Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

Securel T- Android Security App

Anushka Yadav Shriya Wade Mihir Kanade
IT dept. SFIT IT dept. SFIT IT dept. SFIT
SFIT SFIT SFIT

Mumbai, India

Giselle Coutinho
IT dept. SFIT
Mumbai, India

Abstract—Various anti-malware operating system suffers from
serious flaws across the Android device. Due to the limitations of
these devices, you will not be able to access or monitor the dynamic
behaviour of your Android device’s file system or installed apps.
This includes downloading harmful application after installation.
In this proposed methodology, the Android Security App will
consist of 3 different features: 1. Internal Scans, 2. Detect Malware,
3. Boosting the RAM. In internal scan the user will get to know if
any pre-installed apps are malicious or not. The pre-installed app
will get scanned automatically. This feature is used for direct
blocking the malicious apps. The next feature is detection of
malware. Detect malware is based on signature detection. It will
detect the app’s signature and signatures stored in database. If the
signatures match with each other, then the app will be detected as
malicious. The Android Security App will have an option through
which it can clear the cache data of all the applications existing on
the Android device. This clearing of cache data will thus result in
boosting the RAM of the device.

Index Terms—Android, Security, Cache data,
Malware, RAM.

Signatures,

I. INTRODUCTION

Cyber-security is used as shield to Internet-connected
systems from digital threats, including equipment, operating
system, and information. It is composed of two terms, ’cyber’
and security’. Cyber refers to mechanization of systems,
networks, and strategy or data. Security, on the other hand, is
concerned with protection, which encompasses system security,
network security, and application and information security. It is
a collection of technologies, methods, and practises meant to
safeguard networks, devices, programmes, and data against
assault, theft, damage, alteration, or illegal access. Android is
one of the leading operating systems today and yet the concerns
of its security keep increasing along with the newly introduced
viruses and techniques that could be used for causing harm to
the system and its use The existing antiviruses work on pre-
stored digital signatures of the viruses. Thus, when new viruses
are introduced, the anti-viruses cannot detect them easily and
then these viruses pose a great threat to the android device and
its use: Operating system flaws produce vulnerabilities that can
be exploited. Patches are used by vendors to try to remedy these
issues. Malware for mobile devices has been steadily
increasing. The emphasis is on destroying files and causing
havoc. The amount of identity thefts through various malware
embedded into various applications or software is increasing

Mumbai, India

Mumbai, India

Dr. Minal Lopes
IT dept. SFIT
Mumbai, India

day by day, thus, causing harm to the user. There is a need for
a software or application that can detect such viruses and notify
the user about the threat in the app/software that can harm the
user or the android device. As newer viruses arise day by day,
there is also an increasing need for safety for the device as some
anti-viruses might not be able to cope up with the increasing
threat. [1]
Il. LITERATURE REVIEW

In paper [1], the Android working framework uses a consent-
based model. This allows Android applications to access
customer data, framework data, gadget data, and external assets
from your smartphone. The designer must announce the consent
of the Android application. Customers need to confirm these
approvals in order to effectively deploy Android applications.
These approvals are confirmation. During setup, the application
can access assets and data at any time, assuming that the
permissions have been approved by the customer. There is no
need to regain consent. Android operating systems are at the
mercy of various security attacks due to security flaws. In this
white paper, you can share information such as two-factor
authentication due to improper and improper use of app
authentication using spyware, information theft in Android
apps, security vulnerabilities or attacks on Android, Android
investigation, etc. Report on abuse of app consent using
Android ID. From a security perspective, iOS and Windows
working frameworks.
In paper [2,] the increasing usage of Android applications
(apps) has put beginner users at risk of unwanted access to
private data. Due to platform constraints, even antivirus
software cannot access or monitor an Android device’s file
system or the dynamic behaviour of installed apps. This has
serious implications for device security because any app may
still download and execute dangerous files without being
identified by the user. We propose and construct a Runtime
detection and prevention system in this study. The suggested
solution would provide a second layer of protection by locking
apps that attempt to access device resources without the user’s
knowledge. Our testing results reveal that this new System is
capable of overcoming all of the attacks by the apps to gather
sensitive information, with small impacts on the utility of
legitimate apps and the performance of the OS.
In paper [3], they report the main precise review on the Android
refreshing component, zeroing in on its Package Management
Service (PMS). They exploration uncovered another sort of

