
Secured Access In Cloud Computing

Ganesa Murthy. M *, Venkatesh. S **

Ganesa murthy.M*, student, IT, VelTech High Tech Dr.RR. Dr.SR. Engineering College, Chennai,

India.

Venkatesh.S**, student, CSE, Sree Sastha College of Engineering, Chennai, India.

Abstract— Cloud Computing offers the space to share

distributed resources and services that belong to different

organizations or sites. Since Cloud computing share

distributed resources via network over the open

environment it makes security problems and also causes

data conflict while storing. Since the data transmission on

the internet or over any networks are vulnerable to the

hackers attack. We are in great need of encrypting the

data. To build a trusted computing environment for Cloud

Computing system by providing Secure cross platform in

to Cloud computing system. In this method some

important security services including authentication,

encryption and decryption and compression are provided

in Cloud computing system.

Keywords- Security, Data conflict, Data Encryption,

Compression, Data Decryption .

I. INTRODUCTION

Cloud computing is a promising computing

paradigm which enables efficient data storage by its

service structure. By fusing a set of techniques from

research areas such as Service-Oriented Architectures

(SOA) and virtualization, cloud computing is regarded

as such a computing paradigm in which resources in the

computing infrastructure are provided as services over

the Internet, which can be described by terminology of

“X as a service (XaaS)” where X could be software,

hardware, data storage, and etc. which provide users

with scalable resources in the pay-as-you use fashion at

relatively low prices. As compared to building their

own infrastructures, users are able to save their

investments significantly by migrating businesses into

the cloud. With the increasing development of cloud

computing technologies, it is not hard to imagine that in

the near future more and more businesses will be

moved into the cloud.

As the logical expression can represent any

desired data file set, fine-grainedness of data access

control is achieved. To enforce these access structures,

we define a public key component for each attribute.

Data files are encrypted using public key components

corresponding to their attributes. User secret keys are

defined to reflect their access structures so that a user is

able to decrypt a cipher text if and only if the data file

attributes satisfy his access structureOne extremely

challenging issue with this design is the implementation

of user revocation, which would inevitably require re-

encryption of data files accessible to the leaving user,

and may need update of secret keys for all the

remaining users. If all these tasks are performed by the

data owner himself/herself, it would introduce a heavy

computation overhead on him/her and may also require

the data owner to be always online. To resolve this

challenging issue, our proposed scheme enables the

data owner to delegate tasks of data file re-encryption

and user secret key update to cloud servers without

disclosing data contents or user access privilege

information. We achieve our design goals by exploiting

a novel cryptographic primitive, namely key policy

attribute-based encryption.

II. MODELS AND ASSUMPTIONS

First, confirm that we have the correct idea by
comparing our modules and assumptions,

A. System Models

Similar to Enabling Public Verifiability and

Data Dynamics for Storage Security in Cloud

Computing, we assume that the system is composed of

the following parties: the Data Owner, many Data

Consumers, many Cloud Servers, and a Third Party

Auditor if necessary. To access data files shared by the

data owner, Data Consumers, or users for brevity,

download data files of their interest from Cloud Servers

and then decrypt. Neither the data owner nor users will

be always online. They come online just on the

necessity basis. For simplicity, we assume that the only

access privilege for users is data file reading. Extending

our proposed scheme to support data file writing is

trivial by asking the data writer to sign the new data file

on each update as does. From now on, we will also call

data files by files for brevity. Cloud Servers are always

online and operated by the Cloud Service Provider

(CSP). They are assumed to have abundant storage

capacity and computation power. The Third Party

Auditor is also an online party which is used for

auditing every file access event. In addition, we also

assume that the data owner can not only store data files

but also run his own code on Cloud Servers to manage

his data files. This assumption coincides with the

unified ontology of cloud computing which is proposed

by Youseff et al meet the conscience of our proposal.

3279

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

B. Security Models

In this work, we just consider Honest but

Curious Cloud Servers as Over-encryption:

Management of access control evolution on outsourced

data
[14]

 does. That is to say, Cloud Servers will follow

our proposed protocol in general, but try to find out as

much secret information as possible based on their

inputs. More specifically, we assume Cloud Servers are

more interested in file contents and user access

privilege information than other secret information.

