
SecureIT- Android Security App

Anushka Yadav Shriya Wade Mihir Kanade

IT dept. SFIT IT dept. SFIT IT dept. SFIT

SFIT SFIT SFIT

Mumbai, India Mumbai, India Mumbai, India

Giselle Coutinho
IT dept. SFIT

Mumbai, India

Dr. Minal Lopes
IT dept. SFIT

Mumbai, India

Abstract—Various anti-malware operating system suffers from

serious flaws across the Android device. Due to the limitations of

these devices, you will not be able to access or monitor the dynamic

behaviour of your Android device’s file system or installed apps.

This includes downloading harmful application after installation.

In this proposed methodology, the Android Security App will

consist of 3 different features: 1. Internal Scans, 2. Detect Malware,

3. Boosting the RAM. In internal scan the user will get to know if

any pre-installed apps are malicious or not. The pre-installed app

will get scanned automatically. This feature is used for direct

blocking the malicious apps. The next feature is detection of

malware. Detect malware is based on signature detection. It will

detect the app’s signature and signatures stored in database. If the

signatures match with each other, then the app will be detected as

malicious. The Android Security App will have an option through

which it can clear the cache data of all the applications existing on

the Android device. This clearing of cache data will thus result in

boosting the RAM of the device.

Index Terms—Android, Security, Signatures, Cache data,

Malware, RAM.

I. INTRODUCTION

Cyber-security is used as shield to Internet-connected

systems from digital threats, including equipment, operating

system, and information. It is composed of two terms, ’cyber’

and security’. Cyber refers to mechanization of systems,

networks, and strategy or data. Security, on the other hand, is

concerned with protection, which encompasses system security,

network security, and application and information security. It is

a collection of technologies, methods, and practises meant to

safeguard networks, devices, programmes, and data against

assault, theft, damage, alteration, or illegal access. Android is

one of the leading operating systems today and yet the concerns

of its security keep increasing along with the newly introduced

viruses and techniques that could be used for causing harm to

the system and its use The existing antiviruses work on pre-

stored digital signatures of the viruses. Thus, when new viruses

are introduced, the anti-viruses cannot detect them easily and

then these viruses pose a great threat to the android device and

its use: Operating system flaws produce vulnerabilities that can

be exploited. Patches are used by vendors to try to remedy these

issues. Malware for mobile devices has been steadily

increasing. The emphasis is on destroying files and causing

havoc. The amount of identity thefts through various malware

embedded into various applications or software is increasing

day by day, thus, causing harm to the user. There is a need for

a software or application that can detect such viruses and notify

the user about the threat in the app/software that can harm the

user or the android device. As newer viruses arise day by day,

there is also an increasing need for safety for the device as some

anti-viruses might not be able to cope up with the increasing

threat. [1]

II. LITERATURE REVIEW

In paper [1], the Android working framework uses a consent-

based model. This allows Android applications to access

customer data, framework data, gadget data, and external assets

from your smartphone. The designer must announce the consent

of the Android application. Customers need to confirm these

approvals in order to effectively deploy Android applications.

These approvals are confirmation. During setup, the application

can access assets and data at any time, assuming that the

permissions have been approved by the customer. There is no

need to regain consent. Android operating systems are at the

mercy of various security attacks due to security flaws. In this

white paper, you can share information such as two-factor

authentication due to improper and improper use of app

authentication using spyware, information theft in Android

apps, security vulnerabilities or attacks on Android, Android

investigation, etc. Report on abuse of app consent using

Android ID. From a security perspective, iOS and Windows

working frameworks.

In paper [2,] the increasing usage of Android applications

(apps) has put beginner users at risk of unwanted access to

private data. Due to platform constraints, even antivirus

software cannot access or monitor an Android device’s file

system or the dynamic behaviour of installed apps. This has

serious implications for device security because any app may

still download and execute dangerous files without being

identified by the user. We propose and construct a Runtime

detection and prevention system in this study. The suggested

solution would provide a second layer of protection by locking

apps that attempt to access device resources without the user’s

knowledge. Our testing results reveal that this new System is

capable of overcoming all of the attacks by the apps to gather

sensitive information, with small impacts on the utility of

legitimate apps and the performance of the OS.

