10 011 101,c=10 100 011,d=10 011 101.Here,

bits at bit positions 5,4,3, can be written as follows’

a[5,4,3] =100, b[5,4,3] =011, c[5,4,3] =100, d [5,4,3] =011

Byte2 is generated by logical ‘OR’ of a,b,c,d [5,4,3] bits as

described in Table 2.

Byte2= a[5,4,3] OR b[5,4,3] OR c[5,4,3] OR d[5,4,3]

Byte2=00010000 || 00001000 || 00010000 || 00001000

 =00 011 000

Now ,to generate the seeds, the bit positions are encoded as

follows i.e lower bit position(which is 3) is given the

code’0’, and higher bit position (which is 4) is given the code

as ‘1’.

For pixel a, bit position is 4 , code is’1’.For pixel b, bit

position is 3, code is ‘0’ .For c, bit position is 4,code is ‘1’

and for d, bit position is 3, code is ‘0’. Hence a 4 bit seed

named ‘seed1’ is generated by combining the code for each

of them as,

Seed1=1 0 1 0

This is how a 4 bit seed is generated for one block and stored

in a separate file say ‘seed1’ file.

b) Seed generation for a count of number of ‘1’s in

byte2 / byte3 =3

Consider another example of 4 pixels, where a count =3

is expected for e.g. a=163, b=157,c=143, d=157

their binary representation can be given as

a=10 100 011,b=10 011 101,c=10 001 111,d=10 011 101

In the above example, bits at bit positions 5,4,3, can be

written as follows’

a[5,4,3]=100, b[5,4,3] =011, c[5,4,3] =001, d[5,4,3] =011,and’1’ is

marked in bit position table

Byte2 is generated by logical OR of a, b, c, d [5,4,3] bit

representation.

Byte2=a[5,4,3] OR b[5,4,3] OR c[5,4,3] OR d[5,4,3]

Byte2= 00011010 (Thus here, number of ‘1’s are three)

Now , the bit positions are encoded as follows i.e lower bit

position(here,1) is given the code’00’, middle bit

position(here,3) is given the code’01’higher bit

position(here.4) is given the code’10’

Now, the bit positions for a,b,c,d are checked and assigned

the code as shown.

 For pixels a,b,c,d, bit positions are 4,3,1,3 resply. Hence a

8 bit seed is generated by combining the code for each of

them as,

seed2=10 01 00 01

This is how the seed is generated for number of ‘1’s =3, and

stored in a separate file say ‘seed2’ file.

c) Seed generation for number of ‘1’s =4

Consider another example for e.g. a=163, b=157,c=178,

d=143.Their binary representation can be given as

a=10 100 011, b=10 011 101,c=10 110 010,d=10 001 111

In above example, bit positions for the bits 5,4,3,can be

written as follows’

a[5,4,3] =100, b[5,4,3 =]011, c[5,4,3] =110, d[5,4,3] =001

Byte2 is generated by logical OR of a,b,c,d [5,4,3] bit

representation.

Byte2=a[5,4,3] OR b[5,4,3] OR c[5,4,3] OR d[5,4,3]

byte2= 01 011 010

The bit positions are arranged in ascending order and later

the codes are assigned. Bit position1(i.e.1)=’00’, bit

position2(i.e.3) = ’01’ bit position3(i.e.4)=’10’, bit

position4(i.e.6) =’11’.

Now, the bit positions for a, b, c, d are checked and assigned

the code as shown.

Bit positions of pixels a,b,c,d are 4,3,6,1 resply. Hence 8 bit

seed is generated by combining the code for each of them as,

seed3=10 01 11 01

Pixels

Bit positions in decimal indicated by 2nd,1st,0th bits

7 6 5 4 3 2 1 0

 a 0 0 0 0 1 0 0 0

b 0 0 0 1 0 0 0 0

c 0 0 0 0 1 0 0 0

d 0 0 0 0 0 0 1 0

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070229
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

418

www.ijert.org
www.ijert.org
www.ijert.org

This is how the seed is generated for number of ‘1’s =4, and

stored in a separate file say ‘seed3’ file.

3) Byte and seed generation for bits at 2,1,0 positions

Similarly for the bits[2,1,0] , above steps as mentioned in

III.A.1 & III.A.2 are repeated to generate the seeds & saved

in ‘seed4’,’seed5’,’seed6’ files.

All the above transformed files are further Huffman

compressed to achieve better compression.

B. Decompression algorithm

If the image is reconstructed with the transformed three

bytes without the seeds, it will result into lossy image with

very low PSNR. But near lossless image with high PSNR

can be achieved by reading seeds file generated for count=2

and 3.It will result into high quality image.