Cloud Servers might collude with a small number of

malicious users for the purpose of harvesting file

contents when it is highly beneficial. Communication

channel between the data owner/users and Cloud

Servers are assumed to be secured under existing

security protocols such as SSL. Users would try to

access files either within or outside the scope of their

access privileges. To achieve this goal, unauthorized

users may work independently or cooperatively. In

addition, each party is preloaded with a public/private

key pair and the public key can be easily obtained by

other parties when necessary.

C. Design Goals

Our main design goal is to help the data owner

achieve fine-grained access control on files stored by

Cloud Servers. Specifically, we want to enable the data

owner to enforce a unique access structure on each user,

which precisely designates the set of files that the user

is allowed to access. We also want to prevent Cloud

Servers from being able to learn both the data file

contents and user access privilege information. In

addition, the proposed scheme should be able to

achieve security goals like user accountability and

support basic operations such as user grant/revocation

as a general one-to-many communication system would

require. All these design goals should be achieved

efficiently in the sense that the system is scalable.

III. SYSTEM STUDY

Before we begin your paper, first complete study of

existing and enhancement in this past systems are
repeatedy observed they are,

A. Existing system

Our existing solution applies cryptographic

methods by disclosing data decryption keys only to

authorized users. These solutions inevitably introduce a

heavy computation overhead on the data owner for key

distribution and data management when fine grained

data access control is desired, and thus do not scale

well.

a) Disadvantages

 Software update/patches - could change

security settings, assigning privileges too low,

or even more alarmingly too high allowing

access to your data by other parties.
 Security concerns - Experts claim that their

clouds are 100% secure - but it will not be

their head on the block when things go awry.

It's often stated that cloud computing security

is better than most enterprises. Also, how do

you decide which data to handle in the cloud

and which to keep to internal systems - once

decided keeping it secure could well be a full-

time task?
 Control - Control of your data/system by

third-party. Data - once in the cloud always in

the cloud! Can you be sure that once you

delete data from your cloud account will it not

exist anymore or will traces remain in the

cloud?

B. Proposed System

a) Main Idea

In order to achieve secured access on

outsourced data in the cloud, the proposed network

consists of backup sites for recovery after disaster . the

backup sites are located at remote location from the

main server. If anyone of the paths fails it uses alternate

path working. The encrypted file will be create during

backup sites and data’s are compressed. The data will

be decrypted during recovery operation.

Then we use three operations:

1. Data backup operation

Client send the data to the server which is known as

main server. At the same time data is also backup to

multi servers.

In this method for data backup it involve with muti

servers. such as (SA 1(Server, Application),SA

2,SA3,etc,…)

2. Data encryption and compression

we utilize and uniquely combine the following three

advanced cryptographic techniques:

 Key Policy Attribute-Based Encryption (KP-

ABE).

 Proxy Re-Encryption (PRE)

 Lazy re-encryption

Then for compression GZIP algorithm is used and for

symmetric splitting of files SFSPL algorithm is used.

3. Data decryption and Decompression

This can be done with suitable decrypting techniques

for the above techniques.

3280

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

 Fig.1: Data Backup

Fig. 2 : Data Recovery

More specifically, we associate each data file with a set

of attributes, and assign each user an expressive access

structure which is defined over these attributes. To

enforce this kind of access control, we utilize KP-ABE

to escort data encryption keys of data files. Such a

construction enables us to immediately enjoy fine-

grainedness of access control. However, this

construction, if deployed alone, would introduce heavy

computation overhead and cumbersome online burden

towards the data owner, as he is in charge of all the

operations of data/user management. Specifically, such

an issue is mainly caused by the operation of user

revocation, which inevitably requires the data owner to

re-encrypt all the data files accessible to the leaving

user, or even needs the data owner to stay online to

update secret keys for users. To resolve this challenging

issue and make the construction suitable for cloud

computing, we uniquely combine PRE with KP-ABE

and enable the data owner to delegate most of the

computation intensive operations to Cloud Servers

without disclosing the underlying file contents. Such a

construction allows the data owner to control access of

his data files with a minimal overhead in terms of

computation effort and online time, and thus fits well

into the cloud environment. Data confidentiality is also

achieved since Cloud Servers are not able to learn the

plaintext of any data file in our construction. For further

reducing the computation overhead on Cloud Servers

and thus saving the data owner’s investment, we take

advantage of the lazy re-encryption technique and allow

Cloud Servers to “aggregate” computation tasks of

multiple system operations. As we will discuss in

section V-B, the computation complexity on Cloud

Servers is either proportional to the number of system

attributes, or linear to the size of the user access

structure/tree, which is independent to the number of

users in the system. Scalability is thus achieved. In

addition, our construction also protects user access

privilege information against Cloud Servers.

