

Security System for DNS using Cryptography
Sachin Kumar Sinha, Avinash Kant Singh, Amaresh Sharma

B.TECH(IT), ITM Gida Gorakhpur, GBTU

Abstract

The mapping or binding of IP addresses to host names

became a major problem in the rapidly growing

Internet and the higher level binding effort went

through different stages of development up to the

currently used Domain Name System (DNS).The DNS

Security is designed to provide security by combining

the concept of both the Digital Signature and

Asymmetric key (Public key) Cryptography. Here the

Public key is send instead of Private key. The DNS

security uses Message Digest Algorithm to compress

the Message(text file) and PRNG(Pseudo Random

Number Generator) Algorithm for generating Public

and Private key. The message combines with the

Private key to form a Signature using DSA Algorithm,

which is send along with the Public key.The receiver

uses the Public key and DSA Algorithm to form a

Signature. If this Signature matches with the Signature

of the message received, the message is Decrypted and

read else discarded.

Keywords—name resolution, name server, DNS

security, public key infrastructure, PRNG(Pseudo

random number generator).

1. Introduction
The Domain Name System (DNS) can be considered

one of the most important components of the modern

Internet. DNS provides a means to map IP addresses

(random, hard-to-remember numbers) to names (easier

to remember and disseminate). Without DNS, we

would have to remember that www.amazon.com is

actually the IP address 72.21.207.65, and that would be

hard to change. DNS isreally the most successful,

largest distributed database.

In recent years, however, a number of DNS exploits

have been uncovered. These exploits affect the system

in such a way that an end user cannot be certain the

mappings he is presented with are in fact legitimate.

The DNS Security (DNSSEC) standard has been

written in an attempt to mitigate some of the known

security issues in the current DNS design used today.

Finally, we will analyse the impacts of DNSSEC on

embedded platforms and mobile networks.

SCOPE OF THE PROJECT
The Domain Name System(DNS) has become a critical

operational part of the Internet Infrastructure, yet it has

no strong security mechanisms to assure Data Integrity

or Authentication. Extensions to the DNS are described

that provide these services to security aware resolves

are applications through the use of Cryptographic

Digital Signatures. These Digital Signatures are

included zones as resource records.

The extensions also provide for the storage of

Authenticated Public keys in the DNS. This storage of

keys can support general Public key distribution

services as well as DNS security. These stored keys

enables security aware resolvers to learn the

authenticating key of zones, in addition to those for

which they are initially configured. Keys associated

with DNS names can be retrieved to support other

protocols. In addition, the security extensions provide

for the Authentication of DNS protocol transactions.

The DNS Security is designed to provide security by

combining the concept of both the Digital Signature

and Asymmetric key (Public key) Cryptography. Here

the Public key is send instead of Private key. The DNS

security uses Message Digest Algorithm to compress

the Message(text file) and PRNG(Pseudo Random

Number Generator) Algorithm for generating Public

and Private key. The message combines with the

Private key to form a Signature using DSA Algorithm,

which is send along with the Public key.

The receiver uses the Public key and DSA Algorithm to

form a Signature. If this Signature matches with the

Signature of the message received, the message is

Decrypted and read else discarded.

Authenticity is based on the identity of some entity.

This entity has to prove that it is genuine. In many

Network applications the identity of participating

entities is simply determined by their names or

addresses. High level applications use mainly

names for authentication purposes, because address

lists are much harder to create, understand, and

maintain than name lists.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

Assuming an entity wants to spoof the identity of some

other entity, it is enough to change the mapping

between its low level address and its high level name. It

means that an attacker can fake the name of someone

by modifying the association of his address from his

own name to the name he wants to impersonate. Once

an attacker has done that, an authenticator can no

longer distinguish between the true and fake entity.