1) Decompression algorithm to achieve Near

Losssless compression

Read and Huffman decode the following files,

byte1’,’byte2’,byte3’,’seed1’,’seed2’, ’seed4’,’seed5’ to

reconstruct all 8 bits of 4 pixels.

a) Reconstruction of 7th & 6th bits

Bits at bit position 7 & 6 for all 4 pixels is obtained from

byte1 file.

b) Reconstruction of bits 5,4,3

Bits at bit position 5,4,3 have to be reconstructed from the

byte, read from ‘byte2’ ,seed1 & seed2 files.

Read the byte from byte2 file, Get the count of number of

‘1’s. Arrange the bit positions in ascending order. i.e. lower

bit position (L) & higher bit position(H).

If the count is ‘2’, read the ‘seed1’ file to get the seed value.

From the seed value, get the code to assign the bit positions.

for e.g.if seed value is (1 01 0),then higher bit (H)is assigned

to pixel a[5,4,3] & c[5,4,3], (L) is assigned to b[5,4,3] & d[5,4,3]. Thus

we can reconstruct bits 5,4,3 of all 4 pixels.

 If the count is ‘3’, read the ‘seed2’ file to get the seed value.

From the seed value, get the code to assign the bit positions.

for e.g. if seed value is (01 10 01 00),then middle bit (M)is

assigned to pixel a[5,4,3] ,(H) is assigned to b[5,4,3],(M) is

assigned to c[5,4,3] and (L) is assigned to d[5,4,3].Thus we

can reconstruct bits 5,4,3 of all pixels.

c) Reconstruction of bits 2,1,0.

Similarly bits [2,1,0] can be reconstructed by the same

procedure as described above in III.B.1 section, by reading

‘byte3’,‘seed4’ and ‘seed5’ files.

For a count of number of ‘1’s =4, the bit positions are

assigned randomly to each of the four pixels. By this, we

may get slight loss in the reconstruction , but, energy of

four pixels is retained and it results in near lossless

compression which is described in section IV.

But by adding seeds for count=4 we get lossless

compression which is explained in section IV.

2) Decompression algorithm to achieve lossless

image compression

• Repeat Steps explained in section III.B.1

• If the count of number of ‘1’s in byte2 or ‘byte3’=4,

then read the file’seed3’ to reconstruct 5th,4th,3rd

bits of all 4 pixels. and by reading ‘seed6’ file ,reconstruct

2nd.1st.0th bits of all 4 pixels. By this reconstruction

procedure all the bits of 4 pixels can be reconstructed and

lossless compression can be achieved. And results are

discussed in section IV.

IV. DISCUSSION OF RESULTS

A Results for near lossless compression

Above algorithm is implemented on standard test images and

reconstructed images are shown in figures Fig3-Fig.8.Left

side are the original images and right side are the

reconstructed images. We can see the quality of

reconstructed images, which is very high .They almost

resemble the original image . The quality of reconstructed

image is measured by another metric called as correctness

ratio to measure how many pixels are same as original in the

reconstructed image and are tabulated in Table 3 & 4. The

Compression ratio achieved by our approach is in the range
of 1.3-1.5. Results show that , using this approach

reconstructed image is near lossless with high PSNR. The

correctness ratio is also higher i.e .the number of correct
pixels as that of original using our approach are far higher

than JPEG approach measured at same PSNR values.

Table 3 Comparison of correct pixels with JPEG

Table 4 Comparison of correctness ratio with JPEG

B. Results on Images

 Fig 3 Lena Fig.4 Barbara

Images PSNR Correct pixels

obtained by

JPEG

approach

Correct

pixels by our

approach

Lena 41.14 50,484 179631

Barbara 38.58 40486 166163

Baboon 36.66 30182 148482

Boat 39.68 49586 171708

Aya-matsura 39.67 52478 180864

pepper 38.7 39,867 1,75,324

Images PSNR Correctness

ratio by JPEG

approach

Correctness

ratio by our

approach

Lena 41.14 0.19 0.68

Barbara 38.58 0.15 0.63

Baboon 36.66 0.11 0.56

Boat 39.68 0.18 0.65

Aya-

matsura

39.67 0.2 0.68

pepper 38.7 0.15 0.67

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070229
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

419

www.ijert.org
www.ijert.org
www.ijert.org

 Fig. 5 Baboon Fig, 6 Boat

 Fig. 7 Aya Matsura Fig. 8 Pepper

 C. Results for lossless compression

We have implemented lossless algorithm for the above

listed images and obtained fully perfect images without any

loss. Table 5 shows the bits per pixel (bpp) required for our

algorithm as compared to JPEG-LS and these results show

that bpp is slightly higher , but this approach gives a simple

and innovative approach for lossless compression.