Accountability of user secret key can also be achieved

by using an enhanced scheme of KP-ABE.

b) Definition and Notation

For each data file the owner assigns a set of

meaningful attributes which are necessary for access

control. Different data files can have a subset of

attributes in common. Each attribute is associated with

a version number for the purpose of attribute update as

we will discuss later. Cloud Servers keep an attribute

history list AHL which records the version evolution

history of each attribute and PRE keys used. In addition

to these meaningful attributes, we also define one

dummy attribute, denoted by symbol AttD for the

purpose of key management. AttD is required to be

included in every data file’s attribute set and will never

be updated. The access structure of each user is

3281

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

implemented by an access tree. Interior nodes of the

access tree are threshold gates. Leaf nodes of the access

tree are associated with data file attributes. For the

purpose of key management, we require the root node

to be an AND gate (i.e., n-of-n threshold gate) with one

child being the leaf node which is associated with the

dummy attribute, and the other child node being any

threshold gate. The dummy attribute will not be

attached to any other node in the access tree. Fig.1

illustrates our definitions by an example. In addition,

Cloud Servers also keep a user list UL which records

IDs of all the valid users in the system. Fig.2 gives the

description of notation to be used in our scheme.

Notation Description

PK, MK system public key and

master key

Ti public key component for

attribute i

ti master key component for

attribute i

SK user secret key

ski user secret key component

for attribute i

Ei cipher-text component for

attribute i

I attribute set assigned to a

data file

DEK symmetric data encryption

key of a data file

P user access structure

LP set of attributes attached to

leaf nodes of P

AttD the dummy attribute

UL the system user list

AHLi attribute history list for

attribute i

rki↔i’ proxy re-encryption key for

attribute i from its current

version to the updated

version i’

δO,X the data owner’s signature

on message X
Fig. 3: Notation used in our scheme description

c) Scheme Description

For clarity we will present our proposed

scheme in two levels: System Level and Algorithm

Level. At system level, we describe the implementation

of high level operations, i.e., System Setup, New File

Creation, New User Grant, and User Revocation, File

Access, File Deletion, and the interaction between

involved parties. At algorithm level, we focus on the

implementation of low level algorithms that are

invoked by system level operations.

1) System Level Operations: System level

operations in our proposed scheme are designed as

follows.

System Setup In this operation, the data

owner chooses a security parameter κ and calls the

algorithm level interface ASetup(k), which outputs the

system public parameter PK and the system master key

MK. The data owner then signs each component of PK

and sends PK along with these signatures to Cloud

Servers.

New File Creation Before uploading a file to

Cloud Servers, the data owner processes the data file as

follows.

• select a unique ID for this data file;

• randomly select a symmetric data encryption key

DEK
R
← K, where K is the key space, and encrypt the

data file using DEK;

• define a set of attribute I for the data file and encrypt

DEK with I using KP-ABE,

i.e., (Ẽ, {Ei}i∈ I) ← AEncrypt(I,DEK,PK).

Header

 Body

ID I, Ẽ,

{Ei}i∈ i

{DataFile}DEK

Fig. 4: Format of a data file stored on the cloud

Finally, each data file is stored on the cloud in the

format as is shown in Fig.3.

New User Grant When a new user wants to

join the system, the data owner assigns an access

structure and the corresponding secret key to this user

as follows.

• assign the new user a unique identity w and an access

structure P;

• generate a secret key SK for w, i.e., SK ←

AKeyGen(P,MK);

• encrypt the tuple (P, SK,PK, δO,(P,SK,PK)) with user w’s

public key, denoting the cipher-text by C;

• send the tuple (T,C, δO,(T,C)) to Cloud Servers, where T

denotes the tuple (w, {j, skj} jLP \AttD). On receiving the

tuple (T,C, δO,(T,C)), Cloud Servers processes as follows.