2. LITERATURE SURVEY

The DNS was designed as a replacement for the older

"host table"system. Both were intended to provide

names for network resources ata more abstract level

than network (IP) addresses (see, e.g.,[RFC625],

[RFC811], [RFC819], [RFC830], [RFC882]). In recent

years,the DNS has become a database of convenience

for the Internet, withmany proposals to add new

features. Only some of these proposalshave been

successful. Often the main (or only) motivation for

usingthe DNS is because it exists and is widely

deployed, not because itsexisting structure, facilities,

and content are appropriate for the particular

application of data involved. This document reviews

thehistory of the DNS, including examination of some

of those newerapplications. It then argues that the

overloading process is ofteninappropriate. Instead, it

suggests that the DNS should besupplemented by

systems better matched to the intended applicationsand

outlines a framework and rationale for one such system.

To connect to a system that supports IP, the host

initiating the connection must know in advance the IP

address of the remote system. An IP address is a 32-bit

number that represents the location of the system on a

network. The 32-bit address is separated into four

octets and each octet is typically represented by a

decimal number. The four decimal numbers are

separated from each other by a dot character ("."). Even

though four decimal numbers may be easier to

remember than thirty-two 1‟s and 0‟s, as with phone

numbers, there is a practical limit as to how many IP

addresses a person can remember without the need for

some sort of directory assistance. The directory

essentially assigns host names to IP addresses.

The Stanford Research Institute‟s Network Information

Center (SRI-NIC) became the responsible authority for

maintaining unique host names for the Internet. The

SRI-NIC maintained a single file, called hosts.txt, and

sites would continuously update SRI-NIC with their

host name to IP address mappings to add to, delete

from, or change in the file. The problem was that as the

Internet grew rapidly, so did the file causing it to

become increasingly difficult to manage. Moreover, the

host names needed to be unique throughout the

worldwide Internet. With the growing size of the

Internet it became more and more impractical to

guarantee the uniqueness of a host name. The need for

such things as a hierarchical naming structure and

distributed management of host names paved the way

for the creation of a new networking protocol that was

flexible enough for use on a global scale [ALIU].

What evolved from this is an Internet distributed

database that maps the names of computer systems to

their respective numerical IP network address(es). This

Internet lookup facility is the DNS. Important to the

concept of the distributed database is delegation of

authority. No longer is one single organization

responsible for host name to IP address mappings, but

rather those sites that are responsible for maintaining

host names for their organization(s) can now regain that

control.

1.1 Fundamentals of DNSThe DNS not only supports

host name to network address resolution, known as

forward resolution, but it also supports network address

to host name resolution, known as inverse resolution.

Due to its ability to map human memorable system

names into computer network numerical addresses, its

distributed nature, and its robustness, the DNS has

evolved into a critical component of the Internet.

Without it, the only way to reach other computers on

the Internet is to use the numerical network address.

Using IP addresses to connect to remote computer

systems is not a very user-friendly representation of a

system‟s location on the Internet and thus the DNS is

heavily relied upon to retrieve an IP address by just

referencing a computer system's Fully Qualified

Domain Name (FQDN). A FQDN is basically a DNS

host name and it represents where to resolve this host

name within the DNS hierarchy.

3. PROBLEM FORMULATION

 1.ThreatstotheDomainNameSystemThe

Original DNS specifications did not include security

based on the fact that the information that it contains,

namely host names and IP addresses, is used as a

means of communicating data [SPAF]. As more and

more IP based applications developed, the trend for

using IP addresses and host names as a basis for

allowing or disallowing access (i.e., system based

authentication) grew. Unix saw the advent of Berkeley

"r" commands (e.g., rlogin, rsh, etc.) and their

dependencies on host names for authentication. Then

many other protocols evolved with similar

dependencies, such as Network File System (NFS), X

windows, Hypertext Transfer Protocol (HTTP), et al.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Another contributing factor to the vulnerabilities in the

DNS is that the DNS is designed to be a public

database in which the concept of restricting access to

information within the DNS name space is purposely

not part of the protocol. Later versions of the BIND

implementation allow access controls for such things as

zone transfers, but all in all, the concept of restricting

who can query the DNS for RRs is considered outside

the scope of the protocol.