IJERTV111S050037

www.ijert.org

72

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

safety basic weaknesses, hit Pile Up blemishes, through which
a malevolent application can decisively pronounce a bunch of
honours and properties on a low-variant working framework
(OS) and delay until it is moved up to heighten its honours on
the new framework. In particular, they observed that by taking
advantage of the Pileup weaknesses, the application cannot just
obtain a bunch of recently added framework and mark
authorizations yet additionally decide their settings (e.g.,
insurance levels), and it can additionally fill in for new
framework applications, debase their information (e.g., cache,
treats of Android default program) to take delicate client data
or change security designs, and forestall establishment of basic
framework administrations. Their examination additionally
distinguished many adventures open doors the enemy can use
more than huge number of gadgets across various gadget
producers, transporters and nations. To relieve this danger
without imperilling client information and applications during
an overhaul, we additionally fostered another discovery
administration, called SecUP, which sends a scanner on the
client’s gadget to catch the noxious applications intended to
take advantage of Pileup weaknesses, in light of the weakness
related data consequently gathered from recently delivered
Android OS pictures.

In paper [4], Hackers employ malware to get access to target
systems, according to paper [4]. Malicious payloads are often
created with tools like Metasploit. In order to identify these
malicious payloads and safeguard the victim PCs, the target
computers use anti-virus programmes. As a result, hackers
developed anti-virus evasion technologies to avoid detection by
these antivirus programmes. How successful are these antivirus
evasion methods, though? This study compares the
effectiveness of many anti-virus evasion technologies,
including Avet, Veil 3.0, The Fat Rat, PeCloak.py, Phantom-
Evasion, Shellter, Unicorn, and Hercules, against the finest
anti-virus solutions available on Windows and Android
platforms.

In paper [5], the authors presented a straightforward yet
effective malware detection algorithm that uses a subset of
Android APIs as classification features. Then, for a specific
suspicious app, we compute the total of inverse values of the
rankings of the benign APIs utilised, as well as the sum of
inverse values of the rankings of the malicious APIs used. The
benign API list covers the most often used APIs by benign apps,
whereas the harmful API list comprises the most frequently
invoked APIs by malicious apps. More specifically, we find
that a given app is benign if the total of inverse values based on
benign applications is greater than the sum of inverse values
based on hazardous apps. According to the experimental
results, the suggested approach obtains an accuracy of 87.35
percent 89.93 percent for malware detection in android.

In paper [6], Android malware is becoming increasingly
frequent these days, owing to the fact that applications are not
generated by reliable sources. People enter personal
information, save cards, and do other things in the hopes that
these applications would keep them fit or remind them of
important tasks that we often overlook in our hectic lives. In
such circumstances, identifying malware before installing a
programme would be quite beneficial. It may even deter a few
criminals. We propose in this research to employ a fully linked

deep learning model to identify Android malware. The
proposed work’s key characteristics are detection of
Android malware before installation, the identity of the Android
malware, and version packages with demonstrated
exceptionally high accuracy of about 94.65 percent. This model
also learns all features from all feature combinations. It entails
substantial investigation and testing in order to reach extremely
high precision.
In paper [7], The authors aim to investigate the performance of
many machine-learning algorithms, including Naive Bayes,
J48, Random Forest, Multi-class classifier, and multi-layer
perception. For regular apps, Google Play store app data from
2015 and 2016 is used, and for evaluation typical data sets of
malwares are used. To show the accuracy of classification,
multi-class classifiers were shown to surpass the other
techniques. In terms of model development time, the Naive
Bayes classifier outperformed.
In paper [8], to deal with the significant growth in the amount
of Android malware, the authors have developed SIGPID,
which is a malware detection system based on permission usage
analysis. Instead of obtaining and analysing all Android
permissions, we provide three stages of pruning by mining
permission data to determine the most significant permissions
that may be used to discriminate between benign and malicious
apps. SIGPID then use machine-learning-based classification
approaches to identify various malware and benign app
families. According to our analysis, just 22 permissions are
important. The performance of the technique used by authors,
which uses just 22 permissions, is then compared to an
approach that examines all permissions known as baseline
approach.

I1. METHODOLOGY
A. Architectural Design

Android Security App

Login

Detect Malware

Internal Scan Boost RAM

Fig. 1. Architectural design. Figure 1 shows the architectural design of the
Secure-it application. The features of Android Security App are as follows:

. Internal Scan: After the user logs in into his/her personal
account, user can perform internal scans. The pre-installed
app will get scanned automatically. This feature is used for
direct blocking the malicious apps. The list of installed
apps will be scanned and if the app is malicious, it will be
listed in blacklist. If the app is not malicious it will be
notes as “Not in blacklist”. Separate list of blacklisted apps
will be shown to user in ‘view blacklist’ feature.