• verify δO,(T,C) and proceed if correct;

• store T in the system user list UL;

• forward C to the user.

On receiving C, the user first decrypts it with

his private key. Then he verifies the signature

δO,(P,SK,PK). If correct, he accepts (P, SK,PK) as his

access structure, secret key, and the system public key.

3282

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

As described above, Cloud Servers store all

the secret key components of SK except for the one

corresponding to the dummy attribute AttD. Such a

design allows Cloud Servers to update these secret key

components during user revocation as we will describe

soon. As there still exists one undisclosed secret key

component (the one for AttD), Cloud Servers cannot use

these known ones to correctly decrypt ciphertexts.

Actually, these disclosed secret key components, if

given to any unauthorized user, do not give him any

extra advantage in decryption as we will show in our

security analysis.

User Revocation We start with the intuition of

the user revocation operation as follows. Whenever

there is a user to be revoked, the data owner first

determines a minimal set of attributes without which

the leaving user’s access structure will never be

satisfied. Next, he updates these attributes by redefining

their corresponding system master key components in

MK. Public key components of all these updated

attributes in PK are redefined accordingly. Then, he

updates user secret keys accordingly for all the users

except for the one to be revoked. Finally, DEKs of

affected data files are re-encrypted with the latest

version of PK. The main issue with this intuitive

scheme is that it would introduce a heavy computation

overhead for the data owner to re-encrypt data files and

might require the data owner to be always online to

provide secret key update service for users. To resolve

this issue, we combine the technique of proxy re-

encryption with KP-ABE and delegate tasks of data file

re-encryption and user secret key update to Cloud

Servers. More specifically, we divide the user

revocation scheme into two stages as is shown below.

In the first stage, the data owner determines

the minimal set of attributes, redefines MK and PK

for involved attributes, and generates the

corresponding PRE keys. He then sends the user’s

ID, the minimal attribute set, the PRE keys, the

updated public key components, along with his

signatures on these components to Cloud Servers,

and can go off-line again. Cloud Servers, on

receiving this message from the data owner, remove

the revoked user from the system user list UL, store

the updated public key components as well as the

owner’s signatures on them, and record the PRE key

of the latest version in the attribute history list AHL

for each updated attribute. AHL of each attribute is a

list used to record the version evolution history of

this attribute as well as the PRE keys used. Every

attribute has its own AHL. With AHL, Cloud Servers

are able to compute a single PRE key that enables

them to update the attribute from any historical

version to the latest version. This property allows

Cloud Servers to update user secret keys and data

files in the “lazy” way as follows. Once a user

revocation event occurs, Cloud Servers just record

information submitted by the data owner as is

previously discussed. If only there is a file data

access request from a user, do Cloud Servers re-

encrypt the requested files and update the requesting

user’s secret key. This statistically saves a lot of

computation overhead since Cloud Servers are able to

“aggregate” multiple update/re-encryption operations

into one if there is no access request occurring across

multiple successive user revocation events.

File Access This is also the second stage of

user revocation. In this operation, Cloud Servers

respond user request on data file access, and update

user secret keys and re-encrypt requested data files if

necessary. As is depicted in Fig. 4, Cloud Servers

first verify if the requesting user is a valid system

user in UL. If true, they update this user’s secret key

components to the latest version and re-encrypt the

DEKs of requested data files using the latest version

of PK. Notably; Cloud Servers will not perform

update/re-encryption if secret key components/data

files are already of the latest version. Finally, Cloud

Servers send updated secret key components as well

as ciphertexts of the requested data files to the user.

On receiving the response from Cloud Servers, the

user first verifies if the claimed version of each

attribute is really newer than the current version he

knows. For this purpose, he needs to verify the data

owner’s signatures on the attribute information

(including the version information) and the

corresponding public key components, i.e., tuples of

the form (j, T’j) in Fig. 4. If correct, the user further

verifies if each secret key component returned by

Cloud Servers is correctly computed. He verifies this

by computing a bilinear pairing between sk’j and T’j

and comparing the result with that between the old skj

and Tj that he possesses. If verification succeeds, he

replaces each skj of his secret key with sk’j and

update Tj with T’j. Finally, he decrypts data files by

first calling ADecrypt(P, SK,E) to decrypt DEK’s and

then decrypting data files using DEK’s.