In paper [3], they report the main precise review on the Android

refreshing component, zeroing in on its Package Management

Service (PMS). They exploration uncovered another sort of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050037
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

72

www.ijert.org
www.ijert.org
www.ijert.org

safety basic weaknesses, hit Pile Up blemishes, through which

a malevolent application can decisively pronounce a bunch of

honours and properties on a low-variant working framework

(OS) and delay until it is moved up to heighten its honours on

the new framework. In particular, they observed that by taking

advantage of the Pileup weaknesses, the application cannot just

obtain a bunch of recently added framework and mark

authorizations yet additionally decide their settings (e.g.,

insurance levels), and it can additionally fill in for new

framework applications, debase their information (e.g., cache,

treats of Android default program) to take delicate client data

or change security designs, and forestall establishment of basic

framework administrations. Their examination additionally

distinguished many adventures open doors the enemy can use

more than huge number of gadgets across various gadget

producers, transporters and nations. To relieve this danger

without imperilling client information and applications during

an overhaul, we additionally fostered another discovery

administration, called SecUP, which sends a scanner on the

client’s gadget to catch the noxious applications intended to

take advantage of Pileup weaknesses, in light of the weakness

related data consequently gathered from recently delivered

Android OS pictures.

In paper [4], Hackers employ malware to get access to target

systems, according to paper [4]. Malicious payloads are often

created with tools like Metasploit. In order to identify these

malicious payloads and safeguard the victim PCs, the target

computers use anti-virus programmes. As a result, hackers

developed anti-virus evasion technologies to avoid detection by

these antivirus programmes. How successful are these antivirus

evasion methods, though? This study compares the

effectiveness of many anti-virus evasion technologies,

including Avet, Veil 3.0, The Fat Rat, PeCloak.py, Phantom-

Evasion, Shellter, Unicorn, and Hercules, against the finest

anti-virus solutions available on Windows and Android

platforms.

In paper [5], the authors presented a straightforward yet

effective malware detection algorithm that uses a subset of

Android APIs as classification features. Then, for a specific

suspicious app, we compute the total of inverse values of the

rankings of the benign APIs utilised, as well as the sum of

inverse values of the rankings of the malicious APIs used. The

benign API list covers the most often used APIs by benign apps,

whereas the harmful API list comprises the most frequently

invoked APIs by malicious apps. More specifically, we find

that a given app is benign if the total of inverse values based on

benign applications is greater than the sum of inverse values

based on hazardous apps. According to the experimental

results, the suggested approach obtains an accuracy of 87.35

percent 89.93 percent for malware detection in android.

In paper [6], Android malware is becoming increasingly

frequent these days, owing to the fact that applications are not

generated by reliable sources. People enter personal

information, save cards, and do other things in the hopes that

these applications would keep them fit or remind them of

important tasks that we often overlook in our hectic lives. In

such circumstances, identifying malware before installing a

programme would be quite beneficial. It may even deter a few

criminals. We propose in this research to employ a fully linked

deep learning model to identify Android malware. The

proposed work’s key characteristics are detection of

Android malware before installation, the identity of the Android

malware, and version packages with demonstrated

exceptionally high accuracy of about 94.65 percent. This model

also learns all features from all feature combinations. It entails

substantial investigation and testing in order to reach extremely

high precision.

In paper [7], The authors aim to investigate the performance of

many machine-learning algorithms, including Naive Bayes,

J48, Random Forest, Multi-class classifier, and multi-layer

perception. For regular apps, Google Play store app data from

2015 and 2016 is used, and for evaluation typical data sets of

malwares are used. To show the accuracy of classification,

multi-class classifiers were shown to surpass the other

techniques. In terms of model development time, the Naive

Bayes classifier outperformed.

In paper [8], to deal with the significant growth in the amount

of Android malware, the authors have developed SIGPID,

which is a malware detection system based on permission usage

analysis. Instead of obtaining and analysing all Android

permissions, we provide three stages of pruning by mining

permission data to determine the most significant permissions

that may be used to discriminate between benign and malicious

apps. SIGPID then use machine-learning-based classification

approaches to identify various malware and benign app

families. According to our analysis, just 22 permissions are

important. The performance of the technique used by authors,

which uses just 22 permissions, is then compared to an

approach that examines all permissions known as baseline

approach.

III. METHODOLOGY

A. Architectural Design

Fig. 1. Architectural design. Figure 1 shows the architectural design of the
Secure-it application. The features of Android Security App are as follows:

• Internal Scan: After the user logs in into his/her personal

account, user can perform internal scans. The pre-installed

app will get scanned automatically. This feature is used for

direct blocking the malicious apps. The list of installed

apps will be scanned and if the app is malicious, it will be

listed in blacklist. If the app is not malicious it will be

notes as “Not in blacklist”. Separate list of blacklisted apps

will be shown to user in ‘view blacklist’ feature.