. Detect Malware: Detect malware is based on signature
detection. It will detect the app’s signature and signatures
stored in database. If the signatures match with each other,
then the app will be detected as malicious and user will get
to know about it. If the signature does not match with any

IJERTV111S050037

www.ijert.org

73

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

signatures stored in database, then the app is not malicious
and is safe for user to use.
. Boosting the RAM: After the user logs in into his/her
personal account, the user can use the Boost RAM feature.
The user needs to click on the BOOST RAM button to start
the process. Once the button is clicked, the Security App
will clear the cache data of all the apps present in the
android device.
B. Methodology
For the scanning of apps signature-based detection method is
used. This method can be divided into two steps, signature
detection and the hashing.
The steps are explained below:
1. Signature Based Detection: Examining based on signatures
entails comparing a collection of signatures to a given file. In
general, it is a challenge for pattern matching on several levels.
The collection of N signatures is given,
S = {Si} of lengths L = {Li}, 1< i < N, an input sequence of
bytes F = (f1f2 ...fm), 0 < fi < 255, 1 <i < m. Now we must
determine if position x exists such that:
0<=x<=(m-Lqg+1),
where m is the file size of the input file and Lq is the shortest
signature’s length in S and x denotes the beginning of a sub-
sequence in F that exactly matches at least one signature in S.
The basic approach in relation to problem of pattern matching
on several levels entails comparing each pattern to the one
before it. A file of length m must be checked against N
signatures, each of length n bytes, the worst-case running time
is O (N = m = n) which may be very inefficient. The KMP
(Knuth-Morris-Pratt) method [10,11], which is based on
dynamic programming, produces higher results for single
pattern matching [9]. The Boyer-Moore method [12] is the most
well-known approach for developing a single pattern matching
solution.
Several strategies have been put forward to improve and widen
the Boyer-Moore algorithm for pattern matching on several
levels [13,14]. The Boyer-Moore algorithm-based methods
maintain extra tables during the pre-processing step on the
pattern set. This requires large memory other than the storage
space which is consumed by patterns themselves. This is one of
the weaknesses of Boyer-Moore algorithm. Similar to Boyer-
Moore, another method that needs the memory storage of entire
signatures in structure form during matching is the Aho-
Corasick method. This method is based on finite automata.
Hence, it may require more memory space on android device if
the signatures to be matched are more and large. Another
algorithm is Rabin-karp which currently uses hash approach for
pattern matching at single level which can be improved to
pattern matching at several levels with a little effort. Even
though the worst time complexity of this algorithm is similar to
that of the naive pattern matching algorithm, it gives much
better results.
All the above-mentioned algorithm are useful for scanning
purpose and may be used to solve any string-matching problem.
Since, the solution which we are providing is focusing only on
detection based on signature matching for android device, we
make advantage of the finding that particular bytes are less
likely than others to appear in non-malicious Android
applications. By doing so, we can limit the number of signature
comparisons.

As shown in Fig 2, the signatures of viruses are stored in
database. The signature of app is extracted. If the signatures
match with each other than the app is malicious, else it is safe
to use the app.

2. The hash table: The most basic method for comparing a
given file in opposition to N signatures is to compare each
subsequence in the input file one by one. The above-mentioned
method is extremely ineffective in terms of computation.
Creating the hash table is a well-known technique for speeding
up pattern matching. That being the case, the hash table contains
each and every signature at a different index. The signature is
used to calculate this index value. The index of any input sub-
sequence that links to a hash table item is calculated. If each
entry of the hash table has precisely one signature,

Mentioned
Environment

Detector

Signature
Database

NO

Fig. 2. Signature Based Detection
Fig 2 explains the working of signature-based detection
method.
we know we only need to check each input succession in
opposition to one signature instead of all N signatures. Amongst
the most important aspects of creating the hash table is having
an effectual/easy function, where the sequence is given and it
calculates the hash table index for the sequence. The index for
signatures only needs to be computed once, during the hash
table construction. The index, on the other hand, must be
computed for each succession in the given file. As a result, it is
critical that the index be computed efficiently. In this scenario,
we utilise a basic approach called a filter-hash to generate a
hash value for a sequence of bytes, and then use that value to
retrieve the index in the hash table.
For any byte sequence F = (f1f2...fim), 0 <= fi <= 255, 1 <=
<=m, a continuous succession of L bytes beginning at position
j is used to calculate a filter-hash value as [16]:

H(F L) =20+ fi+) = 1))

Eqg. (1) is used to generate the index for sequence F from the
filter-hash value as follows:
H(H (F,j, L)) =mod (H (F,j, L), Q), @
Where Q denotes the hash table’s dimensions. The filter hash
cost has the important property of being able to be computed
recursively for successive sub-sequences of a very uncommon
place length for an entry file. The evidence supporting this is as
follows: To begin with,

IJERTV111S050037

www.ijert.org 74

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 05, May-2022

H(F 1, L) = i@ = fi) ©)

and the total of the first L consecutive bytes be,

Hs (F, 1, L) = Xi,(fi) 4
It is clear that:
H(F j+1,L)-H(,j L) =

LG x fi+j)-Zia(= fi+j—1)

(®)

Simplifying equation (5) we have,

H(F j+1, L) =H(F,j, L) + L fL+ j-Hs (F, j, L) (6)
Hs (F,j,L)=Hs(F,jL)—fi+fj+L @)
As a result, using equations (6) and (7), we can read the filter
hash values and, eventually, the hash desk index of successive
sub-sequences of length L in the given file. The size of the hash
desk, Q, is an important parameter in a hash desk. The length
of the hash table should be adequate such that each signature
may fill a single space on the table. This length is chosen to be
more than the total number of signatures, N. As a result, there
are Q spaces in the hash table, of which N are occupied with
signatures and Q — N are vacant. Having a bigger wide variety
of empty slots impacts computational time when you consider
that this will suggest that no signature matching is needed
whilst a sub-sequence hash indexes an empty slot. On the
alternative hand a completely massive hash desk also can boom
computational time when you consider that we might require
greater time for reminiscence get entry to within the desk.
Hence, we run experiments with one-of a-kind hash desk sizes
as a way to discover the scale which minimizes computational
time.

IV. RESULTS

A. Ul design

Secure-IT

Fig. 3. Main page

Fig 3 represents the main page of the app its developed using
Android Studio Version 2020.1.3. It will serve as the user
interface for the developed application. Once the user opens the
app he/she will be directed to this main page. On the main page
the user has to authenticate herself/himself this will be done on
the login page as shown in Fig 4.

Fig. 4. Login page

Assuming the user has registered or already has an account
he/she can go to the login page as shown in Fig 4. On this page,
the user will be asked for the ID and Password. He/she will be
redirected to the sign-up page in-case he/she doesn’t have an

account yet.

Fig. 5. Registration page

Once the user clicks on the sign-up option, the user will be
redirected to this sign-up page as shown in Fig 5. Here the user
will have to fill some details to setup an account.

Secure-it

X ()
ot o)
s Posmrort ogint

Fig. 6. Home page

Fig 6 represents the home page. After the user is successfully
logged in, the user will be redirected to the home page. Here,
the user will be provided with multiple different options.

€ Scan Now

|r~

Not in Blacklist

|1-

Not in Blacklist

JoTv

O

Not in Blacklist

Snapchat
droid

©

Not in Blacklist

YouTube Vanced
mvanc droid youtube

Not in Blacklist

Fig. 7. Internal Scan

IJERTV111S050037

www.ijert.org 75

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

In Fig 7 the user will get the list of apps which are pre-installed
in android mobile and are not malicious.

€« List of Blacklisted App

com.ubercab

com flipkart.android

Fig. 8. Blacklisted Apps

In Fig 8 the apps which are malicious will be listed.

€ Detect Malware

o
/data/app/

& Phot
/data/app/

poto:
@ Jotv
/data/app/com.jio.jioplay.tv-
N snape
/data/app/com.snapchat.android-

° YouTube Vanced

/data/app/com.vanced.android.yout

jle androld
ogle androld.
saapehat

Fig. 9. Malware Detection

In the Fig 9 the apps will be scanned using the signatures and
will inform user about the malicious apps.

Secure-it AntiVirus

{ 73% }

® O

Clean Temp Files Kill Apps

Fig. 10. Ram Utilized

Fig 10 shows when the user clicks on ram booster option, he/she
will be redirected to this page. Here ram utilization will be
displayed. User will get two options,” clean temporary files’
and ’kill apps’ which will clear the cache memory.

Secure-it AntiVirus

51%

,

Once the user clicks on kill apps option the ram will be cleared.
The user will be notified through pop-up message.