File Deletion This operation can only be

performed at the request of the data owner. To delete

a file, the data owner sends the file’s unique ID along

with his signature on this ID to Cloud Servers. If

verification of the owner’s signature returns true,

Cloud Servers delete the data file. 2) Algorithm level

operations: Algorithm level operations include eight

3283

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

algorithms: ASetup, AEncrypt, AKeyGen, ADecrypt,

AUpdateAtt, AUpdateSK, AUpdateAtt4File, and

AMinimalSet. As the first four algorithms are just the

same as Setup, Encryption, Key Generation, and

Decryption of the standard KP-ABE respectively, we

focus on our implementation of the last four

algorithms.

AUpdateAtt This algorithm updates an

attribute to a new version by redefining its system

master key and public key component. It also outputs

a proxy re-encryption key between the old version

and the new version of the attribute.

AUpdateAtt4File This algorithm translates

the ciphertext component of an attribute i of a file

from an old version into the latest version. It first

checks the attribute history list of this attribute and

locates the position of the old version. Then it

multiplies all the PRE keys between the old version

and the latest version and obtains a single PRE key.

Finally it apply this single PRE key to the ciphertext

component Ei and returns E
(n)

i which coincides with

the latest definition of attribute i.

AUpdateSK This algorithm translates the

secret key component of attribute i in the user secret

key SK from an old version into the latest version. Its

implementation is similar to AUpdateAtt4File except

that, in the last step it applies (rki↔i(n))
−1

 to SKi

instead of rki↔i(n) . This is because ti is the

denominator of the exponent part of SKi while in Ei it

is a numerator.

AMinimalSet This algorithm determines a

minimal set of attributes without which an access tree

will never be satisfied. For this purpose, it constructs

the conjunctive normal form (CNF) of the access

tree, and returns attributes in the shortest clause of

the CNF formula as the minimal attribute set.

IV. DESCRIPTION

A. Key Policy Attribute Based Encryption (KP-

ABE)

KP-ABE
[15]

 is a public key cryptography

primitive for one-to-many communications. In KP-

ABE, data are associated with attributes for each of

which a public key component is defined. The

encryptor associates the set of attributes to the

message by encrypting it with the corresponding

public key components. Each user is assigned an

access structure which is usually defined as an access

tree over data attributes, i.e., interior nodes of the

access tree are threshold gates and leaf nodes are

associated with attributes. User secret key is defined

to reflect the access structure so that the user is able

to decrypt a cipher text if and only if the data

attributes satisfy his access structure
[23]

. A KP-ABE

scheme is composed of four algorithms which can be

defined as follows:

 Setup Attributes

 Encryption

 Secret key generation

 Decryption

1) Setup Attributes:

This algorithm is used to set attributes for

users. This is a randomized algorithm that takes no

input other than the implicit security parameter. It

defines a bilinear group G1 of prime order p with a

generator g, a bilinear map e : G1 × G1 → G2 which

has the properties of bilinearity, computability, and

non-degeneracy. From these attributes public key and

master key for each user can be determined. The

attributes, public key and master key are denoted as

 Attributes- U = {1, 2. . . N}

 Public key- PK = (Y, T1, T2, . . . , TN)

 Master key- MK = (y, t1, t2, . . . , tN)

where Ti ∈ G1 and ti ∈ Zp are for attribute i, 1 ≤ i ≤

N, and Y ∈ G2 is another public key component. We

have Ti = g
ti

and Y = e (g, g)
 y

, y∈ Zp. While PK is

publicly known to all the parties in the system, MK is

kept as a secret by the authority party.

2) Encryption:

This is a randomized algorithm that takes a

message M, the public key PK, and a set of attributes

I as input. It outputs the cipher text E with the

following format:

 E = (I, Ẽ, {Ei ∈ I)

where Ẽ= MY
s
, Ei = Ti

s
. and s is randomly

chosen from Zp

3) Secret key generation:

This is a randomized algorithm that takes as

input an access tree T, the master key MK, and the

public key K. It outputs a user secret key SK as

follows. First, it defines a random polynomial pi(x)

for each node i of T in the top-down manner starting

from the root node r. For each non-root node j, pj(0)

= pparent(j)(idx(j)) where parent(j) represents j’s parent

and idx(j) is j’s unique index given by its parent. For

the root node r, pr(0) = y. Then it outputs SK as

follows.