• Detect Malware: Detect malware is based on signature

detection. It will detect the app’s signature and signatures

stored in database. If the signatures match with each other,

then the app will be detected as malicious and user will get

to know about it. If the signature does not match with any

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050037
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

73

www.ijert.org
www.ijert.org
www.ijert.org

signatures stored in database, then the app is not malicious

and is safe for user to use.

• Boosting the RAM: After the user logs in into his/her

personal account, the user can use the Boost RAM feature.

The user needs to click on the BOOST RAM button to start

the process. Once the button is clicked, the Security App

will clear the cache data of all the apps present in the

android device.

B. Methodology

For the scanning of apps signature-based detection method is

used. This method can be divided into two steps, signature

detection and the hashing.

The steps are explained below:

1. Signature Based Detection: Examining based on signatures

entails comparing a collection of signatures to a given file. In

general, it is a challenge for pattern matching on several levels.

The collection of N signatures is given,

S = {Si} of lengths L = {Li}, 1< i < N, an input sequence of

bytes F = (f1f2 ...fm), 0 < fi < 255, 1 < i < m. Now we must

determine if position x exists such that:

0 <= x <= (m − Lq + 1),

where m is the file size of the input file and Lq is the shortest

signature’s length in S and x denotes the beginning of a sub-

sequence in F that exactly matches at least one signature in S.

The basic approach in relation to problem of pattern matching

on several levels entails comparing each pattern to the one

before it. A file of length m must be checked against N

signatures, each of length n bytes, the worst-case running time

is O (N ∗ m ∗ n) which may be very inefficient. The KMP

(Knuth-Morris-Pratt) method [10,11], which is based on

dynamic programming, produces higher results for single

pattern matching [9]. The Boyer-Moore method [12] is the most

well-known approach for developing a single pattern matching

solution.

Several strategies have been put forward to improve and widen

the Boyer-Moore algorithm for pattern matching on several

levels [13,14]. The Boyer-Moore algorithm-based methods

maintain extra tables during the pre-processing step on the

pattern set. This requires large memory other than the storage

space which is consumed by patterns themselves. This is one of

the weaknesses of Boyer-Moore algorithm. Similar to Boyer-

Moore, another method that needs the memory storage of entire

signatures in structure form during matching is the Aho-

Corasick method. This method is based on finite automata.

Hence, it may require more memory space on android device if

the signatures to be matched are more and large. Another

algorithm is Rabin-karp which currently uses hash approach for

pattern matching at single level which can be improved to

pattern matching at several levels with a little effort. Even

though the worst time complexity of this algorithm is similar to

that of the naive pattern matching algorithm, it gives much

better results.

All the above-mentioned algorithm are useful for scanning

purpose and may be used to solve any string-matching problem.

Since, the solution which we are providing is focusing only on

detection based on signature matching for android device, we

make advantage of the finding that particular bytes are less

likely than others to appear in non-malicious Android

applications. By doing so, we can limit the number of signature

comparisons.

As shown in Fig 2, the signatures of viruses are stored in

database. The signature of app is extracted. If the signatures

match with each other than the app is malicious, else it is safe

to use the app.

2. The hash table: The most basic method for comparing a

given file in opposition to N signatures is to compare each

subsequence in the input file one by one. The above-mentioned

method is extremely ineffective in terms of computation.

Creating the hash table is a well-known technique for speeding

up pattern matching. That being the case, the hash table contains

each and every signature at a different index. The signature is

used to calculate this index value. The index of any input sub-

sequence that links to a hash table item is calculated. If each

entry of the hash table has precisely one signature,

Fig. 2. Signature Based Detection

Fig 2 explains the working of signature-based detection

method.

we know we only need to check each input succession in

opposition to one signature instead of all N signatures. Amongst

the most important aspects of creating the hash table is having

an effectual/easy function, where the sequence is given and it

calculates the hash table index for the sequence. The index for

signatures only needs to be computed once, during the hash

table construction. The index, on the other hand, must be

computed for each succession in the given file. As a result, it is

critical that the index be computed efficiently. In this scenario,

we utilise a basic approach called a filter-hash to generate a

hash value for a sequence of bytes, and then use that value to

retrieve the index in the hash table.