Table 5 Compression ratio and bpp for lossless compression

Images C.R. Bpp with Jpeg-

LS

Bpp with our

algorithm

Lena 1.35 4.24 5.54

Barbara 1.28 5.0 5.9

Baboon 1.27 5.2 6.0

Boat 1.34 4.25 5.6

Aya-matsuura 1.36 4.1 5.41

pepper 1.30 4.71 5.57

V. CONCLUSION AND FUTURE SCOPE

Using seed based approach, reconstructed image is near

lossless with high PSNR. The correctness ratio is also

higher i.e .the number of correct pixels as that of original

using our approach are far higher than JPEG approach

measured at same PSNR values. Lossless image also can be

obtained with a slight compromise with compression ratio.

This approach is less computation intensive, with time

complexity O(n2). It is simpler approach for compression

as well as decompression. Further compression ratio can be

improved by optimizing the encoding method of seeds.

ACKNOWLEDGMENT

I wholeheartedly thank our guide Dr. Vishwanath P. Baligar

for his constant guidance and motivation throughout the

work. I Thank our Vice Chancellor Dr.Ashok Shettar and

Principal, Dr.P.G.Tewari for providing all the support and

facilities required to carry out the work. I thank our H.O.D.

Dr. Nalini C.Iyer for her constant support and

encouragement. I thank all those who has directly or

indirectly supported to carry out the research work.

REFERENCES
[1] Subramanya, A. (2001). Image compression technique. IEEE

Potentials, 20(1), 19–23. doi:10.1109/45.913206

[2] Nedhal Mohammad Al-ShereefiImage Compression Using
Wavelet Transform Journal of Babylon University/Pure and

Applied Sciences/ No.(4)/ Vol.(21): 2013

[3] G. Ulacha1 and R. Stasiski2 new simple context-based technique
for lossless image compression.

[4] Mamatha A.S, Vipula Singh, “Near Lossless Image System”Asia

Pacific Conference on Postgraduate Researchin Microelectronics
& Electronics (PRIMEASIA),Dec 2012

[5] Vishwanath P. Baligar, L.M. Patnaik, G.R. Nagabhushana ,“Low

complexity, and high fidelity image compression using fixed
threshold method”www.Elsevier.com ,Information Sciences 176

(2006) 664–675

[6] Sinisa ILIC, Mile PETROVIC, Branimir JAKSIC, Petar
SPALEVIC, Ljubomir LAZIC, Mirko MILOSEVIC,

“Experimental analysis of picture quality after compression by

different methods”, PRZEGLĄD ELEKTROTECHNICZNY,
ISSN 0033-2097, R. 89 NR 11/2013 9.

[7] T. R. Patil, V. P. Baligar and R. P. Huilgol, "Low PSNR High

Fidelity Image Compression Using Surrounding Pixels," 2018
International Conference on Circuits and Systems in Digital

Enterprise Technology (ICCSDET), Kottayam, India, 2018, pp. 1-

6, doi: 10.1109/ICCSDET.2018.8821082.

[8] Fabian Mentzer, Eirikur Agustsson⇤ Michael Tschannen Radu

Timofte Luc Van Goo Conditional Probability Models for Deep

Image Compression

https://openaccess.thecvf.com/content_cvpr_2018/papers/Mentzer.
[9] V.P.Baligar L.M.Patnaik, G.R.Nagabhushan,” High compression

and low order linear predictor for lossless coding of grayscale

images” www.elsevier.com,Image& vision computing21(2003)
543-550 5.

[10] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low

complexity, context-based, lossless image compression algorithm,”
in Proc. 1996 Data Compression Conference, Snowbird, UT, Mar.

1996, pp. 140–149 6.

[11] A. M. Raid, W. M. Khedr, M. A. El-dosuky and Wesam Ahmed,
“Jpeg image compression using discrete cosine transform - A

survey”, International Journal of Computer Science & Engineering

Survey (IJCSES) Vol.5, No.2, April 2014 7.

[12] Tanuja R.Patil ,Vishwanath P.Baligar, “A pixel count approach for

lossy image compression” In book: ICT Analysis and Applications
(pp.369-377) DOI:10.1007/978-981-15-8354-4_37.

[13] Tanuja R.Patil ,Vishwanath P.Baligar, “Byte shrinking approach

for lossy image compression” ICTCS 2020,First online 6-7-

21,DOI: 10.1007/978-981-16-0882-7_13

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070229
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

420

www.ijert.org
www.ijert.org
www.ijert.org