 SK = {ski} i ∈ L

where L denotes the set of attributes attached to the

leaf nodes of T and ski = g
pi(0)/ti

.

4) Decryption:

3284

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

 This algorithm takes as input the cipher text

E encrypted under the attribute set I, the user’s secret

key SK for access tree T, and the public key PK. It

first computes e(Ei, ski) = e(g, g)
pi(0)s

 for leaf nodes.

Then, it aggregates these pairing results in the

bottom-up manner using the polynomial interpolation

technique. Finally, it may recover the blind factor

Ys=e(g,g)
ys

 and output the message M if and only if I

satisfies T.

5) Access tree T:

Let T be a tree representing an access

structure. Each non-leaf node of the tree represents a

threshold gate, described by its children and a

threshold value. If numx

is the number of children of a node x and kx is its

threshold value, then 0 < kx ≤ numx.

When kx = 1, the threshold gate is an OR gate and

when kx = numx, it is an AND gate.

Each leaf node x of the tree is described by an

attribute and a threshold value kx = 1.

To facilitate working with the access trees,

we define a few functions. We denote the parent of

the node x in the tree by parent(x). The function att(x)

is defined only if x is a leaf node and denotes the

attribute associated with the leaf node x in the tree.

The access tree T also defines an ordering between

the children of every node, that is, the children of a

node are numbered from 1 to num. The function

index(x) returns such a number associated with the

node x, where the index values are uniquely assigned

to nodes in the access structure for a given key in an

arbitrary manner.

6) Satisfying an access tree:

 Let T be an access tree with root r. Denote

by Tx the sub tree of T rooted at the node x. Hence T

is the same as Tr. If a set of attributes I satisfies the

access tree Tx, we denote it as Tx(I) = 1. We compute

Tx(I) recursively as follows. If x is a non-leaf node,

evaluate Tx’(I) for all children x’ of node x. Tx(I)

returns 1 if and only if at least kx children return 1. If

x is a leaf node, then Tx(I) returns 1 if and only if

att(x) ∈ I.

7) Construction of Access Trees:

In the access-tree construction, cipher texts

are labeled with a set of descriptive attributes. Private

keys are identified by a tree-access structure in which

each interior node of the tree is a threshold gate and

the leaves are associated with attributes. A user will

be able to decrypt a cipher text with a given key if

and only if there is an assignment of attributes from

the cipher texts to nodes of the tree such that the tree

is satisfied.

B. Proxy Re-Encryption (PRE)

Proxy Re-Encryption (PRE) is a

cryptographic primitive in which a semi-trusted

proxy is able to convert a cipher text encrypted under

Alice’s public key into another cipher text that can be

opened by Bob’s private key without seeing the

underlying plaintext. A Proxy Re-Encryption scheme

allows the proxy, given the proxy re-encryption key

rka↔b, to translate cipher texts under public key pka

into cipher texts under public key pkb and vice versa
[16]

.

First, we consider protocol divertibility, in

which the (honest) intermediary, called a warden,

randomizes all messages so that the intended

underlying protocol succeeds, but information

contained in subtle deviations from the protocol (for

example, information coded into the values of

supposedly random challenges) will be obliterated by

the warden’s transformation. Next, we introduce

atomic proxy cryptography, in which two parties

publish a proxy key that allows an untrusted

intermediary to convert cipher texts encrypted for the

first party directly into cipher texts that can be

decrypted by the second. The intermediary learns

neither clear text nor secret keys.

1) Divertible Protocols:

The basic observation was that some 2-party

identification protocols could be extended by placing

an intermediary called a warden for historical reasons

between the prover and verifier so that, even if both

parties conspire, they cannot distinguish talking to

each other through the warden from talking directly

to a hypothetical honest verifier and honest prover,

respectively.

In order to deal with protocols of more than

two parties, we generalize the notion of Interactive

Turing machine (ITM). Then we define connections

of ITMs and finally give the definition of protocol

divertibility.

2) (m, n)-Interactive Turing Machine:

An (m, n)-Interactive Turing Machine ((m,

n)-ITM) is a Turing machine with

m ∈ N read-only input tapes, m write-only output

tapes, m read-only random tapes, a work tape, a read-

only auxiliary tape, and n ∈ N0 pairs of

communication tapes. Each pair consists of one read-

only and one write-only tape that serves for reading

in-messages from or writing out-messages to another

ITM. (The purpose of allowing n=0 will become

clear below.) The random tapes each contain an

infinite stream of bits chosen uniformly at random.