The existence and widespread use of such protocols as

the r-commands put demands on the accuracy of

information contained in the DNS. False information

within the DNS can lead to unexpected and potentially

dangerous exposures. The majority of the weaknesses

within the DNS fall into one of the following

categories: Cache poisoning, client flooding, dynamic

update vulnerability, information leakage, and

compromise of the DNS server‟s authoritative database.

1.1. Cache Poisoning

Whenever a DNS server does not have the answer to a

query within its cache, the DNS server can pass the

query onto another DNS server on behalf of the client.

If the server passes the query onto another DNS server

that has incorrect information, whether placed there

intentionally or unintentionally, then cache poising can

occur [CA97]. Malicious cache poisoning is commonly

referred to as DNS spoofing [MENM].

1.1.1. Cache Poisoning Methods

Earlier versions of the BIND implementation of the

DNS were highly susceptible to cache poisoning. As a

means to give a helpful hint, a DNS server responding

to a query, but not necessarily with an answer, filled in

the additional records section of the DNS response

message with information that did not necessarily relate

to the answer. A DNS server accepting this response

did not perform any necessary checks to assure that the

additional information was correct or even related in

some way to the answer (i.e., that the responding server

had appropriate authority over those records). The

naïve DNS server accepts this information and adds to

the cache corruption problem. Another problem with

earlier versions of BIND is that there wasn‟t a

mechanism in place to assure that the answer received

was related to the original question. The DNS server

receiving the response cache‟s the answer, again

contributing to the cache corruption problem. Note that

although it is well documented that the BIND

implementation has experienced such issues, other

implementations may have had, and still may have

similar problems.

For example, suppose there is a name server, known as

ourdns.example.com, servicing a network of computers

(see Figure 5). These computers are in essence DNS

clients. An application on a client system, host1, makes

a DNS query that is sent to ourdns.example.com. Then

ourdns.example.com examines its cache to see if it

already has the answer to the query. For purposes of the

example, ourdns.example.com is not authoritative for

the DNS name in the query nor does it have the answer

to the query already in its cache. It must send the query

to another server, called brokendns.example.org. The

information on brokendns.example.org happens to be

incorrect, most commonly due to misconfiguration, and

the response sent back to ourdns.example.com contains

misleading information. Since ourdns.example.com is

caching responses, it caches this misleading

information and sends the response back to host1. As

long as this information exists in the cache of

ourdns.example.com, all clients, not just host1, are now

susceptible to receiving this bogus information.

Figure 5. DNS Cache Poisoning

 1.1.2. Rogue servers

Rogue DNS servers pose a threat to the Internet

community because the information these servers

contain may not be trustworthy [SPAF]. They facilitate

attack techniques such as host name spoofing and DNS

spoofing. Host name spoofing is a specific technique

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

used with PTR records. It differs slightly from most

DNS spoofing techniques in that all the transactions

that transpire are legitimate according to the DNS

protocol while this is not necessarily the case for other

types of DNS spoofing. With host name spoofing, the

DNS server legitimately attempts to resolve a PTR

query using a legitimate DNS server for the zone

belonging to that PTR. It‟s the PTR record in the

zone‟s data file on the primary server that is purposely

configured to point somewhere else, typically a trusted

host for another site [STEV]. Host name spoofing can

have a TTL of 0 resulting in no caching of the

misleading information, even though the host name is

being spoofed. A more detailed example follows later

that demonstrates the threats such servers pose to the

Internet community.