For any byte sequence F = (f1f2...fm), 0 <= fi <= 255, 1 <= i

<= m, a continuous succession of L bytes beginning at position

j is used to calculate a filter-hash value as [16]:

 H (F, j, L′) = ∑ (𝑖 ∗ 𝑓𝑖 + 𝑗 − 1𝐿′
𝑖=1) (1)

Eq. (1) is used to generate the index for sequence F from the

filter-hash value as follows:

 H (H (F, j, L′)) = mod (H (F, j, L′), Q), (2)

Where Q denotes the hash table’s dimensions. The filter hash

cost has the important property of being able to be computed

recursively for successive sub-sequences of a very uncommon

place length for an entry file. The evidence supporting this is as

follows: To begin with,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050037
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

74

www.ijert.org
www.ijert.org
www.ijert.org

H (F, 1, L′) = ∑ (𝑖 ∗ 𝑓𝑖 𝐿′
𝑖=1)

and the total of the first L consecutive bytes be,

(3)

Hs (F, 1, L′) = ∑ (𝑓𝑖𝐿′
𝑖=1) (4)

It is clear that:

H (F, j+1, L′) − H (F, j, L′) =

 ∑ (𝑖 ∗ 𝑓𝑖 + 𝑗 𝐿′
𝑖=1) - ∑ (𝑖 ∗ 𝑓𝑖 + 𝑗 − 1𝐿′

𝑖=1)

 (5)

Simplifying equation (5) we have,

H (F, j+1, L′) = H (F, j, L′) + L′∗ fL′+ j−Hs (F, j, L′) (6)

 Hs (F, j, L′) = Hs (F, j, L′) − fj + fj + L′ (7)

As a result, using equations (6) and (7), we can read the filter

hash values and, eventually, the hash desk index of successive

sub-sequences of length L in the given file. The size of the hash

desk, Q, is an important parameter in a hash desk. The length

of the hash table should be adequate such that each signature

may fill a single space on the table. This length is chosen to be

more than the total number of signatures, N. As a result, there

are Q spaces in the hash table, of which N are occupied with

signatures and Q − N are vacant. Having a bigger wide variety

of empty slots impacts computational time when you consider

that this will suggest that no signature matching is needed

whilst a sub-sequence hash indexes an empty slot. On the

alternative hand a completely massive hash desk also can boom

computational time when you consider that we might require

greater time for reminiscence get entry to within the desk.

Hence, we run experiments with one-of a-kind hash desk sizes

as a way to discover the scale which minimizes computational

time.

IV. RESULTS

A. UI design

Fig. 3. Main page

Fig 3 represents the main page of the app its developed using

Android Studio Version 2020.1.3. It will serve as the user

interface for the developed application. Once the user opens the

app he/she will be directed to this main page. On the main page

the user has to authenticate herself/himself this will be done on

the login page as shown in Fig 4.

Fig. 4. Login page

Assuming the user has registered or already has an account

he/she can go to the login page as shown in Fig 4. On this page,

the user will be asked for the ID and Password. He/she will be

redirected to the sign-up page in-case he/she doesn’t have an

account yet.

Fig. 5. Registration page

Once the user clicks on the sign-up option, the user will be

redirected to this sign-up page as shown in Fig 5. Here the user

will have to fill some details to setup an account.

Fig. 6. Home page

Fig 6 represents the home page. After the user is successfully

logged in, the user will be redirected to the home page. Here,

the user will be provided with multiple different options.

Fig. 7. Internal Scan

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050037
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

75

www.ijert.org
www.ijert.org
www.ijert.org

In Fig 7 the user will get the list of apps which are pre-installed

in android mobile and are not malicious.

Fig. 8. Blacklisted Apps

In Fig 8 the apps which are malicious will be listed.

Fig. 9. Malware Detection

In the Fig 9 the apps will be scanned using the signatures and

will inform user about the malicious apps.

Fig. 10. Ram Utilized

Fig 10 shows when the user clicks on ram booster option, he/she

will be redirected to this page. Here ram utilization will be

displayed. User will get two options,’ clean temporary files’

and ’kill apps’ which will clear the cache memory.

Fig. 11. Ram Booster

Once the user clicks on kill apps option the ram will be cleared.

The user will be notified through pop-up message.