3285

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

Read-only tapes are readable only from left to right.

If the string to the right of a read-only head is empty,

then we say the tape is empty.

Associated to an ITM is a security parameter k ∈N, a

family D = {Dπ}π of tuples of domains, a probabilistic

picking algorithm pick(k) and an encoding scheme S.

Each member

 Dπ = (In
(1)

π , . . . , In
(m)

π , Out
(1)

π , . . . , Out
(m)

π ,

Ω
(1)

π , . . . ,Ω
(m)

π ,

 (IM
(1)

π ,OM
(1)

π), . . . , (IM
 (n)

π ,OM
(n)

π))

of D contains one input (output, choice, in-message,

out-message) domain for each of the m input (output,

random) tapes and n (read-only, write-only)

communication tapes. The algorithm pick(k) on input

some security parameter k outputs a family index π.

Finally, there is a polynomial P(k) so that for each π

chosen by pick(k), S encodes all elements of all

domains in Dπ as bitstrings of length P(k).

3) Atomic Proxy Cryptography:

A basic goal of public-key encryption is to

allow only the key or keys selected

at the time of encryption to decrypt the cipher text.

To change the cipher text to a different key requires

re-encryption of the message with the new key,

which implies access to the original clear text and to

a reliable copy of the new encryption key.

Here, on the other hand, we investigate the

possibility of atomic proxy functions that convert

ciphertext for one key into ciphertext for another

without revealing secret decryption keys or cleartext

messages .An atomic proxy function allows an

untrusted party to convert ciphertext between keys

without access to either the original message or to the

secret component of the old key or the new key.

4) Categories of Proxy Scheme:

Symmetric proxy functions also imply that B

trusts A, e.g., because dB can be feasibly calculated

given the proxy key plus dA. Asymmetric proxy

functions do not imply this bilateral trust.

In an active asymmetric scheme, B has to

cooperate to produce the proxy key πA→B feasibly,

although the proxy key (even together with A’s secret

key) might not compromise B’s secret key. In a

passive asymmetric scheme, on the other hand, A’s

secret key and B’s public key suffice to construct the

proxy key.

Transparent proxy keys reveal the original

two public keys to a third party. Translucent proxy

keys allow a third party to verify a guess as to which

two keys are involved (given their public keys).

Opaque proxy keys reveal nothing, even to an

adversary who correctly guesses the original public

keys (but who does not know the secret keys

involved).

C. Lazy Re-Encryption (LRE)

The lazy re-encryption technique and allow

Cloud Servers to aggregate computation tasks of

multiple operations. The operations such as

 Update secret keys

 Update user attributes.

Lazy re-encryption operates by using

correlations in data updates to decide when to rekey.

Since data re-encryption accounts for the larger part

of the cost of key replacement, re-encryption is only

performed if the data changes significantly after a

user departs or if the data is highly sensitive and

requires immediate re-encryption to prevent the user

from accessing it. The cost of rekeying is minimized,

but the problem remains of having to re-encrypt the

data after a user’s departure. Moreover, if a sensitive

file does not change frequently, lazy re-encryption

can allow a malicious user time to copy off

information from the file into another file and leave

the system without ever being detected. We have to

assume that if a key k requires updating, then any

objects encrypted with k are available to any user

who could derive k. Hence, we may as well wait until

the contents of an object changes before re-

encrypting it. Similarly, we may as well defer

sending a user u the new key k′ until such time as u

actually requires k′ to decrypt an object. This is

sometimes referred to as lazy update and lazy re-

encryption.

A revoked reader who has access to the

server will still have read access to the files not

changed since the user’s revocation, but will never be

able to read data updated since their revocation. Lazy

revocation, however, is complicated when multiple

files are encrypted with the same key, as is the case

when using filegroups. In this case, whenever a file

gets updated, it gets encrypted with a new key. This

causes filegroups to get fragmented (meaning a

filegroup could have more than one key), which is

undesirable. The next section describes how we

mitigate this problem; briefly, we show how readers

and writers can generate all the previous keys of a

fragmented filegroup from the current key.