1.1.3. Cache Poisoning Attacks

An attacker can take advantage of the cache poisoning

weakness by using his/her rogue name server and

intentionally formulating misleading information. This

bogus information is sent as either the answer or as just

a helpful hint and gets cached by the unsuspecting DNS

server. One way to coerce a susceptible server into

obtaining the false information is for the attacker to

send a query to a remote DNS server requesting

information pertaining to a DNS zone for which the

attacker‟s DNS server is authoritative. Having cached

this information, the remote DNS server is likely to

misdirect legitimate clients it serves [ACME].With

earlier versions of the BIND implementation, an

attacker can inject bogus information into a DNS cache

without the need to worry over whether or not a query

was generated to invoke such a response. This

willingness to accept and cache any response message

allows an attacker to manipulate such things as host

name to IP address mappings, NS record mappings, et

al. A February 1999 survey revealed that approximately

33% of DNS servers on the Internet are still susceptible

to cache poisoning [MENM].This is the methodology

used by Eugene Kashpureff. Kashpureff injected bogus

information into DNS caches around the world

concerning DNS information pertaining to Network

Solutions Inc.‟s (NSI) Internet‟s Network Information

Center (InterNIC). The information redirected

legitimate clients wishing to communicate with the web

server at the InterNIC to Kashpureff‟s AlterNIC web

server. Kashpureff did this as a political stunt

protesting the Internic‟s control over DNS domains.

When the attack occurred in July of 1997, many DNS

servers were injected with this false information and

traffic for the Internic went to AlterNIC where

Kashpureff‟s web page was filled with the propaganda

surrounding his motives and objections to InterNIC‟s

control over the DNS [RAFT].

1.1.4. Attack Objectives

An attacker makes use of cache poisoning for one of

two reasons. One is a denial of service (DoS) and the

other is masquerading as a trusted entity.

1.1.4.1. Denial of Service

DoS is accomplished in several ways. One takes

advantage of negative responses (i.e., responses that

indicate the DNS name in the query cannot be

resolved). By sending back the negative response for a

DNS name that could otherwise be resolved, results in

a DoS for the client wishing to communicate in some

manner with the DNS name in the query. The other

way DoS is accomplished is for the rogue server to

send a response that redirects the client to a different

system that does not contain the service the client

desires.Another DoS associated with cache poisoning

involves inserting a CNAME record into a cache that

refers to itself as the canonical name.

1.1.4.2. Masquerading
The second and potentially more damaging reason to

poison DNS caches is to redirect communications to

masquerade as a trusted entity. If this is accomplished,

an attacker can intercept, analyze, and/or intentionally

corrupt the communications [CA97]. The misdirection

of traffic between two communicating systems

facilitates attacks such as industrial espionage and can

be carried out virtually undetected [MENM]. An

attacker can give the injected cache a short time to live

making it appear and disappear quickly enough to

avoid detection.Masquerading attacks are possible

simply due to the fact that quite a number of IP based

applications use host names and/or IP addresses as a

mechanism of providing host-based authentication

METHODOLOGY

PROPOSED SYSTEM

Taking the above prevailing system into consideration

the best solution is using Pseudo Random Number

Generator for generating KeyPair in a quick and more

secured manner. We use MD5 (or) SHA-1 for

producing MessageDigest and Compressing the

message. Signature is created using Private Key and

MessageDigest which is transmitted along with the

Public Key. The transfer of the packets from each

System to System is shown using Graphical User

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Interface (GUI). Each time the System get the message,

it verifies the IPAddress of the sender and if no match

is found it discards it. For verification, the Destination

System generates Signature using PublicKey and DSA

Algorithm and verifies it with received one. If it

matches it Decrypts otherwise it discards.

The Following functions avoids the pitfalls of the

existing system.

 Fast and efficient work

 Ease of access to system

 Manual effort is reduced

4. WORK DONE
Vulnerabilities in the DNS have frequently been

exploited for attacks on the Internet. One of the most

common ways of “defacing” a web server is to redirect

its domain name to the address of a host controlled by

the attacker through manipulation of the DNS.

DNSSEC [9] eliminates some of these problems by

providing end-to-end authenticity and data integrity

through transaction signatures and zone signing.

Transaction signatures are computed by clients and

servers over requests and responses. DNSSEC allows

the two parties either to use a message authentication

code (MAC) with a shared secret key or public-key

signatures for authenticating and authorizing DNS

messages between them. The usefulness of transaction

signatures is limited since they guarantee integrity only

if a client engages in a transaction with the server who

is authoritative for the returned data, but do not protect

against a corrupted server acting as a resolver. For zone

signing, a public-key for a digital signature scheme,

called a zone key, is associated with every zone. Every

resource record (it is the basic data unit in the DNS

database) is complemented with an additional SIG

resource record containing a digital signature,

computed over the resource record.1 Zone signing also

protects relayed data because the signature is created by

the entity who owns the zone.