CONCLUSION

Android is widely used operating system. The security of
android device is very important with respect to the user’s
privacy. The Secure-it app is created to secure the android
device. This application provides three features internal scan,
detect malware and boost ram. This app will scan the
preinstalled apps and will display user about the malicious
content. If the app is malicious, it will be listed into blacklist.
Also, the boost ram feature is provided which will clear the
cache memory, temporary files and close the running apps.

This application scans the apps which are already installed.
If new app is to be downloaded the application will not notify
the user. This application can be further improved by scanning
the newly downloaded apps. To cope up with the possibility of
newer viruses being introduced, Al and ML techniques will be
used by the app to detect such viruses. Through this approach,
antivirus software on the Android platform would reach a level
of effectiveness significantly higher and comparable to that of
desktop antivirus software.

REFERENCES

[1] Android Security Issues and Solutions(S. Karthick and S. Binu, 2017
International Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), Bangalore, 2017, pp. 686-689, doi:
10.1109/ICIMIA.2017.7975551.)

[2] Dar, M. A. (2017). A novel approach to enhance the security of android
based smartphones. 2017 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS).
doi:10.1109/iciiecs.2017.8275923

[8] L. Xing, X. Pan, R. Wang, K. Yuan and X. Wang, "Upgrading Your
Android, Elevating My Malware: Privilege Escalation through Mobile
OS Updating,” 2014 IEEE Symposium on Security and Privacy, 2014,
pp. 393-408, doi: 10.1109/SP.2014.32.

[4] Garba, F. A, Kunya, K. I, lbrahim, S. A, Isa, A. B., Muhammad, K.
M., and Wali, N. N. (2019). Evaluating the State of the Art Antivirus
Evasion Tools on Windows and Android Platform. 2019 2nd
International Conference of the IEEE Nigeria Computer Chapter
(Nigeria Compute Conf).
doi:10.1109/nigeriacomputconf45974.2019.8949637

[5] Jung, J., Lim, K., Kim, B., Cho, S., Han, S., and Suh, K. (2019).
Detecting Malicious Android Apps using the Popularity and Relations
of APIs. 2019 IEEE Second International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE).
doi:10.1109/aike.2019.00062

[6] S. HR, ”Static Analysis of Android Malware Detection using Deep
Learning,” 2019 International Conference on Intelligent Computing and
Control Systems (ICCS), 2019, pp. 841-845, doi:
10.1109/1CCS45141.2019.9065765

[7] P.R.K. Varma, K. P. Raj and K. V. S. Raju, ”Android mobile security
by detecting and classification of malware based on permissions using
machine learning algorithms,” 2017 International Conference on I-
SMAC (loT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017,
pp. 294-299, doi: 10.1109/I-SMAC.2017.8058358.

[8] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an and H. Ye, "Significant
Permission Identification for Machine-Learning-Based Android
Malware Detection,” in IEEE Transactions on Industrial Informatics,
vol. 14, no. 7, pp. 3216-3225, July 2018, doi:
10.1109/T11.2017.2789219.

[91 R.M. Karp and M.O. Rabin, Efficient randomized pattern-matching
algorithms, IBM Journal of Research and Development 31(2) (1987),
249-260.

[10] T.H. Cormen, C.E. Leiserson and R.L. Rivest,
Algorithms, McGraw-Hill, 2002, 966-1057.

Introduction To

"O\ [11] D.E.Knuth,J.H. Morrisand V.R. Pratt, Fast Pattern Matching in Strings,
SIAM Journal on Computing 6(2) (1977), 323-350.
Fig. 11. Ram Booster
| JERTV/111 SO50037 www.ijert.org 76

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

[12] R.S. Boyer and J. Strother Moore, A fast string searching algorithm,
Communications of the ACM 20(10) (1977), 762—772.

[13] B. Commentz-Walter, A string matching algorithm fast on the average,
in: Proceedings of the 6th International Colloquium on Automata,
Languages and Programming. LNCS, vol. 71, Springer-Verlag, Berlin,
1979, 118-132.

[14] S. Wuand U. Manber, Agrep —a fast approximate pattern-matching tool,
in: Proceedings of the Usenix Winter 1992 Technical Conference, 1992,
153-162.

[15] A.V. Aho and M.J. Corasick, Efficient string matching: An aid to
bibliographic search, Communications of the ACM 18(6) (1975), 333—
340.

[16] Venugopal, Deepak Hu, Guoning. (2008). Efficient Signature Based
Malware Detection on Mobile Devices. Mobile Information Systems. 4.
33-49. 10.1155/2008/712353.

| JERTV 111 S050037 www.ijert.org 4
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