3286

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

V. CONCLUSION

Our paper aims at secured access control in

cloud computing., which is not provided by current

work. In this paper we propose a scheme to achieve

this goal by exploiting all data backup and encryption

techniques like KP-ABE and uniquely combining it

with cryptographic techniques of proxy re-encryption

and lazy re-encryption. Moreover, our proposed

scheme can enable the data owner to delegate most of

computation overhead to powerful cloud servers.

Confidentiality of user access privilege and user

secret key accountability can be achieved. Formal

security proofs show that our proposed scheme is

secure under standard cryptographic models and data

storage discrepancies are removed .

VI. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia, “Above the

clouds: A berkeley view of cloud computing,”

University of California, Berkeley, Tech. Rep. USB-

EECS-2009-28, Feb 2009.

[2] Amazon Web Services (AWS), online at

http://aws.amazon.com.

[3] Google App Engine, Online at

http://code.google.com/appengine/.

[4] Microsoft Azure,

http://www.microsoft.com/azure/.

[5] 104th United States Congress, “Health Insurance

Portability and Accountability Act of 1996

(HIPPA),” Online at

http://aspe.hhs.gov/admnsimp/pl104191.htm, 1996.

[6] H. Harney, A. Colgrove, and P. D. McDaniel,

“Principles of policy in secure groups,” in Proc. of

NDSS’01, 2001.

[7] P. D. McDaniel and A. Prakash, “Methods and

limitations of security policy reconciliation,” in Proc.

of SP’02, 2002.

[8] T. Yu and M. Winslett, “A unified scheme for

resource protection in automated trust negotiation,”

in Proc. of SP’03, 2003.

[9] J. Li, N. Li, and W. H. Winsborough, “Automated

trust negotiation using cryptographic credentials,” in

Proc. of CCS’05, 2005.

[10] J. Anderson, “Computer Security Technology

Planning Study,” Air Force Electronic Systems

Division, Report ESD-TR-73-51, 1972,

http://seclab.cs.ucdavis.edu/projects/history/.

[11] M. Kallahalla, E. Riedel, R. Swaminathan, Q.

Wang, and K. Fu, “Scalable secure file sharing on

untrusted storage,” in Proc. of FAST’03, 2003.

[12] E. Goh, H. Shacham, N. Modadugu, and D.

Boneh, “Sirius: Securing remote untrusted storage,”

in Proc. of NDSS’03, 2003.

[13] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, “Improved proxy re-encryption

schemes with applications to secure distributed

storage,” in Proc. of NDSS’05, 2005.

[14] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S.

Paraboschi, and P. Samarati, “Over-encryption:

Management of access control evolution on

outsourced data,” in Proc. of VLDB’07, 2007.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-based encryption for fine-grained access

control of encrypted data,” in Proc. Of CCS’06,

2006.

[16] M. Blaze, G. Bleumer, and M. Strauss,

“Divertible protocols and atomic proxy

cryptography,” in Proc. of EUROCRYPT ’98, 1998.

[17] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

“Enabling public verifiability and data dynamics for

storage security in cloud computing,” in Proc. of

ESORICS ’09, 2009.

[18] L. Youseff, M. Butrico, and D. D. Silva,

“Toward a unified ontology of cloud computing,” in

Proc. of GCE’08, 2008.

[19] S. Yu, K. Ren, W. Lou, and J. Li, “Defending

against key abuse attacks in kp-abe enabled broadcast

systems,” in Proc. of SECURECOMM’09, 2009.

[20] D. Sheridan, “The optimality of a fast CNF

conversion and its use with SAT,” in Proc. of

SAT’04, 2004.

[21] D. Naor, M. Naor, and J. B. Lotspiech,

“Revocation and tracing schemes for stateless

receivers,” in Proc. of CRYPTO’01, 2001.

[22] M. Atallah, K. Frikken, and M. Blanton,

“Dynamic and efficient key management for access

hierarchies,” in Proc. of CCS’05, 2005.

[23] Shucheng Yu, Cong Wang, Kui Ren, and

Wenjing Lou, “Achieving Secure, Scalable, and Fine-

grained Data Access Control in Cloud Computing,”

in Proc. of INFOCOM’10, 2010.

3287

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60826