Key Generation

Careful generation of all keys is a sometimes

overlooked but absolutely essential element in any

cryptographically secure system. The strongest

algorithms used with the longest keys are still of no use

if an adversary can guess enough to lower the size of

the likely key space so that it can be exhaustively

searched. Technical suggestions for the generation of

random keys will be found in RFC 4086 [14]. One

should carefully assess if the random number generator

used during key generation adheres to these

suggestions.

Keys with a long effectively period are particularly

sensitive as they will represent a more valuable target

and be subject to attack for a longer time than short-

period keys. It is strongly recommended that long-term

key generation occur off-line in a manner isolated from

the network via an air gap or, at a minimum, high-level

secure hardware.

Encryption and Decryption

Signature Creation

Signature Verification

5. Conclusion

The DNS as an Internet standard to solve the

issues of scalability surrounding the hosts.txt file.

Since then, the widespread use of the DNS and its

ability to resolve host names into IP addresses for

both users and applications alike in a timely and

fairly reliable manner, makes it a critical

component of the Internet. The distributed

management of the DNS and support for

redundancy of DNS zones across multiple servers

promotes its robust characteristics. However, the

original DNS protocol specifications did not

include security. Without security, the DNS is

vulnerable to attacks stemming from cache

poisoning techniques, client flooding, dynamic

update vulnerabilities, information leakage, and

compromise of a DNS server‟s authoritative files.

 In order to add security to the DNS to address

these threats, the IETF added security

extensions to the DNS, collectively known as

DNSSEC. DNSSEC provides authentication

and integrity to the DNS. With the exception of

information leakage, these extensions address

the majority of problems that make such attacks

possible. Cache poisoning and client flooding

attacks are mitigated with the addition of data

origin authentication for RRSets as signatures

are computed on the RRSets to provide proof

of authenticity. Dynamic update vulnerabilities

are mitigated with the addition of transaction

and request authentication, providing the

necessary assurance to DNS servers that the

update is authentic. Even the threat from

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

compromise of the DNS server‟s authoritative

files is almost eliminated as the SIG RR are

created using a zone‟s private key that is kept

off-line as to assure key‟s integrity which in

turn protects the zone file from tampering.

Keeping a copy of the zone‟s master file off-

line when the SIGs are generated takes that

assurance one step further.

 DNSSEC can not provide protection against

threats from information leakage. This is more

of an issue of controlling access, which is

beyond the scope of coverage for DNSSEC.

Adequate protection against information

leakage is already provided through such things

as split DNS configuration.

 DNSSEC demonstrates some promising

capability to protect the Internet infrastructure

from DNS based attacks. DNSSEC has some

fairly complicated issues surrounding its

development, configuration, and management.

Although the discussion of these issues is

beyond the scope of this survey, they are

documented in RFC 2535 and RFC 2541 and

give some interesting insight into the inner

design and functions of DNSSEC. In addition

to keep the scope of this paper down, many

topics such as secure zone transfer have been

omitted but are part of the specifications in

RFC 2535. The first official release of a

DNSSEC implementation is available in BIND

version 8.1.2.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

6. References

1. Albitz, P. and Liu, C., (1997) „DNS and Bind‟,

2
nd

 Ed., Sebastopol, CA, O‟Reilly &Associates,

pp.1-9.

2.HerbertSchildt, Edition (2003) „The Complete

Reference JAVA 2‟ Tata McGraw Hill

Publications

3. IETF DNSSEC WG, (1994) „DNS Security

(dnssec) Charter‟, IETF.

4. Michael Foley and Mark McCulley,

Edition(2002) ‘JFC Unleashed‟

Prentice-Hall India.

5. Mockapetris, P., (1987) „Domain Names -

Concepts and Facilities‟.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