CONCLUSION

Android is widely used operating system. The security of

android device is very important with respect to the user’s

privacy. The Secure-it app is created to secure the android

device. This application provides three features internal scan,

detect malware and boost ram. This app will scan the

preinstalled apps and will display user about the malicious

content. If the app is malicious, it will be listed into blacklist.

Also, the boost ram feature is provided which will clear the

cache memory, temporary files and close the running apps.

This application scans the apps which are already installed.

If new app is to be downloaded the application will not notify

the user. This application can be further improved by scanning

the newly downloaded apps. To cope up with the possibility of

newer viruses being introduced, AI and ML techniques will be

used by the app to detect such viruses. Through this approach,

antivirus software on the Android platform would reach a level

of effectiveness significantly higher and comparable to that of

desktop antivirus software.

REFERENCES
[1] Android Security Issues and Solutions(S. Karthick and S. Binu, 2017

International Conference on Innovative Mechanisms for Industry

Applications (ICIMIA), Bangalore, 2017, pp. 686-689, doi:
10.1109/ICIMIA.2017.7975551.)

[2] Dar, M. A. (2017). A novel approach to enhance the security of android

based smartphones. 2017 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS).

doi:10.1109/iciiecs.2017.8275923

[3] L. Xing, X. Pan, R. Wang, K. Yuan and X. Wang, ”Upgrading Your
Android, Elevating My Malware: Privilege Escalation through Mobile

OS Updating,” 2014 IEEE Symposium on Security and Privacy, 2014,

pp. 393-408, doi: 10.1109/SP.2014.32.
[4] Garba, F. A., Kunya, K. I., Ibrahim, S. A., Isa, A. B., Muhammad, K.

M., and Wali, N. N. (2019). Evaluating the State of the Art Antivirus

Evasion Tools on Windows and Android Platform. 2019 2nd
International Conference of the IEEE Nigeria Computer Chapter

(Nigeria Compute Conf).

doi:10.1109/nigeriacomputconf45974.2019.8949637
[5] Jung, J., Lim, K., Kim, B., Cho, S., Han, S., and Suh, K. (2019).

Detecting Malicious Android Apps using the Popularity and Relations

of APIs. 2019 IEEE Second International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE).

doi:10.1109/aike.2019.00062

[6] S. HR, ”Static Analysis of Android Malware Detection using Deep
Learning,” 2019 International Conference on Intelligent Computing and

Control Systems (ICCS), 2019, pp. 841-845, doi:

10.1109/ICCS45141.2019.9065765
[7] P. R. K. Varma, K. P. Raj and K. V. S. Raju, ”Android mobile security

by detecting and classification of malware based on permissions using

machine learning algorithms,” 2017 International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017,

pp. 294-299, doi: 10.1109/I-SMAC.2017.8058358.

[8] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an and H. Ye, ”Significant
Permission Identification for Machine-Learning-Based Android

Malware Detection,” in IEEE Transactions on Industrial Informatics,

vol. 14, no. 7, pp. 3216-3225, July 2018, doi:
10.1109/TII.2017.2789219.

[9] R.M. Karp and M.O. Rabin, Efficient randomized pattern-matching

algorithms, IBM Journal of Research and Development 31(2) (1987),

249–260.

[10] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction To

Algorithms, McGraw-Hill, 2002, 966–1057.
[11] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast Pattern Matching in Strings,

SIAM Journal on Computing 6(2) (1977), 323–350.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050037
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

76

www.ijert.org
www.ijert.org
www.ijert.org

[12] R.S. Boyer and J. Strother Moore, A fast string searching algorithm,
Communications of the ACM 20(10) (1977), 762–772.

[13] B. Commentz-Walter, A string matching algorithm fast on the average,

in: Proceedings of the 6th International Colloquium on Automata,
Languages and Programming. LNCS, vol. 71, Springer-Verlag, Berlin,

1979, 118–132.

[14] S. Wu and U. Manber, Agrep – a fast approximate pattern-matching tool,
in: Proceedings of the Usenix Winter 1992 Technical Conference, 1992,

153–162.

[15] A.V. Aho and M.J. Corasick, Efficient string matching: An aid to
bibliographic search, Communications of the ACM 18(6) (1975), 333–

340.

[16] Venugopal, Deepak Hu, Guoning. (2008). Efficient Signature Based
Malware Detection on Mobile Devices. Mobile Information Systems. 4.

33-49. 10.1155/2008/712353.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050037
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

77

www.ijert.org
www.ijert.org
www.ijert.org

